
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2018102
DYNAMICAL SYSTEMS
Volume 38, Number 5, May 2018 pp. 2467–2485

WIENER-LANDIS CRITERION

FOR KOLMOGOROV-TYPE OPERATORS

Alessia E. Kogoj∗

Dipartimento di Scienze Pure e Applicate (DiSPeA)
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Abstract. We establish a necessary and sufficient condition for a boundary

point to be regular for the Dirichlet problem related to a class of Kolmogorov-
type equations. Our criterion is inspired by two classical criteria for the heat

equation: the Evans–Gariepy’s Wiener test, and a criterion by Landis expressed
in terms of a series of caloric potentials.

1. Introduction. Aim of this paper is to establish a necessary and sufficient con-
dition for the regularity of a boundary point for the Dirichlet problem related to
a class of hypoelliptic evolution equations of Kolmogorov-type. Our criterion is
inspired both to the Evans–Gariepy’s Wiener test for the heat equation, and to
a criterion by Landis, for the heat equation too, expressed in terms of a series of
caloric potentials.

The partial differential operators we are dealing with are of the following type

L = div (A∇) + 〈Bx,∇〉 − ∂t, (1)

where A = (ai,j)i,j=1,...,N and B = (bi,j)i,j=1,...,N are N × N real and constant
matrices, z = (x, t) = (x1, . . . , xN , t) is the point of RN+1, ∇ = (∂x1 , . . . , ∂xN ),
div and 〈 , 〉 stand for the gradient, the divergence and the inner product in RN ,
respectively.

The matrix A is supposed to be symmetric and positive semidefinite. Moreover,
letting

E(s) := exp (−sB) , s ∈ R,
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we assume that the following condition is satisfied: the matrix

C(t) =

∫ t

0

E(s)AET (s) ds is strictly positive definite for every t > 0.

The matrix C(t) appears as the covariance matrix of a stochastic process relevant
to L. As it is quite well known, the condition C(t) > 0 for t > 0 (which is equivalent
to the so-called Kalman condition) is necessary and sufficient for the hypoellipticity
of L in (1), i.e to the smoothness of u whenever Lu is smooth (see, e.g., [8]; see also
[14]). We also assume the operator L to be homogeneous of degree two with respect
to a group of dilations in RN+1. As we will recall in Section 2, this is equivalent to
assume A and B taking the blocks form (4) and (5).

Under the above assumptions, one can apply results and techniques from poten-
tial theory in abstract Harmonic Spaces, as presented, e.g, in [1]. As a consequence,
for every bounded open set Ω ⊆ RN+1 and for every function f ∈ C(∂Ω,R), the
Dirichlet problem

Lu = 0 in Ω, u|∂Ω = f, (2)

has a generalized solution HΩ
f in the sense of Perron–Wiener–Brelot–Bauer. The

function HΩ
f is smooth and solves the equation in (2) in the classical sense. However,

it may occur that HΩ
f does not assume the boundary datum. A point z0 ∈ ∂Ω is

called L-regular for Ω if

lim
z→z0

HΩ
f (z) = f(z0) ∀ f ∈ C(∂Ω,R).

Aim of this paper is to obtain a characterization of the L-regular boundary points
in terms of a series involving L-potentials of regions in Ωc, the complement of Ω,
within different level sets of Γ, the fundamental solution of L. More precisely, if
z0 ∈ ∂Ω and λ ∈]0, 1[ are fixed, we define for k ∈ N

Ωck(z0) =

{
z ∈ Ωc :

(
1

λ

)k log k

≤ Γ(z0, z) ≤
(

1

λ

)(k+1) log (k+1)
}
∪ {z0}.

Then, our main result is the following

Theorem 1.1. Let Ω be a bounded open subset of RN+1 and let z0 ∈ ∂Ω. Then z0

is L-regular for ∂Ω if and only if
∞∑
k=1

VΩck(z0)(z0) = +∞. (3)

Here and in what follows, if F is a compact subset of RN+1, VF will denote the
L-equilibrium potential of F , and cap (F ) will denote its L-capacity. We refer to
Section 3 for the precise definitions.

From Theorem 1.1, one easily obtains a corollary resembling the Wiener test for
the classical Laplace and Heat operators.

Corollary 1.2. Let Ω be a bounded open subset of RN+1 and z0 ∈ ∂Ω. The
following statements hold:

(i) if
∞∑
k=1

cap (Ωck(z0))

λk log k
= +∞

then z0 is L-regular;
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(ii) if z0 is L-regular then
∞∑
k=1

cap (Ωck(z0))

λ(k+1) log (k+1)
= +∞.

We can make the sufficient condition for the L-regularity more concrete and more
geometrical with the following corollary.

Corollary 1.3. Let Ω be a bounded open subset of RN+1 and z0 ∈ ∂Ω. If
∞∑
k=1

|Ωck(z0)|
λ
Q+2
Q k log k

= +∞

then z0 is L-regular. In particular, the L-regularity of z0 is ensured if Ω has the
exterior L-cone property at z0.

If E is a subset of either RN or RN+1, |E| stands for the relative Lebesgue
measure. Moreover, Q is the homogeneous dimension recalled in Section 2, and the
L-cone property will be defined precisely in Section 7. We just mention here that
it is a natural adaptation of the parabolic cone condition to the homogeneities of
the operator L.

Before proceeding, we would like to comment on Theorem 1.1 and Corollary 1.2.
A boundary point regularity test for the heat equation involving infinite sum of

(caloric) equilibrium potentials was showed by Landis in [17]. In Landis’ proof the
caloric potentials are built with respect to regions where the Gaussian kernel takes
values in [ρk, ρk+1], being ρk a suitable sequence of positive real numbers such that
ρk+1

ρk
↗ +∞. A similar test for a Kolmogorov equation in R3 was obtained by

Scornazzani in [19]. Our Theorem 1.1 contains, extends, and improves the criterion
in [19]. The Wiener test for the heat equation was proved by Evans and Gariepy in
[3]. It was extended to parabolic operators with variable coefficients in [5, 4] and
to the heat equation on the Heisenberg group in [7].

The extension of such a criterion to the Kolmogorov operators (1) is an open,
and seemingly difficult, problem. Our Corollary 1.2, which is a straightforward
consequence of Theorem 1.1, is a Wiener-type test giving necessary and sufficient
conditions which look “almost the same”. As a matter of fact, in Theorem 1.1
we have considered the L-potentials of the compact sets Ωck(z0) which are built
by the difference of two consecutive super-level sets of Γ(z0, ·). These level sets
correspond with the sequence of values λ−k log k. The exact analogue of the Evans-
Gariepy criterion would have required the sequence with integer exponents λ−k. The
presence of the logarithmic term, which makes the growth of the exponents slightly
superlinear, is crucial for our proof of Theorem 1.1. Moreover, such presence is also
the responsible for the non-equivalence of the necessary and the sufficient condition
in Corollary 1.2. To complete our historical comments, we mention that a potential
analysis for Kolmogorov operators of the kind (1) first appeared in [19], in [6], and
in [14]. We also mention that the cone criterion contained in Corollary 1.3 has been
recently proved in [10], where such a boundary regularity test has been showed
for classes of operators more general than (1). For further bibliographical notes
concerning Wiener-type tests for both classical and degenerate operators, we refer
the reader to [15].

The paper is organized as follows. In Section 2 we show some structural prop-
erties of L and fix some notations. Section 3 is devoted to the potential theory
for L, while in Section 4 a crucial estimate of the ratio between the fundamental
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solution Γ at two different poles is proved. In Section 5 the only if part of Theorem
1.1 is proved. The if part, the core of our paper, is proved in Section 6, where
the estimates of Section 4 play a crucial rôle. Section 7 is devoted to the proof of
Corollary 1.2 and Corollary 1.3.

2. Structural properties of L. In [14, Section 1] it is proved that the operator
L is left-translation invariant with respect to the Lie group K whose underlying
manifold is RN+1, endowed with the composition law

(x, t) ◦ (ξ, s) = (ξ + E(s)x, t+ s) .

Furthermore, a fundamental solution for L (see, e.g., [11, 14]) is given by

Γ (z, ζ) = Γ
(
ζ−1 ◦ z

)
for z, ζ ∈ RN+1,

where,

Γ (z) = Γ (x, t) =


0 for t ≤ 0,

(4π)−N/2√
detC(t)

exp
(
− 1

4

〈
C−1 (t)x, x

〉
− t trB

)
for t > 0.

We assume the operator L to be homogeneous of degree two with respect to a
group of dilations. This last assumption, together with the hypoellipticity of L,
implies that the matrices A and B take the following form with respect to some
basis of RN (see again [14, Section 1]):

A =

[
A0 0
0 0

]
(4)

for some p0 × p0 symmetric and positive definite matrix A0 (p0 ≤ N), and

B =


0 0 . . . 0 0
B1 0 0 0 0
0 B2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Bn 0

 , (5)

where Bj is a pj−1 × pj block with rank pj (j = 1, 2, ..., n), p0 ≥ p1 ≥ ... ≥ pn ≥ 1
and p0 + p1 + ... + pn = N . For such a choice we have trB = 0, and the family of
automorphisms of K making L homogeneous of degree two can be taken as

δr : RN+1 −→ RN+1, δr(x, t) = δr(x
(p0), x(p1), . . . , x(pn), t)

:=
(
rx(p0), r3x(p1), . . . , r2n+1x(pn), r2t

)
,

x(pi) ∈ Rpi , i = 0, . . . , n, r > 0.

We denote by Q+2 (= p0+3p1+...+(2n+1)pn+2) the homogeneous dimension of K
with respect to (δr)r>0. We explicitly remark that Q is the homogenous dimension
of RN with respect to the dilations

Dr : RN −→ RN , Dr(x) =
(
rx(p0), r3x(p1), . . . , r2n+1x(pn)

)
.

Under these notations, the matrix C(t) and the fundamental solution of L with
pole at the origin can be written as follows ([14, Proposition 2.3], see also [12]):

C(t) = D√tC(1)D√t
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and

Γ (x, t) =


0 for t ≤ 0,

cN

t
Q
2

exp
(
− 1

4 〈C
−1(1)D 1√

t
x,D 1√

t
x〉
)

for t > 0.

We observe that Γ is δr-homogeneous of degree −Q.
Throughout the paper we denote by |·| the Euclidean norms in RN , Rpk or R.

We also denote, for x ∈ RN ,

|x|2C :=
1

4

〈
C−1(1)x, x

〉
.

For all x ∈ RN , we have

|E(1)x|2C ≥ σ
2
C |x|

2
(6)

where 4σ2
C is the smallest eigenvalue of the positive definite matrix

ET (1)C−1(1)E(1).

We recall that the homogeneous norm ‖·‖ : RN −→ R+ is a Dr-homogeneous
function of degree 1 defined as follows

‖x‖ =

n∑
i=0

∣∣∣x(pi)
∣∣∣ 1
2i+1

, for x =
(
x(p0), . . . , x(pn)

)
∈ Rp0 × . . .Rpn = RN .

We call homogeneous cylinder of radius r > 0 centered at 0 the set

Cr :=
{
x ∈ RN : ‖x‖ ≤ r

}
×
{
t ∈ R : |t| ≤ r2

}
= δr (C1) , (7)

and define Cr(z0) := z0 ◦ Cr.

Remark 2.1. The norms ‖·‖ and |·| can be compared as follows

σmin
{
|x| , |x|

1
2n+1

}
≤ ‖x‖ ≤ (n+ 1) max

{
|x| , |x|

1
2n+1

}
∀x ∈ RN , (8)

where σ = min|x|=1 ‖x‖.
Indeed, on one side we simply have

‖x‖ ≤
n∑
i=0

|x|
1

2i+1 ≤ (n+ 1) max
{
|x| , |x|

1
2n+1

}
∀x ∈ RN .

On the other hand, for any x 6= 0, we get

‖x‖

min
{
|x| , |x|

1
2n+1

} ≥ n∑
i=0

∣∣x(pi)
∣∣ 1
2i+1

|x|
1

2i+1

=

n∑
i=0

∣∣∣∣∣
(
x

|x|

)(pi)
∣∣∣∣∣

1
2i+1

=

∥∥∥∥ x|x|
∥∥∥∥ ≥ σ.

3. Some recalls from potential theory for L: L-potentials and L-capacity.
We briefly collect here some notions and results from Potential Theory applied to
the operator L.

For every open set Ω ⊆ RN+1 we denote

L(Ω) := {u ∈ C∞(Ω) | Lu = 0}.
and we call L-harmonic in Ω the functions in L(Ω).

We say that a bounded open set V ⊆ Ω is L-regular if for every continuous
function ϕ : ∂V −→ R, there exists a unique function, hVϕ in L(V ), continuous in

V , such that

hVϕ |∂V = ϕ.
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Moreover, if ϕ ≥ 0 then hVϕ ≥ 0 by the minimum principle.
A function u : Ω −→]−∞,∞] is called L-superharmonic in Ω if

(i) u is lower semi-continuous and u <∞ in a dense subset of Ω;
(ii) for every regular set V , V ⊆ Ω, and for every ϕ ∈ C(∂V,R), ϕ ≤ u|∂V , it

follows u ≥ hVϕ in V.

We will denote by L(Ω) the family of the L-superharmonic functions in Ω. Since
the operator L endows RN+1 with a structure of β-harmonic space satisfying the
Doob convergence property (see [18, 1, 10]), by the Wiener resolutivity theorem,
for every f ∈ C(∂Ω), the Dirichlet problem{

Lu = 0 in Ω

u|∂Ω = f

has a generalized solution in the sense of Perron–Wiener–Bauer–Brelot given by

HΩ
f := inf{u ∈ L(Ω) | lim inf

Ω3z→ζ
u(z) ≥ f(ζ) ∀ ζ ∈ ∂Ω}.

The function HΩ
f is C∞(Ω) and satisfies Lu = 0 in Ω in the classical sense. However,

it is not true, in general, that HΩ
f continuously takes the boundary values prescribed

by f . A point z0 ∈ ∂Ω such that

lim
Ω3z→z0

HΩ
f (z) = f(z0) for every f ∈ C(∂Ω)

is called L-regular for Ω.
For our regularity criteria we still need a few more definitions. We denote by

M(RN+1) the collection of all nonnegative Radon measure on RN+1 and we call

Γµ(z) :=

∫
RN+1

Γ(z, ζ) dµ(ζ), z ∈ RN+1,

the L-potential of µ.
If F is a compact set of RN+1 and M(F ) is the collection of all nonnegative

Radon measure on RN+1 with support in F , the L-capacity of F is defined as

cap (F ) := sup{µ(RN+1) | µ ∈M(F ), Γµ ≤ 1 on RN+1}.
We list some properties of the L-capacity cap(·). For every F , F1 and F2 compact
subsets of RN+1, we have:

(i) cap (F ) <∞;
(ii) if F1 ⊆ F2, then cap (F1) ≤ cap (F2);

(iii) cap (F1 ∪ F2) ≤ cap (F1) + cap (F2);
(iv) cap (z0 ◦ F ) = cap (F ) for every z0 ∈ RN+1;
(v) cap (δr(F )) = rQcap (F ) for every r > 0;

(vi) if F = A× {τ} for some compact set A ⊂ RN , then cap (F ) = |A|;
(vii) if F ⊂ RN × [a, b], then we have

cap (F ) ≥ |F |
b− a

. (9)

The properties (i)− (v) are quite standard, and they follow from the features of Γ.
We want to spend few words on the last two properties. Property (vi) was proved
in [13, Proposizione 5.1] in the case of the heat operator, namely with the capacity
build on the Gauss-Weierstrass kernel. It can be proved verbatim proceeding in
our situation: the main tools are the facts that Γ has integral 1 over RN , and it
reproduces the solutions of the Cauchy problems. Property (vii) appears to be new
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even in the classical parabolic case (at least to the best of our knowledge), and it
can be deduced readily from (vi). As a matter of fact, if a compact set F lies in a
strip RN × [a, b], we have

(b− a) cap (F ) =

∫ b

a

cap (F ) dτ

≥
∫ b

a

cap (F ∩ {t = τ}) dτ =

∫ b

a

|F ∩ {t = τ}|dτ = |F |.

The last notions we need are the ones of reduced function and of balayage. To
this aim, for any compact set F , we introduce the notation

ΦF :=
{
v ∈ L(RN+1) : v ≥ 0 in RN+1, v ≥ 1 in F

}
. (10)

Then, the reduced function WF and the balayage VF of 1 on F are respectively
defined as

WF := inf {v | v ∈ ΦF } ,
and

VF (z) = lim inf
ζ−→z

WF (ζ), z ∈ RN+1.

From general balayage theory we have that VF is less or equal than 1 everywhere,
identically 1 in the interior of F , it vanishes at infinity, is a superharmonic function
on RN+1 and harmonic on RN+1\∂F . Furthermore, the following properties will
be useful for us. Let F, F1, F2 be compact subsets of RN+1, and let (Fn)n∈N be a
sequence of compact subsets of RN+1, we have:

(i) if F1 ⊆ F2 ⊆ RN+1, then VF1
≤ VF2

;
(ii) VF1∪F2 ≤ VF1 + VF2 ;

(iii) if F ⊆
⋃
n∈N Fn, then VF ≤

∑∞
n=1 VFn .

The first property is a consequence of the definition of balayage; for the second and
the third one we refer respectively to [2, Proposition 5.3.1] and [2, Theorem 4.2.2
and Corollary 4.2.2].

Now, following the same lines of the proof of [13, Teorema 1.1], we have the
existence of a unique measure µF ∈M(F ) such that

VF (z) = ΓµF (z) =

∫
RN+1

Γ(z, ζ) dµF(ζ) ∀ z ∈ RN+1, (11)

and

µF (RN+1) = cap (F ).

VF is also called the L-equilibrium potential of F and µF the L-equilibrium measure
of F . The proof of this fact relies on the good behavior of Γ, a representation
formula of Riesz-type for L-superharmonic functions proved in [1, Theorem 5.1],
and a Maximum Principle for L (see [1, Proposition 2.3]).

Fix now a bounded open set Ω compactly contained in RN+1, and z0 = (x0, t0) ∈
∂Ω. Keeping in mind the definition of homogeneous cylinders in (7), let us denote
by

Gr = {(x, t) ∈ Cr(z0) r Ω : t ≤ t0} . (12)

From general balayage theory and proceeding, e.g., as in [16, Theorem 4.6], we can
characterize the regularity of the boundary point of Ω by the following condition:

the point z0 ∈ ∂Ω is L-regular if and only if

lim
r→0

VGr (z0) > 0. (13)
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4. A crucial estimate. We start by recalling the following identity, whose proof
can be found in [14, Remark 2.1] (see also [12]),

E(λ2s)Dλ = DλE(s) ∀λ > 0, ∀s ∈ R. (14)

In what follows we will need the following lemma.

Lemma 4.1. For 0 > t > τ we have the following matrix inequality

ET (t)C−1(t− τ)E(t) ≥ C−1(−τ).

Proof. Since for symmetric positive definite matrices we have

M1 ≤M2 ⇒ M−1
1 ≥M−1

2

(see [9, Corollary 7.7.4]) and recalling that E−1(t) = E(−t), it is enough to prove
that

E(−t)C(t− τ)ET (−t) ≤ C(−τ). (15)

From the very definition of the matrix C we get

E(−t)C(t− τ)ET (−t) = etB
(∫ t−τ

0

e−sBAe−sB
T

ds

)
etB

T

=

∫ t−τ

0

e(t−s)BAe(t−s)BT ds

=

∫ −τ
−t

e−σBAe−σB
T

dσ.

Since −τ > −t > 0 and A is nonnegative definite, we have∫ −τ
−t

e−σBAe−σB
T

dσ ≤
∫ −τ

0

e−σBAe−σBT

dσ = C(−τ)

which proves (15) and the lemma.

A crucial role in the proof of our main theorem will be played by the ratio Γ(z,ζ)
Γ(0,ζ) ,

for z = (x, t) and ζ = (ξ, τ) with 0 > t > τ . We use the following notations

µ =
−t
−τ
∈ (0, 1), M(z) =

∣∣∣D 1√
−t
x
∣∣∣ , M(ζ) =

∣∣∣D 1√
−τ
ξ
∣∣∣ . (16)

Lemma 4.2. There exists a positive constant C such that, for any z = (x, t), ζ =

(ξ, τ) with 0 > t > τ and µ ≤ min { 1
2 ,

σ2

(n+1)2 }, we have

Γ(z, ζ)

Γ(0, ζ)
≤
(

1

1− µ

)Q
2

eC
√
µM(z)M(ζ).

Proof. In our notations we can write

Γ(z, ζ)

Γ(0, ζ)
=

(t− τ)−
Q
2 e
−
∣∣∣∣D 1√

t−τ
(x−E(t−τ)ξ)

∣∣∣∣2
C

(−τ)−
Q
2 e
−
∣∣∣∣D 1√

−τ
(E(−τ)ξ)

∣∣∣∣2
C

=

(
1

1− µ

)Q
2

e

∣∣∣∣D 1√
−τ

(E(−τ)ξ)

∣∣∣∣2
C

−
∣∣∣∣D 1√

t−τ
(x−E(t−τ)ξ)

∣∣∣∣2
C .
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Let us deal with the exponential term∣∣∣D 1√
−τ

(E(−τ)ξ)
∣∣∣2
C
−
∣∣∣D 1√

t−τ
(x− E(t− τ)ξ)

∣∣∣2
C

= (17)

=
1

4

〈
C−1(−τ)E(−τ)ξ, E(−τ)ξ

〉
−1

4

〈
C−1(t− τ) (x− E(t− τ)ξ) , (x− E(t− τ)ξ)

〉
.

Lemma 4.1 says in particular that we have〈
C−1(−τ)E(−τ)ξ, E(−τ)ξ

〉
−
〈
C−1(t− τ)E(t− τ)ξ, E(t− τ)ξ

〉
≤ 0.

Using this in (17) we get∣∣∣D 1√
−τ

(E(−τ)ξ)
∣∣∣2
C
−
∣∣∣D 1√

t−τ
(x− E(t− τ)ξ)

∣∣∣2
C
≤ (18)

≤ −1

4

〈
C−1(t− τ)x, x

〉
+

1

2

〈
C−1(t− τ)x,E(t− τ)ξ

〉
≤ 1

2

〈
C−1(t− τ)x,E(t− τ)ξ

〉
≤ 1

2

(〈
C−1(t− τ)x, x

〉 〈
C−1(t− τ)E(t− τ)ξ, E(t− τ)ξ

〉) 1
2 .

We are going to bound
〈
C−1(t− τ)x, x

〉
and

〈
C−1(t− τ)E(t− τ)ξ, E(t− τ)ξ

〉
separately. We have〈

C−1(t− τ)x, x
〉

=

〈
C−1

(
1

µ
− 1

)
D 1√

−t
x,D 1√

−t
x

〉
≤

∥∥∥∥C−1

(
1

µ
− 1

)∥∥∥∥M2(z),

where ‖A‖ stands for the operator norm of a matrix A (i.e. its biggest eigenvalue
for symmetric matrices). By (8), for any vector v with |v| = 1 we get

min
{∣∣D√µv∣∣ , ∣∣D√µv∣∣ 1

2n+1

}
≤ 1

σ

√
µ ‖v‖

≤ n+ 1

σ

√
µmax

{
|v| , |v|

1
2n+1

}
=
n+ 1

σ

√
µ.

From µ ≤ σ2

(n+1)2 we then deduce
∣∣D√µv∣∣ ≤ n+1

σ

√
µ. Hence, since µ is also less than

1
2 ,〈

C−1

(
1

µ
− 1

)
v, v

〉
=

〈
C−1(1− µ)D√µv,D√µv

〉
≤

∥∥C−1(1− µ)
∥∥ ∣∣D√µv∣∣2 ≤ (n+ 1)2

σ2

∥∥C−1(1− µ)
∥∥µ

≤ (n+ 1)2

σ2

∥∥∥∥C−1

(
1

2

)∥∥∥∥µ ∀ |v| = 1.

This gives 〈
C−1(t− τ)x, x

〉
≤ (n+ 1)2

σ2

∥∥∥∥C−1

(
1

2

)∥∥∥∥µM2(z). (19)
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On the other hand, by the commutation property (14), we get〈
C−1(t− τ)E(t− τ)ξ, E(t− τ)ξ

〉
=

=
〈
C−1(1− µ)D 1√

−τ
E(t− τ)ξ,D 1√

−τ
E(t− τ)ξ

〉
≤

∥∥C−1(1− µ)
∥∥ ∣∣∣D 1√

−τ
E(t− τ)ξ

∣∣∣2 =
∥∥C−1(1− µ)

∥∥ ∣∣∣E(1− µ)D 1√
−τ
ξ
∣∣∣2

≤
∥∥C−1(1− µ)

∥∥ ∥∥ET (1− µ)E(1− µ)
∥∥M2(ζ)

≤
∥∥∥∥C−1

(
1

2

)∥∥∥∥∥∥ET (1− µ)E(1− µ)
∥∥M2(ζ).

Since 0 < µ ≤ 1
2 , the term

∥∥ET (1− µ)E(1− µ)
∥∥ is bounded from above by a

universal constant C2
0 . Thus we have〈

C−1(t− τ)E(t− τ)ξ, E(t− τ)ξ
〉
≤ C2

0

∥∥∥∥C−1

(
1

2

)∥∥∥∥M2(ζ). (20)

Plugging (19) and (20) in (18), we get∣∣∣D 1√
−τ

(E(−τ)ξ)
∣∣∣2
C
−
∣∣∣D 1√

t−τ
(x− E(t− τ)ξ)

∣∣∣2
C
≤

≤ C0

2

n+ 1

σ

∥∥∥∥C−1

(
1

2

)∥∥∥∥√µM(z)M(ζ).

Therefore

Γ(z, ζ)

Γ(0, ζ)
≤
(

1

1− µ

)Q
2

eC
√
µM(z)M(ζ)

with C = C0

2
n+1
σ

∥∥C−1
(

1
2

)∥∥.

5. Necessary condition for regularity. The characterization in (13), together
with the following lemma, will give the necessity of (3) in Theorem 1.1.

Lemma 5.1. For every fixed p ∈ N, let us split the set Gr defined in (12) as follows

Gr = Gpr ∪G∗pr ,

where

Gpr =

{
z ∈ Gr | Γ(z0, z) ≥

(
1

λ

)p log p
}
∪ {z0},

and G∗pr =

{
z ∈ Gr | Γ(z0, z) ≤

(
1

λ

)p log p
}
.

Then,

lim
r−→0

VGr (z0) = lim
r−→0

VGpr (z0).

Proof. From the monotonicity and subadditivity properties of the balayage, we have

VGpr (z0) ≤ VGr (z0) ≤ VGpr (z0) + VG∗pr (z0).

Furthermore, by (11),

VG∗pr (z0) ≤
(

1

λ

)p log p

cap (G∗pr ).
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On the other hand, from the monotonicity and homogeneity properties of the ca-
pacities, it follows

cap (G∗pr ) ≤ cap (Cr(z0)) = cap (z0 ◦ δr(C1)) = rQcap (C1(z0)).

Hence cap (G∗pr ) goes to zero as r goes to zero. This proves the lemma.

Proof of necessary condition in Theorem 1.1. Assume

∞∑
k=1

VΩck(z0)(z0) < +∞.

We are going to prove the non regularity of the boundary point z0. The assumption
implies that for every ε > 0, there exists p ∈ N such that

∞∑
k=p

VΩck(z0)(z0) < ε.

On the other hand, with the notations of the previous lemma, for any positive r

Gpr ⊆
∞⋃
k=p

Ωck(z0),

so that,

VGpr (z0) ≤
∞∑
k=p

VΩck(z0)(z0) < ε.

Then, from Lemma 5.1, we get limr→0 VGr (z0) ≤ ε for every ε > 0, which implies

lim
r−→0

VGr (z0) = 0.

Hence, by (13), the boundary point z0 is not L-regular.

6. Sufficient condition for regularity. In this section we prove the if part of
Theorem 1.1. This is the core of our main result and requires three lemmas.

Lemma 6.1. Suppose we have a sequence of compact sets {Fk}k∈N in RN+1 such
that {

Fk ∩ Fh = ∅ if k 6= h,

∀r > 0 ∃ k̄ such that Fk ⊆ Gr for k ≥ k̄.

Suppose also that the following two conditions hold true:

(i)
+∞∑
k=1

VFk(z0) = +∞;

(ii)

sup
h 6=k

sup

{
Γ(z, ζ)

Γ(z0, ζ)
: z ∈ Fh, ζ ∈ Fk

}
≤M0.

Then we have

VGr (z0) ≥ 1

2M0
for every positive r.
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Proof. Let A > 2
M0

, and fix any r > 0. Let us pick m,n ∈ N with m < n such that

n⋃
k=m

Fk ⊆ Gr and

n∑
k=m

VFk(z0) ≥ A.

We are going to denote by Gm,n =
⋃n
k=m Fk and by Wm,n(z) =

∑n
k=m VFk(z). We

want to estimate Wm,n on Gm,n.
Take z ∈ Gm,n. We have then z ∈ Fh for some h ∈ {m, . . . , n}. Of course we

have VFh(z) ≤ 1. On the other hand, if k 6= h we get

VFk(z) =

∫
Fk

Γ(z, ζ) dµk(ζ) =

∫
Fk

Γ(z, ζ)

Γ(z0, ζ)
Γ(z0, ζ) dµk(ζ) ≤M0VFk(z0).

Hence VFk ≤ M0VFk(z0) in Fh. By the continuity of the equilibrium potentials
(outside of their relative compact sets) there exists an open neighborhood Oh of Fh
such that

VFk(z) ≤M0VFk(z0) +
1

2k
∀ z ∈ Oh, and ∀ k ∈ {m, . . . , n}, k 6= h.

We put O =
⋃
hOh. For z ∈ O we get

Wm,n(z) ≤ 1 +M0

n∑
k=m

VFk(z0) +

n∑
k=m

1

2k
≤ 2 +M0

n∑
k=m

VFk(z0).

If we consider the function vm,n = 1
2+M0

∑n
k=m VFk (z0)Wm,n, we thus get vm,n ≤ 1

in O. Moreover, the function vm,n is a nonnegative L-superharmonic function in
RN+1, it is L-harmonic in RN+1 rGm,n, and it vanishes at the infinity. Recalling
the notation fixed in (10), if we take any function u ∈ ΦGm,n we have

u− vm,n ∈ L(RN+1 rGm,n),

lim infz→∞ u(z)− vm,n(z) ≥ 0,

lim infz→ζ∈∂Gm,n u(z)− vm,n(z) ≥ u(ζ)− 1 ≥ 0.

The maximum principle yields that u−vm,n has to be nonnegative in RN+1rGm,n.
On the other hand, u ≥ 1 ≥ vm,n in Gm,n. Therefore u ≥ vm,n in RN+1, for every
u ∈ ΦGm,n . This implies that

VGm,n(z) ≥ vm,n(z) =
Wm,n(z)

2 +M0

∑n
k=m VFk(z0)

for all z ∈ RN+1.

In particular this has to be true at z = z0, i.e.

VGm,n(z0) ≥
∑n
k=m VFk(z0)

2 +M0

∑n
k=m VFk(z0)

.

Since the function s 7→ s
2+M0s

is increasing, we deduce

VGm,n(z0) ≥ A

2 +M0A
>

1

2M0
.

This concludes the proof since VGr ≥ VGm,n .

In order to simplify the notations, from now on we assume z0 = 0 ∈ ∂Ω. This is
not restrictive because of the left-invariance property. We want to choose suitably
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the compact sets Fk of the previous lemma. For any fixed λ ∈ (0, 1), we recall that

Ωck(0) =

{
z ∈ Ωc :

(
1

λ

)k log k

≤ Γ(0, z) ≤
(

1

λ

)(k+1) log (k+1)
}
.

Now, we set

α(k) = k log k (21)

and denote

Tk = max
(x,t)∈Ωck(0)

−t =
(
cNλ

α(k)
) 2
Q

. (22)

We fix q ∈ N such that

q ≥ q0 := 4 +
m

log
(

1
λ

) , (23)

where

m = max

{
2,

Q

log 6
,

2σ2
C

log 6
,
Q log 2

log 8
,

2Q log (n+1
σ )

log 8

}
,

and σC , σ are the constants in (6) and (8). We also denote by

p = 1 +
[q

2

]
= 1 + the integer part of

q

2
. (24)

So q
2 ≤ p ≤ 1 + q

2 < q − 1. For any k ∈ N we want to consider the sets

Ωckq(0) =

{
z ∈ Ωc :

(
1

λ

)α(kq)

≤ Γ(0, z) ≤
(

1

λ

)α(kq+1)
}
.

Moreover, we put

Ωckq(0) =
(
Ωckq(0) ∩ {t ≥ −T ∗kq}

)
∪
(
Ωckq(0) ∩ {t ≤ −T ∗kq}

)
:= F

(0)
k ∪ Fk (25)

where

T ∗kq = Tkq+p =
(
cNλ

α(kq+p)
) 2
Q

. (26)

First we notice that, since kq + p < q(k + 1), Fk lies strictly below Fk+1, namely

min
(x,t)∈Fh

t = −Thq > −T ∗kq = max
(ξ,τ)∈Fk

τ ∀h, k ∈ N, h > k. (27)

Lemma 6.2. We have
+∞∑
k=1

V
F

(0)
k

(0) < +∞.

Proof. We are going to prove that F
(0)
k is contained in a homogeneous cylinder Crk ,

where rk is such that
+∞∑
k=1

(
1

λ

)α(kq+1)

rQk < +∞. (28)

This is enough to prove the statement since

V
F

(0)
k

(0) =

∫
F

(0)
k

Γ(0, ζ) dµ
F

(0)
k

(ζ) ≤
(

1

λ

)α(kq+1)

cap (F
(0)
k ),

and by monotonicity and homogeneity we have

cap (F
(0)
k ) ≤ cap (Crk) = cap (C1)rQk .

In order to prove (28), we have to find a good bound for rk.
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Fix z = (x, t) ∈ F (0)
k . Since in particular z ∈ Ωckq(0), we have∣∣∣D 1√

−t
(E(−t)x)

∣∣∣2
C
≤ log

(
cNλ

α(kq)

(−t)Q2

)
.

On the other hand, by (14) and (6), we get∣∣∣D 1√
−t

(E(−t)x)
∣∣∣2
C

=
∣∣∣E(1)D 1√

−t
x
∣∣∣2
C
≥ σ2

C

∣∣∣D 1√
−t
x
∣∣∣2

and then ∣∣∣D 1√
−t
x
∣∣∣2 ≤ 1

σ2
C

log

(
cNλ

α(kq)

(−t)Q2

)
. (29)

Therefore, from (8), we deduce

1√
−t
‖x‖ =

∥∥∥D 1√
−t
x
∥∥∥ ≤ (n+ 1) max

{∣∣∣D 1√
−t
x
∣∣∣ , ∣∣∣D 1√

−t
x
∣∣∣ 1
2n+1

}

≤ (n+ 1) max

 1

σC
log

1
2

(
cNλ

α(kq)

(−t)Q2

)
,

1

σ
1

2n+1

C

log
1

2(2n+1)

(
cNλ

α(kq)

(−t)Q2

).
From the choice α(k) = k log k in (21) it follows that

k 7→ α(kq + p)− α(kq) is monotone increasing.

In particular, by (24), α(kq + p) − α(kq) ≥ α( 3
2q) − α(q) ≥ 1

2q log (3
2q) ≥

1
2q log 6.

Because of our choice of q (23) and T ∗kq (26), we have then α(kq+p)−α(kq) ≥ Q
2 log ( 1

λ )

and so

(T ∗kq)
Q
2 = cNλ

α(kq+p) ≤ cNλα(kq)e−
Q
2 ∀k.

This fact and the fact that for β > 0 the function s 7→ s logβ α
sQ

is increasing

in the interval (0, e−βα
1
Q ] allow to bound the term ‖x‖ further. Indeed, having

0 < −t ≤ T ∗kq, we get

‖x‖ ≤ (n+ 1) max


√
−t
σC

log
1
2

(
cNλ

α(kq)

(−t)Q2

)
,

√
−t

σ
1

2n+1

C

log
1

2(2n+1)

(
cNλ

α(kq)

(−t)Q2

)
≤ (n+ 1) max


√
T ∗kq

σC
log

1
2

(
cNλ

α(kq)

(T ∗kq)
Q
2

)
,

√
T ∗kq

σ
1

2n+1

C

log
1

2(2n+1)

(
cNλ

α(kq)

(T ∗kq)
Q
2

).
Since 1

2q log 6 ≥ σ2
C

log ( 1
λ )

we have also (T ∗kq)
Q
2 ≤ cNλ

α(kq)e−σ
2
C , which says that

log
1
2

(
cNλ

α(kq)

(T∗kq)
Q
2

)
≥ σC and implies

‖x‖ ≤ (n+ 1)

σC

√
T ∗kq log

1
2

(
cNλ

α(kq)

(T ∗kq)
Q
2

)
.

Summing up, we have just proved that

(x, t) ∈ F (0)
k =⇒

‖x‖ ≤
n+1
σC

√
T ∗kq log

1
2

(
cNλ

α(kq)

(T∗kq)
Q
2

)
=: rk and

0 < −t ≤ T ∗kq ≤ (n+ 1)2T ∗kq ≤ r2
k,
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namely

F
(0)
k ⊆ Crk .

We are left with verifying (28) with this choice of rk. We have thus to prove that

+∞∑
k=1

(
1

λ

)α(kq+1)−α(kq+p)

(α(kq + p)− α(kq))
Q
2 < +∞.

The sequences α(kq + 1) − α(kq + p) and α(kq + p) − α(kq) (recalling (21)) are
asymptotically equivalent respectively to (1−p) log(kq+p) and p log(kq+p). Hence,
the series is equivalent to

+∞∑
k=1

1

(kq + p)
(p−1) log 1

λ

log
Q
2 (kq + p),

which is convergent since p ≥ q
2 > 1 + 1

log( 1
λ )

by (24) and (23). This proves (28),

and therefore the lemma.

Lemma 6.3. There exists a positive constant M0 such that

Γ(z, ζ)

Γ(0, ζ)
≤M0 ∀ z ∈ Fh, ∀ ζ ∈ Fk, ∀h, k ∈ N, h 6= k.

Proof. Fix any h, k ∈ N with h 6= k. If h ≤ k−1, then Γ(z, ζ) = 0 and the statement
is trivial. Thus, suppose h ≥ k + 1. Keeping in mind the notations fixed in (16),
(22) and (26), for every z = (x, t) ∈ Fh and ζ = (ξ, τ) ∈ Fk we have

µ =
−t
−τ
≤ Thq
T ∗kq

=

(
λα(hq)

λα(kq+p)

) 2
Q

=

(
1

λ

) 2
Q (α(kq+p)−α(hq))

.

By (24) and the monotonicity properties we have α(hq)− α(kq + p) ≥ α(kq + q)−
α(kq+ p) ≥ α(2q)−α(q+ p) ≥ α(2q)−α( 3

2q+ 1) ≥ ( q2 − 1) log (2q). By our choice
of q (23) we have then

α(hq)− α(kq + p) ≥
(q

2
− 1
)

log (8) ≥ Q

2

max {log 2, log (n+1
σ )2}

log ( 1
λ )

which implies µ ≤ min { 1
2 ,

σ2

(n+1)2 }. This fact allows us to exploit Lemma 4.2 and
get

Γ(z, ζ)

Γ(0, ζ)
≤
(

1

1− µ

)Q
2

eC
√
µM(z)M(ζ) ≤ 2

Q
2 eC

√
µM(z)M(ζ),

for some structural positive constant C. To prove the statement we need to show
that the term

µM2(z)M2(ζ)

is uniformly bounded for z ∈ Fh and ζ ∈ Fk. By estimating as in (29) we have

M2(z) =
∣∣∣D 1√

−t
x
∣∣∣2 ≤ 1

σ2
C

log

(
cNλ

α(hq)

(−t)Q2

)

≤ 1

σ2
C

log

(
cNλ

α(hq)

(T ∗hq)
Q
2

)
=

1

σ2
C

log

(
1

λ

)
(α(hq + p)− α(hq)),



2482 ALESSIA E. KOGOJ, ERMANNO LANCONELLI AND GIULIO TRALLI

and analogously

M2(ζ) ≤ 1

σ2
C

log

(
1

λ

)
(α(kq + p)− α(kq)).

In order to bound µM2(z)M2(ζ) we are thus going to estimate the term

(α(kq + p)− α(kq))(α(hq + p)− α(hq))

(
1

λ
2
Q

)(α(kq+p)−α(hq))

≤(α(kq + p)− α(kq))(α(hq + p)− α(hq))

(
1

λ
2
Q

)(α(kq+p)−α(kq+q−1)+α(hq−1)−α(hq))

=

(
(α(kq + p)− α(kq))

(
1

λ
2
Q

)(α(kq+p)−α(kq+q−1))
)

·

(
(α(hq + p)− α(hq))

(
1

λ
2
Q

)(α(hq−1)−α(hq))
)

=:Ak ·Bh.

Since p < q− 1 by (24), and α(n+ s)−α(n) is asymptotically equivalent (recalling
(21)) to s log(n+ s) as n goes to ∞, it is easy to check that the sequences Ak and
Bh are convergent to 0. Therefore they are a fortiori bounded. This proves the
lemma.

Proof of sufficient condition in Theorem 1.1. As we noticed, it is not restrictive to
assume z0 = 0. Then, our assumption implies

∞∑
k=1

VΩck(0)(0) = +∞

for some fixed λ ∈ (0, 1). Take q ∈ N as in (23). There exists at least one i ∈
{0, . . . , q − 1} such that

∞∑
k=1

VΩckq+i(0)(0) = +∞.

We can assume without loss of generality that i = 0, i.e.

∞∑
k=1

VΩckq(0)(0) = +∞.

Let us split the sets Ωckq(0) as in (25). In this way we have defined the sequence of
compact sets Fk. We want to check that such a sequence satisfies the hypotheses
of Lemma 6.1.

First of all, from (27), we have that the Fk’s are disjoint. Moreover, since Fk ⊂
Ωckq(0), it is easy to see that the sets converge from below to the point 0 (e.g., using

that Γ(0, ·) is δr-homogeneous of degree −Q). Lemma 6.3 provide the existence of
a positive constant M0 for which condition (ii) in Lemma 6.1 holds true. The last
assumption we have to verify is the condition (i). To do this, we recall that the
subadditivity of the equilibrium potentials implies that

VΩckq(0) ≤ VFk + V
F

(0)
k

.
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Lemma 6.2 says that
∑
k VF (0)

k

(0) is convergent. We then deduce

+∞∑
k=1

VFk(0) = +∞,

which is condition (i).
Then, we can apply Lemma 6.1 and infer that VGr (0) ≥ 1

2M0
for all positive r.

The regularity of the point 0 is thus ensured by the characterization in (13).

7. The Wiener-type test, and the cone condition. In this section we want to
prove Corollary 1.2, and Corollary 1.3.

First, we want to show how one can deduce the Wiener-type test of Corollary 1.2
from Theorem 1.1: it follows easily from the representation of the potentials (11).

Proof of Corollary 1.2. For every k ∈ N, we denote by µk the L-equilibrium mea-
sure of Ωck(z0). Then, keeping in mind the very definition of Ωck(z0), we have:

VΩck(z0)(z0) =

∫
Ωck(z0)

Γ(z0, ζ) dµk(ζ) dζ

≤
(

1

λ

)(k+1) log (k+1)

µk(Ωck(z0)) =
cap (Ωck(z0))

λ(k+1) log (k+1)
.

Analogously,

VΩck(z0)(z0) ≥ cap (Ωck(z0))

λk log k
.

Hence,
∞∑
k=1

cap (Ωck(z0))

λk log k
≤
∞∑
k=1

VΩck(z0)(z0) ≤
∞∑
k=1

cap (Ωck(z0))

λ(k+1) log (k+1)
.

The assertions (i) and (ii) directly follow from these inequalities, and from Theorem
1.1.

The main statement in Corollary 1.3 follows from the sufficient condition (i) we
have just proved, and from (9). Indeed, we have

cap (Ωck(z0)) ≥ |Ωck(z0)|
(cNλk log k)

2
Q

(30)

since Ωck(z0) ⊂ RN × [t0 − Tk, t0] and we recall from (22) that T
Q
2

k = cNλ
k log k.

Finally, we have to deal with the proof of the cone condition. To this aim, we
need some definitions. We call L-cone of vertex 0 ∈ RN+1 a set of the form

KR(B) := {(Dr(ξ),−r2) : ξ ∈ B, 0 ≤ r ≤ R}

for some bounded set B ⊂ RN with non-empty interior, and for some positive R.
We call L-cone of vertex z0 the left-translated cone

z0 ◦KR(B).

Definition 7.1. Let Ω be a bounded open subset of RN+1 and z0 ∈ ∂Ω. We say
that Ω has the exterior L-cone property at z0 if there exists an L-cone of vertex z0

which is completely contained in Ωc.

We can now complete the proof.
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Proof of Corollary 1.3. As we said, from (30) we get

∞∑
k=1

cap (Ωck(z0))

λk log k
≥ c−

2
Q

N

∞∑
k=1

|Ωck(z0)|
λ
Q+2
Q k log k

and the first part of the proof follows. If we suppose that Ω has the exterior L-
cone property at z0, we want to prove that the series on the r.h.s. is divergent. In
particular, we are going to prove that the terms of that series are uniformly bigger
than a positive constant, for k big enough.

Without loss of generality, we can assume z0 = 0. Denote

F θr :=

{
z ∈ RN+1 :

1

r
≤ Γ(0, z) ≤ θ

r

}
, for r > 0, and for θ > 1,

and let rk = λk log k. For any θ > 1 there exists k̄ such that we have

Ωck(z0) ⊇ F θrk ∩KR(B) ∀k ≥ k̄.

On the other hand

F θrk ∩KR(B) = δ
r

1
Q
k

(
F θ1 ∩K

Rr
− 1
Q

k

(B)

)
.

We claim that there exist k̄1 ≥ k̄ and a non-empty open set A ⊂ RN+1 such that

A ⊆ F θ1 ∩K
Rr
− 1
Q

k

(B) ∀k ≥ k̄1. (31)

If this is the case, we get

|Ωck(z0)| ≥
∣∣∣∣δ
r

1
Q
k

(
F θ1 ∩K

Rr
− 1
Q

k

(B)

)∣∣∣∣ = r
Q+2
Q

k |F θ1 ∩K
Rr
− 1
Q

k

(B)| ≥ r
Q+2
Q

k |A|

for all k ≥ k̄1, which is exactly the desired relation

|Ωck(z0)|
λ
Q+2
Q k log k

≥ |A| > 0 ∀k ≥ k̄1.

Hence, we are left with the proof of the claim (31). Take k̄1 ≥ k̄ such that

sup
ξ∈int(B)

Γ(0, (ξ,−1)) <
RQ

rk
∀k ≥ k̄1.

Consider

A :=

{
(Dρ(ξ),−ρ2) : ξ ∈ int(B), and

1

θ
Γ(0, (ξ,−1)) < ρQ < Γ(0, (ξ,−1))

}
,

which is open, and non-empty since int(B) 6= ∅ and θ > 1. Moreover A ⊂ F θ1 by

construction, and A ⊂ K
Rr
− 1
Q

k

(B) for k ≥ k̄1 because of the inequality ρQ < RQ

rk
.

The proof is thus complete.
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[8] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–

171.

[9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
1990.

[10] A. E. Kogoj, On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener

solution and a cone-type criterion, J. Differential Equations, 262 (2017), 1524–1539.
[11] L. P. Kuptsov, Fundamental solutions for a class of second-order elliptic-parabolic equations,

Differentcial’nye Uravnenija, 8 (1972), 1649–1660, 1716.

[12] L. P. Kuptsov, Fundamental solutions of certain second-order degenerate parabolic equations,
Math. Notes, 31 (1982), 283–289.

[13] E. Lanconelli, Sul problema di Dirichlet per l’equazione del calore, Ann. Mat. Pura Appl. (4),

97 (1973), 83–114.
[14] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat.

Univ. Politec. Torino, 52 (1994), 29–63, Partial differential equations, II (Turin, 1993).
[15] E. Lanconelli, G. Tralli and F. Uguzzoni, Wiener-type tests from a two-sided Gaussian bound,

Ann. Mat. Pura Appl. (4), 196 (2017), 217–244.

[16] E. Lanconelli and F. Uguzzoni, Potential analysis for a class of diffusion equations: A Gaussian
bounds approach, J. Differential Equations, 248 (2010), 2329–2367.

[17] E. M. Landis, Necessary and sufficient conditions for the regularity of a boundary point for

the Dirichlet problem for the heat equation, Dokl. Akad. Nauk SSSR, 185 (1969), 517–520.
[18] M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential

Equations, 2 (1997), 831–866.

[19] V. Scornazzani, The Dirichlet problem for the Kolmogorov operator, Boll. Un. Mat. Ital. C
(5), 18 (1981), 43–62.

Received February 2017; revised November 2017.

E-mail address: alessia.kogoj@uniurb.it

E-mail address: ermanno.lanconelli@unibo.it

E-mail address: tralli@mat.uniroma1.it

http://www.ams.org/mathscinet-getitem?mr=MR2471147&return=pdf
http://dx.doi.org/10.1007/s11118-008-9112-6
http://dx.doi.org/10.1007/s11118-008-9112-6
http://www.ams.org/mathscinet-getitem?mr=MR0419799&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR653544&return=pdf
http://dx.doi.org/10.1007/BF00249583
http://www.ams.org/mathscinet-getitem?mr=MR1016884&return=pdf
http://dx.doi.org/10.1215/S0012-7094-89-05906-1
http://dx.doi.org/10.1215/S0012-7094-89-05906-1
http://www.ams.org/mathscinet-getitem?mr=MR951629&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR998126&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1990-0998126-5
http://dx.doi.org/10.1090/S0002-9947-1990-0998126-5
http://www.ams.org/mathscinet-getitem?mr=MR1087188&return=pdf
http://dx.doi.org/10.1512/iumj.1990.39.39053
http://dx.doi.org/10.1512/iumj.1990.39.39053
http://www.ams.org/mathscinet-getitem?mr=MR0222474&return=pdf
http://dx.doi.org/10.1007/BF02392081
http://www.ams.org/mathscinet-getitem?mr=MR1084815&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3582202&return=pdf
http://dx.doi.org/10.1016/j.jde.2016.10.018
http://dx.doi.org/10.1016/j.jde.2016.10.018
http://www.ams.org/mathscinet-getitem?mr=MR0315290&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR657717&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0372226&return=pdf
http://dx.doi.org/10.1007/BF02414910
http://www.ams.org/mathscinet-getitem?mr=MR1289901&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3600865&return=pdf
http://dx.doi.org/10.1007/s10231-016-0570-y
http://www.ams.org/mathscinet-getitem?mr=MR2595724&return=pdf
http://dx.doi.org/10.1016/j.jde.2010.01.007
http://dx.doi.org/10.1016/j.jde.2010.01.007
http://www.ams.org/mathscinet-getitem?mr=MR0262703&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1751429&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR631568&return=pdf
mailto:alessia.kogoj@uniurb.it
mailto:ermanno.lanconelli@unibo.it
mailto:tralli@mat.uniroma1.it

	1. Introduction
	2. Structural properties of L
	3. Some recalls from potential theory for L: L-potentials and L-capacity
	4. A crucial estimate
	5. Necessary condition for regularity
	6. Sufficient condition for regularity
	7. The Wiener-type test, and the cone condition
	Acknowledgments
	REFERENCES

