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Abstract. We prove weighted L p-Liouville theorems for a class of second-order hypoelliptic partial dif-
ferential operators L on Lie groups G whose underlying manifold is n-dimensional space. We show that
a natural weight is the right-invariant measure Ȟ of G. We also prove Liouville-type theorems for C2

subsolutions in L p(G, Ȟ). We provide examples of operators to which our results apply, jointly with an
application to the uniqueness for the Cauchy problem for the evolution operator L − ∂t .

1. Introduction and main results

The aim of this paper is to obtain L p-Liouville properties for hypoelliptic linear
second-order partial differential operators L (with nonnegative characteristic form),
which are left-invariant on a Lie groupG on n-dimensional space Rn . We shall obtain
weighted L p-Liouville theorems; in that the right-invariant measure of the group G

will play a crucial and natural rôle, as we will shortly explain.
Precisely, we assume that L has the following structure: L is a linear second-order

PDO (with vanishing zero-order term) on n-dimensional space R
n whose quadratic

form is positive semidefinite at every point of Rn ; more explicitly, to fix the notation,
we require that L has the coordinate form:

L =
n∑

i, j=1

ai, j (x)
∂2

∂xi∂x j
+

n∑

j=1

b j (x)
∂

∂x j
, (1.1)

with functions ai, j , b j ∈ C∞(Rn,R), and the matrix A(x) := (ai, j (x)) is symmetric
and positive semidefinite for every x ∈ R

n .
Our assumptions are the following three:

(ND) L is non-totally degenerate at every x ∈ R
n , that is A(x) �= 0 for every x ∈ R

n .
(HY) L is hypoelliptic in every open subset of Rn , that is, if U ⊆ W ⊆ R

N are
open sets, any u ∈ D′(W ) which is a weak solution to Lu = h in D′(U ), with
h ∈ C∞(U,R), is itself a smooth function on U .

(LI) There exists a Lie group G = (Rn, ·) such that L is left-invariant on G.
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REMARK 1.1. Actually, under hypothesis (LI), assumption (ND) is a very mild
condition; indeed, it is easy to check that, if L is left-invariant, then (ND) holds true if
and only if there exists x0 ∈ R

n such that A(x0) �= 0 (which is equivalent to requiring
that L is not a merely first-order operator).

We observe that a set of explicit necessary and sufficient conditions ensuring hypo-
thesis (LI) has been recently given by Biagi and the first-named author in [1].

We now fix a notation: in what follows we shall denote by Ȟ a fixed right-invariant
measure on the Lie groupG in assumption (LI). Since any two right-invariantmeasures
differ by a positive scalar multiple, we fix once and for all Ȟ in the following (explicit
way): given x ∈ R

n we set

ρx : Rn → R
n, ρx (y) := y · x

to denote the right translation by x ; then it is easy to verify that the measure

E �→ Ȟ(E) :=
∫

E

1

det
(Jρx (e)

) dx (1.2)

(defined on the Lebesgue measurable sets E ⊆ R
n) is a right-invariant measure on the

Lie groupG. Here and in the sequel we agree to denote by dx the Lebesgue integration
on R

n . The notation Ȟ comes from the usual duality existing between left-invariant
measures μ and right-invariant measures μ̌:

μ �−→ μ̌ where μ̌(E) = μ(ι(E)),

where ι is the group inversion onG. Even if we will not use any Haar measure H ofG,
we prefer to use the symbol Ȟ to avoid any confusion with left invariance and, at the
same time, in order to emphasize the rôle of right invariance in our Liouville results.
Throughout, L p(Rn, Ȟ) (for any p ∈ [1,∞]) will denote the associated L p-space

on G ≡ R
n with respect to the measure Ȟ .

In the sequel, we say that a function u ∈ C2(Rn,R) is

– L-harmonic on Rn if Lu = 0 on R
n ;

– L-subharmonic on R
n if it satisfies Lu ≥ 0 on R

n .

We are now ready to state the main results of this paper, the following weighted
L p-Liouville theorems.

THEOREM 1.2. (Weighted L p-Liouville theorem for the L-harmonic functions)
Suppose that L satisfies assumptions (ND), (HY), (LI).
Let u ∈ C∞(Rn,R) be an L-harmonic function.
Then u ≡ 0 if one of the following conditions is satisfied:

(i) u ∈ L p(Rn, Ȟ) for some p ∈ [1,∞[;
(ii) u ≥ 0 and u p ∈ L1(Rn, Ȟ) for some p ∈ ]0, 1[.
Ȟ denotes the right-invariant measure on G defined in (1.2).
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The classical form of Liouville’s theorem for L-harmonic functions (i.e., under the
assumption Lu = 0 and the “one-side” bound u ≥ 0 on the whole space) cannot be
expected under our general hypotheses where operators with first-order terms as in
(1.1) are allowed: for example, the classical Heat operator

L =
n∑

j=1

(∂x j )
2 − ∂t in Rn+1 = R

n
x × Rt

satisfies all the assumptions (ND), (HY) and (LI) (the latter w.r.t. the usual struc-
ture G = (Rn+1,+)), but the function exp(x1 + · · · + xn + n t) is L-harmonic and
nonnegative in space Rn+1. “One-side” Liouville-type theorems for some classes of
homogeneous operators are proved in [11–13].
Our second main result, for L-subharmonic functions, is the following one:

THEOREM1.3. (Weighted L p-Liouville theorem for theL-subharmonic functions)
Suppose that L satisfies assumptions (ND), (HY), (LI). Let u ∈ C2(Rn,R) be an L-
subharmonic function on R

n.
If u ∈ L p(Rn, Ȟ) for some p ∈ [1,∞[, then u ≤ 0.
In particular, any nonnegativeL-subharmonic function is identically zero, provided

that u ∈ L p(Rn, Ȟ) for some p ∈ [1,∞[.
For the proofs of Theorems 1.2 and 1.3 we closely follow the techniques recently

introduced by Lanconelli and the second-named author in [14, Th. 1.1, 1.2, 1.3], where
unimodular Lie groups are considered (with Ȟ equal to the Lebesgue measure): the
ideas introduced in [14] can be adapted to our (more general) framework, since they
rely on a very versatile technique based on the use of convex functions of the global
solution toLu = 0, together with a general representation formula (of Poisson–Jensen
type; see also (2.8)). The novelty of our case is the use of the right-invariant measure
Ȟ ; this allows us to encompass new examples, of interest, as the following one.

EXAMPLE 1.4. Let us consider inRn+1 = R
n
x ×Rt theKolmogorov-type operators

L = div(A∇) + 〈Bx,∇〉 − ∂t , (1.3)

where A and B are constant n × n real matrices, and A is symmetric and positive
semidefinite. Let us define the matrix

E(s) := exp(−sB), s ∈ R.

Then the operatorL in (1.3) satisfies assumption (LI)w.r.t. theLie groupG = (Rn+1, ·)
with composition law

(x, t) · (x ′, t ′) = (x ′ + E(t ′)x, t + t ′).

Since det(E(t)) = exp(−t trace(B)), according to formula (1.2) the associated right-
invariant measure Ȟ is equal to

dȞ(x, t) = et trace(B) dxdt. (1.4)
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Moreover, if we assume that the matrix
∫ t

0
E(s) A (E(s))T ds is positive definite for all t > 0, (1.5)

then L is hypoelliptic (see e.g., [15]; see also [5, Sections 4.1.3, 4.3.4]) so that hy-
pothesis (HY) is satisfied as well. Condition (1.5) also encloses condition (ND) (since
(1.5) cannot hold if A = 0). Hence, under condition (1.5), the operator L satisfies
all our assumptions and the weighted L p-Liouville Theorems 1.2 and 1.3 hold true
w.r.t. the explicit measure Ȟ in (1.4).
For a class of operators (encompassing the above hypoelliptic operator L), we also

prove a uniqueness result for the Cauchy problem (see Sect. 4.3); for simplicity we
here state this result for the above operator L (see Proposition 4.2 for the larger class
of operators to which this uniqueness result applies):

COROLLARY 1.5. Let us denote byΩ the half-space {(x, t) ∈ R
n+1 : t > 0}. IfL

is the operator (1.3) and if the hypoellipticity condition (1.5) is satisfied, any classical
solution u ∈ C∞(Ω) ∩ C(Ω) to the Cauchy problem

{Lu = 0 in Ω

u(x, t) = 0 for t = 0

is identically zero on Ω if it holds that
∫ ∞

0

∫

Rn
|u(x, t)|p et trace(B) dx dt < ∞,

for some p ∈ [1,∞).

Other examples, appearing in the literature, of operators satisfying conditions (ND),
(HY) and (LI) are:

(i) the classical Kolmogorov–Fokker–Planck operator

K =
n∑

j=1

(∂x j )
2 +

n∑

j=1

x j ∂xn+ j − ∂t ,

in R2n+1 = R
2n
x × Rt (it is of the form (1.3) and it satisfies (1.5));

(ii) L = L − ∂t in R3 = R
2
x × Rt , where L = 1

2 (∂x1)
2 − (x1 + x2) ∂x1 + x1 ∂x2 (L

belongs to a class recently studied by Da Prato and Lunardi, [6]); the associated
right-invariant measure is

e−t dt dx1 dx2;
(iii) the operators L considered by Lanconelli and the first-named author in [4], to-

gether with their evolution counterpartsL−∂t ; since this class of PDOs furnishes
a wide gallery of new examples for weighted L p-Liouville theorems, we shall
describe them in detail in Sect. 4.
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Before giving the plan of the paper, we mention some related references from the
existing literature:

– When hypothesis (LI) holds in the stronger form requiring that G is a homo-
geneous group w.r.t. a family of dilations (see [5, Section 1.3] for the relevant
definition) andL is a homogeneous operator, Theorem1.2 follows from a general
Liouville-type theorem by Geller [8, Theorem 2].

– Yet in presence of dilation homogeneity (but not necessarily under the left-
invariance condition (LI)), Luo extended Geller’s theorem to homogeneous hy-
poelliptic operators (see [16, Theorem 1]). The theorems of Geller and of Luo
cannot be applied to subharmonic functions (as in Theorem 1.3 above).

– For special classes of Lie groups G (namely, for stratified Lie groups), L1-
Liouville theorems on half-spaces have been proved by Uguzzoni [19] and by
the second-named author [10]. See also [3] (and [5, Chapter 5, Section 5.8]) for
Harnack–Liouville and asymptotic Liouville theorems for stratified Lie groups.

– The L∞-Liouville property does not hold, in general: see Priola and Zabczyk
[18] (see also [14, Remark 8.1]).

The plan of the paper is as follows. Section 2 recalls the techniques in [14], while in
Sect. 3 we prove Theorems 1.2 and 1.3. Finally, Sect. 4 provides examples of operators
towhich our results apply, togetherwith an application to the uniqueness of theCauchy
problem for a class of evolution operators.

2. Background results and recalls

Here and throughout the rest of the paper, we assume that L is as in (1.1) and that
the matrix A(x) = (ai, j (x)) of the second-order part of L is symmetric and positive
semidefinite for every x ∈ R

n . This will be tacitly understood.

REMARK 2.1. (a) Suppose that L satisfies hypothesis (LI). Since (by the Camp-
bell–Baker–Hausdorff Theorem; see e.g., [2]) it is non-restrictive to assume that any
Lie group is endowed with an analytic structure, the coefficients of L can be supposed
to be of class Cω. We shall assume the latter fact throughout. Moreover, by also using
the Poincaré–Birkhoff–Witt Theorem, one can prove that assumption (LI) (together
with the facts that the quadratic form of L be positive semidefinite and be associated
with a symmetric matrix) implies that L is a sum of squares of vector fields plus a
drift.

(b) We pass from (1.1) to the quasi-divergence form

L =
n∑

i=1

∂

∂xi

( n∑

j=1

ai, j (x)
∂

∂x j

)
+

n∑

j=1

(
b j (x) −

n∑

i=1

∂ai, j (x)

∂xi

) ∂

∂x j
, (2.1)
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and we set

Xi :=
n∑

j=1

ai, j (x)
∂

∂x j
(i = 1, . . . , n),

X0 :=
n∑

j=1

(
b j (x) −

n∑

i=1

∂ai, j (x)

∂xi

) ∂

∂x j
.

(2.2)

With this notation, (2.1) becomes

L =
n∑

i=1

∂

∂xi
(Xi ) + X0. (2.3)

If L satisfies the hypoellipticity condition (HY), due to the results in [17] (and the
Cω regularity in (a) above), then the vector fields X0, X1, . . . , Xn fulfill Hörmander’s
maximal rank condition, [9].

Remarks (a) and (b) also motivate the fact that our examples of PDOs satisfying
assumptions (HY) and (LI) (see Sect. 4) will fall into the hypoellipticity class of the
Hörmander operators.

Then we fix a notation: if A = (ai, j ) is the second-order matrix of L as in (1.1),
and if u is of class C1 on some open set, we set

ΨA(u)(x) :=
n∑

i, j=1

ai, j (x) ∂xi u(x) ∂x j u(x). (2.4)

Notice that, since A is positive semidefinite, one hasΨA(u) = 〈A(x)∇u(x),∇u(x)〉 ≥
0.
In [14, Lemma 4.2] it is proved the following result.

LEMMA A. Let L be as in (1.1) and let ΨA be as in (2.4), where A is the second-
order matrix of L. Suppose that the vector fields X0, X1, . . . , Xn in (2.2) fulfill Hör-
mander’s maximal rank condition.
Let Ω ⊆ R

n be a connected open set and suppose that u ∈ C1(Ω,R).
Then the following facts are equivalent:

(1) u is constant in Ω;
(2) X0u, X1u, . . . , Xnu all vanish in Ω;
(3) ΨA(u) ≡ 0 and X0u ≡ 0 in Ω;
(4) u is L-harmonic on Ω and ΨA(u) ≡ 0 in Ω .

Due to its relevance in the sequel, we provide the proof of this lemma for the sake
of completeness.

Proof. Since (by hypothesis) X0, X1, . . . , Xn are bracket-generating vector fields,
the equivalence of (1) and (2) follows from the well-known connectivity theorem of
Carathéodory–Chow–Rashevsky (see e.g., [5, Chapter 19]).
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Next we recall that, given a symmetric positive semidefinite matrix A, then

〈Aξ, ξ 〉 = 0 if and only if Aξ = 0.

As a consequence, ΨA(u)(x) = 0 if and only if ∇u(x) is in the kernel of A(x), but
this latter condition (due to the very definition of X1, . . . , Xn) is equivalent to the fact
that X1u(x) = · · · = Xnu(x) = 0. Summing up,

ΨA(u) ≡ 0 if and only if X1u, . . . , Xnu ≡ 0. (2.5)

Hence (3) is equivalent to (2). Finally, the equivalence of (3) and (4) is a consequence
of (2.3), taking into account (2.5). �

The rôle of ΨA(u) is clear from the following formula: if u ∈ C2(Ω,R) (for some
open set Ω ⊆ R

n) and F ∈ C2(R,R) one has

L(F(u)) = F ′(u)Lu + F ′′(u) ΨA(u). (2.6)

This formula has been exploited in [14], together with the use of convex functions
F(u) of the global solution u to Lu = 0, along with a representation formula of
Poisson–Jensen type.
The latter is recalled in the next result, which is crucial for our purposes (see [14,

Theorem 2.3] for the proof):

THEOREM B. Suppose that L satisfies assumptions (ND) and (HY). Then there
exists a basis B for the Euclidean topology of RN , whose elements are bounded open
sets, with the following property:
for every Ω ∈ B, and for every x ∈ Ω , there exist two Radon measures νΩ

x on Ω

and μΩ
x on ∂Ω such that, for any v ∈ C2(Ω,R), one has the representation formula

v(x) =
∫

∂Ω

v(y) dμΩ
x (y) −

∫

Ω

Lv(y) dνΩ
x (y), ∀ x ∈ Ω. (2.7)

Moreover, if assumption (LI) holds true, fixing a bounded open neighborhood Ω of
e (the neutral element of G) as above, then we have

u(x) =
∫

∂Ω

u(x · y) dμ(y) −
∫

Ω

(Lu)(x · y) dν(y), (2.8)

for every x ∈ R
n and every u ∈ C2(Rn,R). Here we have set, for brevity,

ν := νΩ
e , μ := μΩ

e . (2.9)

In view of the central use of representation formula (2.8), we fix some notation.

DEFINITION 2.2. For any u ∈ C(Rn,R) and any x ∈ R
n , we set

M(u)(x) :=
∫

∂Ω

u(x · y) dμ(y),

N (u)(x) :=
∫

Ω

u(x · y) dν(y).
(2.10)



576 A. Bonfiglioli and A. E. Kogoj J. Evol. Equ.

Hence (2.8) can be written as follows

u(x) = M(u)(x) − N (Lu)(x) ∀ x ∈ R
n, ∀ u ∈ C2(Rn,R). (2.11)

Distinctive properties of the operators M, N are proved in [14, Lemma 3.2], which
we here recall:

PROPOSITION C. Let u ∈ C(Rn,R) and let M and N be the operators in (2.10).

(i) If u ≥ 0, then M(u), N (u) ≥ 0;
(ii) M(u), N (u) ∈ C(Rn,R).
(iii) If N (u) ≡ 0 (or M(u) ≡ 0) and u ≥ 0, then u ≡ 0.

3. Proof of the weighted L p-Liouville theorems

For the rest of the paper, we assume that L satisfies assumption (ND), (HY) and
(LI). A main tool in the proof of our L p-Liouville theorems is the following Lemma
3.1. It shows the rôle of the right-invariant measure Ȟ with respect to the operator M .
Lemma 3.1 and Corollary 3.2 are the versions, respectively, of [14, Lemma 3.1] and
of [14, Proposition 4.3], where we drop the assumptions that G be unimodular and
that Ȟ be the Lebesgue measure.

LEMMA 3.1. Let u ∈ C(Rn,R) be such that u ∈ L1(Rn, Ȟ), where Ȟ is the
right-invariant measure on G = (Rn, ·) introduced in (1.2).

Then M(u) ∈ L1(Rn, Ȟ) and
∫

Rn
M(u)(x) dȞ(x) =

∫

Rn
u(x) dȞ(x). (3.1)

Proof. It is a consequence of Fubini Theorem. We skip the proof of the fact that
M(u) ∈ L1(Rn, Ȟ), since it follows by a similar argument as the following one. We
have:

∫

Rn
M(u)(x) dȞ(x) =

∫

Rn

(∫

∂Ω

u(x · y) dμ(y)

)
dȞ(x)

=
∫

∂Ω

(∫

Rn
u(x · y) dȞ(x)

)
dμ(y)

(Ȟ is right-invariant on G) =
∫

∂Ω

(∫

Rn
u(x) dȞ(x)

)
dμ(y)

=
(∫

Rn
u(x) dȞ(x)

) (∫

∂Ω

dμ(y)

)

=
∫

Rn
u(x) dȞ(x).

In the last equality we have used identity μ(∂Ω) = 1, coming from (2.8) with u ≡ 1.
�
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COROLLARY 3.2. Let u ∈ C2(Rn,R) be an L-subharmonic function.
If u ∈ L1(Rn, Ȟ), then u is actually L-harmonic on R

n.

Proof. From (2.11) we have N (Lu) = M(u) − u on R
n . By Lemma 3.1, u ∈

L1(Rn, Ȟ) implies M(u) ∈ L1(Rn, Ȟ), whence N (Lu) ∈ L1(Rn, Ȟ) too. From
(3.1) we also get

∫

Rn
N (Lu) dȞ =

∫

Rn
M(u) dȞ −

∫

Rn
u dȞ = 0.

On the other hand, since Lu ≥ 0, we have N (Lu) ≥ 0 in R
n (see Proposition C-(i)).

Therefore N (Lu) = 0 Ȟ -almost everywhere in R
n . Since Ȟ is equal to a (smooth)

positive density times the Lebesgue measure on Rn (see (1.2)), we infer that

N (Lu) = 0 Lebesgue almost everywhere in Rn . (3.2)

From u ∈ C2, we get Lu ∈ C so that, by Proposition C-(ii), N (Lu) is continuous. As
a consequence of (3.2) it follows N (Lu) ≡ 0. Finally, the L-subharmonicity of u and
an application of Proposition C-(iii) shows that u is L-harmonic in Rn . �

Now, we are in the position to prove Theorems 1.2 and 1.3 proceeding along the
lines of [14]. First we need a result from Lie group theory: This comes from the
characterization of compact groups in terms of the finiteness of the Haar measure (see
e.g., [7, Proposition 1.4.5]). We give the (very short) details for completeness.

LEMMA 3.3. The only constant function belonging to L1(Rn, Ȟ) is the null func-
tion.

Proof. We argue by contradiction: We assume the existence of a non-vanishing con-
stant function in L1(Rn, Ȟ), which is equivalent to requiring that Ȟ(Rn) < ∞. If this
happens, we can find a compact neighborhood U of the neutral element e of G, and
at most a finite family of mutually disjoint sets

U · x1, . . . ,U · xk, with k maximal.

Here we have used the right invariance of Ȟ , ensuring that Ȟ(U · xi ) = Ȟ(U ) > 0,
for any i = 1, . . . , k. We set K := ⋃k

i=1U · xi , which is clearly a compact set in Rn .
From the maximality of k, it is simple to recognize that, for any x ∈ R

n , one has
K ∩ (K · x) �= ∅. This shows that Rn = K−1 · K , which is absurd since the latter is a
compact set. Hence Ȟ(Rn) = ∞. �

We are ready to give the proofs of our main results.

Proof. (of Theorem 1.2.) Let u be a (smooth) solution to Lu = 0 in Rn .
(i) Assume u ∈ L p(Rn, Ȟ) (for some 1 ≤ p < ∞) and consider v := F(u), where

F : R −→ R, F(t) = (
√
1 + t2 − 1)p.

It is easy to check that
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– F ∈ C2(R,R);
– 0 ≤ F(t) ≤ |t |p for every t ∈ R;
– F ′′(t) > 0 for every t �= 0.

Then v ∈ C2(R,R), v ∈ L1(Rn, Ȟ) (since u ∈ L p(Rn, Ȟ) and |F(u)| ≤ |u|p) and

Lv
(2.6)= F ′(u)Lu + F ′′(u) ΨA(u) = F ′′(u) ΨA(u) ≥ 0.

Therefore, by Corollary 3.2, Lv = 0 so that, since F ′′(u) > 0 if u �= 0,

ΨA(u) = 0 in Ω0 := {x ∈ R
n | u(x) �= 0}. (3.3)

If Ω0 = ∅ we are done, since we aim to prove that u ≡ 0. Assume, by contradiction,
thatΩ0 �= ∅. Keeping inmind thatLu = 0 inRn by hypothesis and thatΨA(u) = 0 on
Ω0 by construction, from Lemma A-(4) we get that u is constant on every non-empty
connected component O of Ω0.

If ∂O �= ∅, since ∂O ⊆ ∂Ω0 (and clearly u = 0 on ∂Ω0), then u ≡ 0 in O , in
contradiction with the very definition of Ω0. Thus, ∂O = ∅, i.e., Ω0 = R

n and u is
constant on Rn . Now, the assumption u ∈ L p(Rn, Ȟ) jointly with Lemma 3.3, shows
that u ≡ 0, in contradiction with Ω0 �= ∅. This ends the proof of Theorem 1.2 under
assumption (i).
(ii) Assume u ≥ 0 and u p ∈ L1(Rn, Ȟ) for some p ∈ ]0, 1[. Define v := F(u),

with

F : [0,∞[−→ R, F(t) = (1 + t)p − 1.

F has the following properties:

– F ∈ C∞([0,∞),R);
– 0 ≤ F(t) ≤ t p for every t ≥ 0;
– F ′′(t) < 0 for every t ≥ 0.

Therefore, v ∈ C∞(Rn,R), v ∈ L1(Rn, Ȟ) and

Lv
(2.6)= F ′(u)Lu + F ′′(u) ΨA(u) = F ′′(u) ΨA(u) ≤ 0.

Thus, by Corollary 3.2 applied to −v, we infer that Lv = 0 in R
n so that the above

identity yields 0 = F ′′(u) ΨA(u). As a consequence, since F ′′(u) < 0 (recall that
u ≥ 0 by assumption), we get

ΨA(u) ≡ 0 in Rn .

Since Lu = 0 in R
n by hypothesis, a direct application of Lemma A-(4) proves that

u is constant in Rn . Since u p belongs to L1(Rn, Ȟ), we are entitled to apply Lemma
3.3 and infer that u ≡ 0 in Rn , and this ends the proof. �

We end the section with the proof of our weighted L p-Liouville Theorem for the
L-subharmonic functions.
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Proof. (of Theorem 1.3.) Let u ∈ C2(Rn,R) be L-subarmonic and let it belong to
L p(Rn, Ȟ) (for some p ∈ [1,∞)). We aim to prove that

Ω+ := {x ∈ R
n | u(x) > 0} = ∅.

We argue by contradiction and assume that Ω+ �= ∅. Let us consider the function

F : R −→ R, F(t) :=
{
0 if t ≤ 0,( 4
√
1 + t4 − 1

)p if t > 0.

It is easy to recognize that:

(i) F ∈ C2(R,R), F is increasing and convex;
(ii) F ′ > 0 and F ′′ > 0 in ]0,∞[;
(iii) 0 ≤ F(t) ≤ t p for every t ≥ 0.

We define v := F(u) on R
n . Then v ∈ C2(R,R) and, by property (iii) above, v ∈

L1(Rn, Ȟ). Moreover, by identity (2.6),

Lv = F ′(u)Lu + F ′′(u) ΨA(u) ≥ 0,

since Lu ≥ 0 and F ′, F ′′ ≥ 0 by (i). Summing up, v is L-subharmonic in space and
in L1(Rn, Ȟ): Corollary 3.2 then implies that Lv ≡ 0, whence

F ′(u)Lu + F ′′(u) ΨA(u) = 0 in Rn .

Taking into account property (ii) of F , we obtain

Lu = 0 and ΨA(u) = 0 in Ω+.

We are therefore entitled to apply Lemma A-(4) on every connected component O of
Ω+, and derive that u is constant on O .
If ∂O �= ∅, since ∂O ⊆ ∂Ω+ (and clearly u = 0 on ∂Ω+), then u ≡ 0 in O , in

contradiction with the definition of Ω+. Thus, ∂O = ∅, so that Ω+ = R
n and u is

constant on R
n . As in the proof of Theorem 1.2, by invoking Lemma 3.3 we get that

u ≡ 0, in contradiction with Ω+ �= ∅. �

4. Examples and an application

We now give new examples of PDOs to which the L p-Liouville theorems apply.

4.1. Matrix-exponential groups

We denote the points of R1+n by (t, x), with t ∈ R and x ∈ R
n . Let B be a real

square matrix of order n; following [4, Section 2], we say that the matrix-exponential
group G(B) related to B is (R1+n, ·) endowed with the product

(t, x) · (t ′, x ′) = (
t + t ′, x + exp(t B) x ′), t, t ′ ∈ R, x, x ′ ∈ R

n .



580 A. Bonfiglioli and A. E. Kogoj J. Evol. Equ.

A basis for the Lie algebra of G(B), say g(B), is {∂t , X1, . . . , Xn}, where

X j :=
n∑

k=1
ak, j (t) ∂xk ( j = 1, . . . , n),

where ak, j (t) is the entry of position (k, j) of the matrix exp(t B). The neutral element
of G(B) is (0, 0). The right-invariant measure Ȟ in (1.2) is equal to the Lebesgue
measure in R1+n , since (in block form) we have

Jρ(t ′,x ′) ((0, 0)) =
(

1 0
Bx ′

In

)
(In is the identity matrix of order n).

On the other hand, since any Haar measure on G(B) is a (positive) scalar multiple of

1

detJτ(t,x) ((0, 0))
dtdx

(here τ(t,x) denotes the left translation by (t, x)), and since

Jτ(t,x) ((0, 0)) =
(
1 0
0 exp(t B)

)
, (4.1)

then G(B) is unimodular (with dtdx as left/right-invariant measure) if and only if
trace(B) = 0. Thus, our results here are contained in [14] only when trace(B) = 0.
More precisely, the L p-Liouville Theorems 1.2 and 1.3 hold true for any matrix B

(with L p standing for the usual L p(R1+n) space), and for any second-order operator
L which is a polynomial of degree 2 in ∂t , X1, . . . , Xn (hence it is left-invariant),
provided that L also fulfills our structure hypotheses (ND) and (HY). For example, L
may be of the form

X2
1 + · · · + X2

n + (∂t )
2

(a sum of square of Hörmander vector fields), or of the forms

X2
1 + · · · + X2

n − ∂t , X2
1 + · · · + X2

n + ∂t

(evolution Hörmander operators, with drift terms±∂t ). These operators are non-dege-
nerate (recall that the vector fields X1, . . . , Xn are associated with the columns of the
non-null matrix exp(t B)), and they are hypoelliptic, due to Hörmander hypoellipticity
condition (since {∂t , X1, . . . , Xn} is a basis of g(B)).
More degenerate operators are allowed, as in the next example.

EXAMPLE 4.1. Following [4, Section 3], if B takes on the special “companion”
form

B =

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

⎤

⎥⎥⎥⎥⎥⎦
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(for some assigned real numbers a0, a1, . . . , an−1), then

exp(t B) =

⎡

⎢⎢⎣

u1(t) u′
1(t) · · · u(n−1)

1 (t)
...

...
...

...

un(t) u′
n(t) · · · u(n−1)

n (t)

⎤

⎥⎥⎦ ,

where {u1(t), . . . , un(t)} is the fundamental system of solutions of the n-th-order
constant-coefficient ODE

u(n)(t) + an−1 u
(n−1)(t) + · · · + a1 u

′(t) + a0 u(t) = 0.

Following our previous notation for the basis {∂t , X1, . . . , Xn} of g(B), we have

X j = u( j−1)
1 (t) ∂x1 + · · · + u( j−1)

n (t) ∂xn ( j = 1, . . . , n).

This shows that it is sufficient to consider the two vector fields

∂t and X1 = u1(t) ∂x1 + · · · + un(t) ∂xn

to Lie-generate the whole of g(B). Therefore, the five operators

(∂t )
2 + (X1)

2, (∂t )
2 ± X1, (X1)

2 ± ∂t

are Hörmander operators (hence hypoelliptic) to which our L p-Liouville results apply
(with measure Ȟ equal to the Lebesgue measure in R

1+n). When an−1 �= 0, the
associated matrix-exponential group G(B) is not unimodular, so that these operators
are not comprised in [14].

4.2. The inverse group of G(B)

We have the following examples:
(a) Let G(B) be the group constructed in Sect. 4.1. Following [4, Section 4],
we can interchange right and left multiplications of G(B), obtaining the group

Ĝ(B) := (R1+n ,̂ · ) (referred to as the inverse group of (G(B), ·)), where

(t, x )̂ · (t ′, x ′) = (
t + t ′, x ′ + exp(t ′ B) x

)
, t, t ′ ∈ R, x, x ′ ∈ R

n . (4.2)

Hence, a basis for the Lie algebra of Ĝ(B) is {T, ∂x1 , . . . , ∂xn }, where

T := ∂t +
n∑

i, j=1

bi, j x j ∂xi .

The neutral element of Ĝ(B) is (0, 0) and the associated right-invariant measure Ȟ in
(1.2) is equal to

dȞ(t, x) = e−t trace(B) dtdx, (4.3)
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and it is easy to recognize that Ĝ(B) is unimodular (with dtdx as left/right-invariant
measure) if and only if trace(B) = 0.
As a consequence, the L p-Liouville Theorems 1.2 and 1.3 hold true for any matrix

B, with L p standing for L p(R1+n, Ȟ) with Ȟ as in (4.3), and for any second-order
operator L which is a polynomial of degree 2 in T, ∂x1 , . . . , ∂xn , provided that L also
fulfills our structure hypotheses (ND) and (HY). For example, if we use the compact
notations Δx := ∑n

j=1(∂x j )
2 and T = ∂t + 〈Bx,∇x 〉, L may be of the form

L1 = Δx +
(
∂t + 〈Bx,∇x 〉

)2

(a sum of square of Hörmander vector fields), or of the form (replacing B with −B)

L2 = Δx + 〈Bx,∇x 〉 − ∂t

(an evolution Hörmander operator, with drift term 〈Bx,∇x 〉 − ∂t ), which is a left-
invariant evolution PDO of Kolmogorov–Fokker–Planck type.
(b) Many other examples inspired by the previous case are available of more dege-

nerate operators to which our results apply: for example, when

B =
(
0 0
1 0

)
,

we have T = ∂t + x1 ∂x2 and it is sufficient to consider ∂x1 to obtain the Hörmander
system {T, ∂x1} in R3 = Rt ×R

2
x . As a consequence, our Theorems 1.2 and 1.3 (with

Ȟ equal to the Lebesgue measure on R
3) apply to the two Hörmander operators

L1 = (∂x1)
2 + (∂t + x1 ∂x2)

2, L2 = (∂x1)
2 − ∂t − x1 ∂x2 .

The associated group law (4.2) is

(t, x1, x2)̂ · (t ′, x ′
1, x

′
2) =

(
t + t ′, x1 + x ′

1, x2 + x ′
2 + x1t

′),

which defines the so-called polarized Heisenberg group. We remark that L2 is a de-
generate ultraparabolic operator of Kolmogorov–Fokker–Planck type.
More generally, one can consider a matrix of the form

B =
(
0 0
In 0

)
(In is the n × n identity matrix),

and the associated Ĝ(B) group. In this case the measure Ȟ is the Lebesgue measure
on R

2n+1 and a meaningful operator to which our results apply is

K =
n∑

j=1

(∂x j )
2 +

n∑

j=1

x j ∂xn+ j − ∂t ,

the classical Kolmogorov–Fokker–Planck operator (see example (i) in the Introduc-
tion).
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(c) Yet another example is given by the matrix

B =
(

1 1
−1 0

)
,

so that T = ∂t + (x1 + x2)∂x1 − x1∂x2 and the associated right-invariant measure is

dȞ(t, x1, x2) = e−t dtdx1dx2.

An operator fulfilling our hypotheses (ND), (HY), (LI) is therefore

L =
(

1√
2

∂x1

)2 − T = 1
2 (∂x1)

2 − (x1 + x2)∂x1 + x1∂x2 − ∂t ,

considered in example (ii) in the Introduction.
(d) In general, if the operator L satisfies our structure conditions (ND), (HY), (LI)

(the latter w.r.t. the group G = (Rn, ·)), we can add an extra variable t ∈ R thus
obtaining a new evolution operator

H := L − ∂t on R
n+1 = R

n
x × Rt ,

to which Theorems 1.2 and 1.3 can be applied: it is suffice to consider the Lie group
obtained as a direct product of G with the group (Rt ,+), by taking into account the
right-invariant product measure

dȞ(x) dt.

4.3. An application to the uniqueness of the Cauchy problem

Suppose that the operatorL inR1+n (whose points are denoted by (t, x), with t ∈ R

and x ∈ R
n) satisfies our structure assumptions (ND), (HY), (LI); assume furthermore

that L has the following “Heat-type” form:

L = L − ∂t , where L =
n∑

i, j=1

ai, j (x)
∂2

∂xi∂x j
+

n∑

j=1

b j (x)
∂

∂x j
. (4.4)

Then we prove the following uniqueness result:

PROPOSITION 4.2. Let us denote by Ω the half-space {(t, x) ∈ R
1+n : t > 0}.

Under the above assumptions and notation onL, any classical solution u ∈ C∞(Ω)∩
C(Ω) to the Cauchy problem

{Lu = 0 in Ω

u(t, x) = 0 for t = 0
(4.5)

is identically zero on Ω if it holds that u ∈ L p(Ω, Ȟ) for some p ∈ [1,∞). As usual,
Ȟ denotes the right-invariant measure (1.2) on the groupG for which hypothesis (LI)
holds.
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Proof. Let us denote by u the trivial prolongation of u on R1+n obtained by setting u
to be 0 when t < 0. Clearly, u ∈ C(R1+n,R) ∩ L p(R1+n, Ȟ), as u ∈ L p(Ω, Ȟ). We
claim

u ∈ C∞(R1+n,R) and Lu = 0 on R1+n . (4.6)

Once we have proved this, an application of Theorem 1.2 to u will prove that u ≡ 0
on R

1+n , i.e., u = 0 on Ω .
We are then left to prove the claimed (4.6). Since L is hypoelliptic by assump-

tion (HY), (4.6) will follow if we show that Lu = 0 on R
1+n in the weak sense of

distributions. To this aim, let ϕ ∈ C∞
0 (R1+n). We have the following computation:

∫

R1+n
u L∗ϕ =

∫

R1+n
u (L∗ϕ + ∂tϕ) =

∫ ∞

0

( ∫

Rn
u (L∗ϕ + ∂xnϕ) dx

)
dt

= lim
ε→0+

∫ ∞

ε

( ∫

Rn
u L∗ϕ dx +

∫

Rn
u ∂tϕ dx

)
dt

(by (4.4), L operates only in the x-variable and integration by parts is allowed)

= lim
ε→0+

∫ ∞

ε

( ∫

Rn
Lu ϕ dx +

∫

Rn
u ∂tϕ dx

)
dt

(we use (4.5) and (4.4), ensuring that Lu = ∂t u on Ω)

= lim
ε→0+

∫ ∞

ε

( ∫

Rn
∂t (u ϕ) dx

)
dt = lim

ε→0+

∫

Rn

( ∫ ∞

ε

∂t (u ϕ) dt
)
dx

= lim
ε→0+ −

∫

Rn
u(ε, x) ϕ(ε, x) dx = 0.

In the last identity we used the initial condition of (4.5) and a simple dominated-
convergence argument (since u ∈ C(Ω)). This completes the proof. �

We explicitly remark that, among our examples, the operators

– L2 in Sect. 4.2-(a),
– L2 and K in Sect. 4.2-(b),
– L in Sect. 4.2-(c),
– H in Sect. 4.2-(d)

all satisfy the structure assumptions in (4.4), so that Proposition 4.2 can be applied to
them. Corollary 1.5 in the Introduction is a particular case of Proposition 4.2 (obtained
by replacing the matrix B with −B).
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