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Liouville-type theorems for Kolmogorov and
Ornstein–Uhlenbeck operators

Alessia E. Kogoj1

Abstract. We collect Liouville-type properties that hold true for Kolmogorov oper-

ators with constant coe�cients and for their time-stationary counterpart, the Ornstein–

Uhlenbeck operators. In particular, we discuss uniqueness results for solutions and sub-

solutions in L
p-spaces, for solutions in the whole space or in halfspaces bounded just from

one-side. Polynomial Liouville properties and a Liouville theorem “at t = �1” are also

presented.

1. Introduction

We consider Kolmogorov operators in R
N+1 of the following type

(1.1) L = div (Ar) + hBx,ri � @t ,

and their corresponding stationary counterparts in R
N , the degenerate Ornstein–

Uhlenbeck operators

(1.2) L0 = div (Ar) + hBx,ri .

The point x = (x1, · · · , xN ) belongs to R
N , t to R, and div, r, h·, ·i stand

respectively for the divergence, the Euclidean gradient and the inner product in
R

N . A = (aij)i,j=1,...,N and B = (bij)i,j=1,...,N are N ⇥ N matrices with real
constant coe�cients, A is symmetric and non-negative definite. We will suppose
that A and B satisfy additional suitable conditions, that we are going to describe in
the sequel, in order that the operator L, and, as a consequence, L0, be hypoelliptic.

We recall that an operator L is hypoelliptic if every distributional solution of
Lu = f , in a open subset of RN+1, is of class C1 whenever f is of class C1.

We know (see [12]) that the following conditions on the operator L in (1.1) are
equivalent:

(i) The operator L is hypoelliptic.
(ii) There exist bases of RN such that the matrix A takes the following block

form:

(1.3) A =

"
A0 0

0 0
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for some p0⇥p0 symmetric and strictly positive definite matrix A0, p0  N .
Moreover, if p0 < N , i.e., if L is a degenerate elliptic-parabolic operator,
the matrix B can be written as follows

(1.4) B =

2

666664

⇤ ⇤ · · · ⇤ ⇤

B1 ⇤ ⇤ ⇤ ⇤

0 B2 · · · ⇤ ⇤

...
...

. . .
...

...
0 0 · · · Bn ⇤

3

777775
,

where Bj is a pj ⇥ pj�1 matrix with maximum rank pj ; j = 1, 2, · · · , n,
p0 � p1 � · · · � pn � 1 and p0 + p1 + · · ·+ pn = N . Every block ⇤ is a real
constant matrix that does not need to satisfy any particular condition.

(iii) The first order di↵erential operators

(1.5) Xi =
NX

k=1

aik@xk , i = 1, · · · , N and Y = hBx,ri � @t ,

satisfy the Hörmander condition

(1.6) rankLie{X1, · · · , XN , Y }(z) = N + 1 8z 2 R
N+1 ,

that is, the rank of the Lie algebra generated byX1, · · · , XN , Y is maximum
at any point of RN+1.

(iv) Letting

(1.7) E(s) := e�sB , s 2 R ,

the matrix

C(t) =

Z
t

0

E(s)AET (s) ds

satisfies the Kalman condition, that is, C is strictly positive definite for
every t > 0.

Thus, we suppose the matrices A and B to be of the form (1.3) and (1.4).
Lanconelli and Polidoro in [12] proved that the operator L in (1.1) is left translation
invariant with respect to the Lie group K = (RN+1, ·) with composition law

(x, t) · (x0, t0) = (x0 + E(t0)x, t+ t0) ,

where E represents the matrix defined in (1.7).
Furthermore in the particular case that every block ⇤ of the matrix B in (1.4) is

the zero matrix of suitable dimensions, the operator L0 is homogeneous of degree
two with respect to the group of dilations

Dr : RN
! R

N , Dr(x) = Dr(x(p0), x(p1), · · · , x(pn))

:= (rx(p0), r3x(p1), · · · , r2n+1x(pn)) ,

and L is homogeneous of degree two with respect to the group of dilations

(1.8) �r : RN+1
! R

N+1 , �r(x, t) := (Dr(x), r
2t) ;

where x(pi) 2 R
pi , i = 0, · · · , n, and r > 0.

We denote by eL and eL0 the operators L and L0 whenever they satisfy the
additional hypothesis of homogeneity.
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As the dimension of the vectorial space generated by the vector fields Xi(x), i =
1, · · · , N in (1.5) and hBx,ri is not constant in x, there does not exist a composition
law making L0 left translation invariant (see [3, Proposition 1.2.13]).

We conclude the introduction with a celebrated example. Let In be the identity
n⇥ n matrix and let N = 2n. Suppose that the matrices A and B are of the type:

A =

 
In 0

0 0

!
and B =

 
0 0

In 0

!
.

The prototype of the operators introduced in 1934 by Kolmogorov [11] in studying
di↵usion phenomena from a probabilistic point of view is

K = div(Ar) + hBx,ri � @t =
nX

i=1

@2

xi
+

nX

i=1

xi@xn+i � @t in R
2n+1 .

In the model of Kolmogorov the positive solutions of Ku = 0 are probability den-
sities of a system having 2n degrees of freedom. The 2n dimensional space is the
phase space: (x1, · · · , xn) is the velocity vector and (xn+1, · · · , x2n) is the vector
of the positions of the system.

We note that in this case:

C(t) =

Z
t

0

e�sB A esB
T

ds =

0

BB@
t In �

t2

2
In

�
t2

2
In

t3

3
In

1

CCA > 0 , 8 t > 0 .

This paper is organised as follows. In section 1, we collect Liouville-type re-
sults in Lp, p 2]1,1), for solutions and sub-solutions to Lu = 0, together with an
application to the Cauchy problem. Section 2 is devoted to polynomial Liouville
properties and a Liouville theorem at t = �1 for the Kolmogorov operators sat-
isfying the homogeneity assumption. In section 3 we discuss the case L1, that is
the Liouville theorem for bounded solutions, both for L and its “stationary-time”
L0 counterpart. In section 4, one-side Liouville theorems for L0 are derived from
the previous results.

For the sake of brevity, we do not provide here the proofs of the presented results,
but instead refer the interested reader to the corresponding publications. In those
publications there can also be found related citations to additional bibliography.
We also mention the recent survey [1] by Anceschi and Polidoro on the classical
theory for Kolmogorov operators.

Remark 1.1 (sub-Kolmogorov operators). We observe that under suitable condi-
tions on the matrix B (see [6]), we may replace the second order part div (Ar) in
the operator (1.1) by a sub-Laplacian on a Carnot group G in R

N . In this case, we
obtain the following class of evolution operators left invariant and homogenous on
a Lie group in R

N+1 (that we construct following the link procedure introduced in
[6]):

LG := LG0 � @t = �G + hBx,ri � @tin R
N+1 .

An example of an operator belonging to this class is

�H1 + x1@x4 � @t := (@x1 + 2x2@x3)
2 + (@x2 � 2x1@x3)

2 + x1@x4 � @tin R
5 ,

where H1 is the Heisenberg group in R
3.
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All the presented results for eL and eL0, hold true also for LG and LG0, respectively.

2. Lp-Liouville theorems

We present some Lp-Liouville theorems that, in a suitable form, hold true for
the solution and sub-solutions to Lu = 0 (see [8, 2]).

We observe that in the case of harmonic functions, the Lp-Liouville theorem is
an easy consequence of the Gauss mean value property. Indeed, let u 2 Lp(RN ),
1  p < 1, and �u = 0 in R

N (we denote by µ the Lebesgue measure).
Then,

|u(x)| =
1

µ(Br(x))

�����

Z

Br(x)

u(y) dy

�����



✓
1

µ(Br(x))

◆1/p

kukLp(RN ) ! 0 as r ! 1 , 8 x 2 R
N .

However this argument does not work for the heat equation because the kernel
in the Pini-Watson mean value Theorem for caloric functions is unbounded.

The first result is an Lp-Liouville theorem where we do not require any sign
restriction on the solution u. The weight et tr(B) represents a right-invariant measure
on K (see [2]), where by tr(B) we denote the trace of the matrix B. We recall that
in the particular case where the operator is homogenous, we have that tr(B) = 0.

Theorem 2.1. Let u be a solution to Lu = 0 in R
N+1

. If

Z

RN+1

|u(x, t)|p et tr(B) dxdt < 1

for some p 2 [1,1), then u ⌘ 0.

For p = 1 the validity of a similar result depends on the real part of the
eigenvalues of the matrix B. We will examine the case supN+1

R
|u| < 1 in section

4. Now, we wish to present Lp-Liouville properties for the sub-solutions to L.

Theorem 2.2. Let u 2 C2(RN+1) be a non-negative solution to Lu � 0 in R
N+1

.

If Z

RN+1

|u(x, t)|p et tr(B) dxdt < 1

for some p 2 [1,1), then u ⌘ 0.

Actually, for the sub-solutions the result is more precise:

Theorem 2.3. Let u 2 C2(RN+1) be a solution to Lu � 0 in R
N+1

. If

Z

RN+1

|u(x, t)|p et tr(B) dxdt < 1

for some p 2 [1,1), then u  0 in R
N+1

.

The result becomes sharp when the operator is homogeneous. Let Q := p0 +
3p1 + · · ·+ (2n+ 1)pn + 2. The number Q denotes the homogeneous dimension of
K with respect to the group of dilations (�r)r>0 defined in (1.8). We can state the
following theorem.
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Theorem 2.4. Let u 2 L1

loc
be a solution to eLu � 0 in R

N+1
, in the sense of

distributions. If there exists p 2 [1, 1 + 2/(Q� 2)] such that

Z

RN+1

|u(x, t)|p dxdt < 1 ,

then

u ⌘ 0 a.e. in R
N+1 .

Moreover, for every p > 1 + 2/(Q � 2), there exists u 2 Lp(RN+1), u  0, u 6⌘ 0,
such that

eLu � 0 in R
N+1, in the sense of distributions .

We complete this section with an application to the Cauchy problem: the fol-
lowing Tikhonov-type theorem for all the hypoelliptic operators L in (1.1) holds.

Corollary 2.5. Let us denote by ⌦ the half-space {(x, t) 2 R
N+1 : t > 0}. Any

classical solution u 2 C1(⌦) \ C(⌦) to the Cauchy problem

(
Lu = 0 in ⌦

u(x, t) = 0 for t = 0

is identically zero on ⌦ if

Z 1

0

Z

RN

|u(x, t)|p et tr(B) dxdt < 1 ,

for some p 2 [1,1).

3. Asymptotic Liouville theorems

We cannot expect a non-negative solution to eLu = 0 in R
N+1 to be constant

without adding any extra condition. This can be easily seen, e.g., by considering
the following function

u(x, t) = ex1+···+xN+Nt ,

which is a strictly positive non constant solution in R
N+1 to the heat equation

NX

i=1

@2

xi
u� @tu = 0 .

However, if we assume a polynomial growth on u as |x| or t goes to 1, we can
recover the following Liouville-type theorems (see [5, Theorem 2], [7, Theorem 2.3]).

Theorem 3.1. Let u 2 C1(RN
⇥] �1, 0)) \ C(RN

⇥] �1, 0]) be a non-negative

solution to eLu = 0 in R
N
⇥]�1, 0).

If there exists a positive m 2 R such that

u(x, 0) = O(|x|m) as |x| ! 1 ,

then u is constant.

Theorem 3.2. Let u be a non-negative solution to eLu = 0 in R
N+1

.

If there exists a positive m 2 R such that

u(0, t) = O(tm) as t ! 1 ,

then u is constant.
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In the particular case that B is the zero matrix, the asymptotic estimate u(0, t) =
O(tm) can be replaced by

u(0, t) = O(e"t) as t ! 1 ,

for every " > 0 (see [9, Theorem 5.1]).
The previous result is a particular case of the following polynomial Liouville

theorem.

Theorem 3.3. Let u : RN+1
! R be such that8
<

:

eLu = p in R
N+1 ,

u � q in R
N+1 ,

where p and q are polynomial functions. Assume

(3.1) u(0, t) = O(tm) as t ! 1 ,

for a suitable m > 0. Then, u is a polynomial function.

Without adding any extra condition on the non-negative solution u to our equa-
tion eLu = 0, as already observed, u is not necessarily constant. Nevertheless, it has
been proved the “u is constant at t = �1” (see [5, Theorem 1], [7, Theorem 3.1]),
in the following sense.

Theorem 3.4. Let u be a non-negative solution to eLu = 0 in the half-space

ST = R
N
⇥]�1, T [ , T 2 R .

Then limt!�1 u(x, t) exists for every x 2 R
N

and it is independent of x.
More precisely,

lim
t!�1

u(x, t) = inf
ST

u for every x 2 R
N .

4. L1-Liouville theorems

If we suppose that the absolute value of the solution u to eLu = 0 is bounded, the
Liouville theorem for eL follows like a simple corollary of the results of the previous
section.

Theorem 4.1. Let u be a bounded solution to eLu = 0 in R
N+1

. Then, u is

constant.

We observe that if the operator eL satisfies the L1-Liouville property (i.e. any
bounded solution to the equation eLu = 0 in R

N+1 is constant) also eL0 has the same
property for the solution v to eL0v = 0 in R

N .
Actually this last result is a particular case of a theorem due to Priola and

Zabczyk [15, Theorem 3.1], that holds under more general hypotheses on the matrix
B (that include the homogeneity). More precisely, the Priola and Zabczyk theorem
for the operator L0 in (1.2), takes this form.

Theorem 4.2. Any bounded solution v to L0v = 0 in R
N

is constant

()

the real part of every eigenvalue of the matrix B is non-positive .



Liouville-type theorems 51

5. One-side Liouville theorems

As a consequence of the asymptotic Liouville theorems for the Kolmogorov op-
erators recalled in section 3, we obtain for their stationary-time counterparts (the
Ornstein–Uhlenbeck operators), Liouville-type properties without requiring any a

priori asymptotic behaviour for the solutions.
We remark that our class of operators eL0 also contains “parabolic” type operators

like, e.g. the following “forward-backward” heat operator

(5.1) L0 := @2

x1
+ x1@x2 in R

2 .

We start by presenting a polynomial one-side Liouville theorem.

Theorem 5.1. Let v : RN
! R be such that( eL0v = p in R

N ,

v � q in R
N ,

where p and q are polynomial functions. Then, v is a polynomial function.

As a particular case, we have for our class of Ornstein–Uhlenbeck operators, a
Liouville theorem analogous to the one for the classical Laplace operator.

Theorem 5.2. Let v : RN
! R be such that( eL0v = 0 in R

N ,

v � 0 in R
N ,

Then, v is constant.

This result follows very easily from Theorem 3.2. Indeed, let us define u(x, t) =
v(x). Then u is a non-negative solution to the equation eLu = 0 in R

N+1. Moreover,
u(0, t) = v(0) = O(1) as t ! 1. Then, u is constant, and so v is constant. In
a similar way, one obtains the polynomial Liouville theorem for eL0 from Theorem
3.3.

From the Priola and Zabczyk theorem [15, Theorem 3.1], it is clear that we can-
not extend Theorem 5.2 to the class of operators L when B has at a least a positive
eigenvalue. It is an open problem if in the general case, where all the eigenvalues
of the matrix B have non positive real parts, the solutions to the equation L0v = 0
bounded just from one side have to be constant.

Very recently, with Priola and Lanconelli [10], we obtained the one-side Liouville
property for operators of the type

NX

i=1

@2

xi
u+ hBx,ri ,

when B is diagonalizable over the complex field with all its eigenvalues on the
imaginary axis.

6. A brief historical note

Actually, Augustin-Louis Cauchy was the first to announce and prove, on the
23rd of December 1844, the earliest statement of the theorem nowadays known as
the “the Liouville theorem”,

any bounded entire function of a single complex variable has to be constant,

two weeks after Joseph Liouville, on the 9th of December, announced the result in
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the special case of doubly periodic functions,
a doubly-periodic holomorphic function has to be constant.

Both the results were published in the Comptes Rendus de l’Académie des Sci-
ences, Paris [13, 4]. For an historical account concerning the priority issue we refer
to the chapter The Discovery of Liouville’s Theorem of [14] and the historical note
Cauchy and Liouville, a question of priority in [16].

Lützen asserts that “Liouville justly deserves the honor of having his name at-
tached to the theorem for the following three reasons. 1� Liouville was the first
to publish the theorem in the doubly periodic case, Cauchy’s 1843 theorems being
clearly di↵erent from, although closely related to, Liouville’s theorem. 2� Liouville
was the first to discover the fundamental importance of the theorem. 3� Liouville
probably had arrived at the general form of Liouville’s theorem before Cauchy”.
Contrarily, Serrin and Zou, in their historical note in [16], argue that “Lützen’s
presentation is partly marred by championship of Liouville’s priority claims”.
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