
Claudio Antares Mezzina

Modelling Reversible Systems
and way back: 12 years of reversibility

NiRvAna kickoff meeting Fano

Reversibility: Historical Reasons

Landaurer Principle (IBM) 1961

“any logically irreversible manipulation of information, such as the erasure of a
bit or the merging of two computation paths, must be accompanied by a
corresponding entropy increase in non-information-bearing degrees of freedom
of the information-processing apparatus or its environment”

• A so-called logically reversible computation, in which no information is
erased, may in principle be carried out without releasing any heat.

• This has led to considerable interest in the study of reversible computing.

Reversible Computing: History

Bennet 1973: reversible Turing machine

• A Turing machine with 3 tapes: input tape, output tape and history tape

• Theorem: For every standard one-tape Turing machine S, there exist a
three-tape reversible, deterministic Turing machine R that has the same
functionality as S

Reversible Circuits

To implement reversible computation, estimate its cost, and to judge its limits, it can be
formalized in terms of gate-level circuits.

Toffoli gate 1980: a 3-input invariant gate

• It preserves two of the 3 input

• Replaces the third by

• With c=0 we get the AND port

• With c=1 we get the NAND port

• With a = 1 OR b = 1 we get the XOR

• It is an universal gate

<latexit sha1_base64="Y+2QqNywg8fVPAsLWGnZmwieMkk=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgZboW5KUkFdFt24rGAf0IQymdy0QycPZiZKCd34K25cKOLWz3Dn3zhts9DWAxcO59zLvfd4CWdSWda3UVhZXVvfKG6WtrZ3dvfM/YO2jFNBoUVjHouuRyRwFkFLMcWhmwggoceh441upn7nAYRkcXSvxgm4IRlELGCUKC31zaMKxU6c8FTiKsHOI/gDwN5ZpW+WrZo1A14mdk7KKEezb345fkzTECJFOZGyZ1uJcjMiFKMcJiUnlZAQOiID6GkakRCkm80emOBTrfg4iIWuSOGZ+nsiI6GU49DTnSFRQ7noTcX/vF6qgis3Y1GSKojofFGQcqxiPE0D+0wAVXysCaGC6VsxHRJBqNKZlXQI9uLLy6Rdr9kXtfO7erlxncdRRMfoBFWRjS5RA92iJmohiiboGb2iN+PJeDHejY95a8HIZw7RHxifPxitlM0=</latexit>

c� (a ^ b)

Toffoli gate and quantum circuits

Reversible Computation on the hype
https://spectrum.ieee.org/the-future-of-computing-depends-on-making-it-reversible

Aside Circuits

Reversibility or reversible behaviour can be found in other fields

• System biology

• Transaction / Checkpoint Rollback Schema / Failure handling primitives

• Reversible Debugging

• Record/Replay (reproducibility of system behaviour)

• Quantum computing

Reversible computation

• We can image two directions of computations: forward and backward

• Which action we undo first?

• In a sequential setting simple: we undo a computation starting from the last
action (backtracking)

• In a concurrent/distributed system?

• No concept of last action

• No global clock

Reversibility in Concurrent System

A good approximation is causal consistent reversibility

Causal consistent reversibility relates reversibility and causality

It allows to consider as last action any action which as no consequences:

in a concurrent system, any action can be undone provided that all of its
consequences, if any, are undone beforehand.

Reversibility in Concurrent System
Modelling

• Reversible Process Algebras

• Reversible Petri nets

• Reversible Event Structure

Reversibility in Concurrent System
Calculi

Reversible Communicating System (RCCS) Danos&Krivine

• Use of explicit memories to keep track of past events

• Suitable for complex languages (e.g., scales with pi-calculus, Erlang)

CCS with communication keys (CCSK) Phillips&Ulidowski

• History information directly recorderded into the term

• Use of keys to keep track of synchronisations

• Suitable for CCS-like languages with LTSs

Example

After the computation, we loose information about

• The performed action a

• The other branch b.Q

<latexit sha1_base64="xSZ3iXZUxs+AtYDgg/YQuETq6Zs=">AAACBnicbVDJSgNBEO2JW4zbqEcRGhNBEIaZIOox6MXjBMwCyRBqOj1Jk56F7h41DDl58Ve8eFDEq9/gzb+xsxw08UHB470qqur5CWdS2fa3kVtaXlldy68XNja3tnfM3b26jFNBaI3EPBZNHyTlLKI1xRSnzURQCH1OG/7geuw37qiQLI5u1TChXgi9iAWMgNJSxzwsgeXiU+xbVdx+EKzXVyBEfJ/BCLuljlm0LXsCvEicGSmiGdyO+dXuxiQNaaQIBylbjp0oLwOhGOF0VGinkiZABtCjLU0jCKn0sskbI3yslS4OYqErUnii/p7IIJRyGPq6MwTVl/PeWPzPa6UquPQyFiWpohGZLgpSjlWMx5ngLhOUKD7UBIhg+lZM+iCAKJ1cQYfgzL+8SOplyzm3zqrlYuVqFkceHaAjdIIcdIEq6Aa5qIYIekTP6BW9GU/Gi/FufExbc8ZsZh/9gfH5A4zcl00=</latexit>

a.P + b.Q
a�! P

RCCS

<latexit sha1_base64="1fKAZzN2il+7cUKDH6SA74YJAiw=">AAACS3icbVBLbxMxGPSGBtrlFeDIxWoaKYhotVuhwrGCC8dEatpK2VX0reMkVv1Y2d9SolX+Hxcu3PgTXHooQj3U2eTQpoxkaTwznx+TF1I4jOPfQePRTvPxk9298Omz5y9etl69PnWmtIwPmZHGnufguBSaD1Gg5OeF5aByyc/yiy8r/+wbt04YfYKLgmcKZlpMBQP00riVH6gUrQA9k9yK2RxpF6I+fU/zaPCOhp30e62CteaygpHIljSVdZpCz2d6IrX1NmUTg1TRrdP64cG41Y6juAZ9SJINaZMN+uPWr3RiWKm4RibBuVESF5hVYFEwyZdhWjpeALuAGR95qkFxl1V1F0va8cqETo31SyOt1bsTFSjnFir3SQU4d9veSvyfNypx+imrhC5K5JqtL5qWkqKhq2LpRFjOUC48AWaFfytlc7DA0Ncf+hKS7S8/JKeHUXIUfRgcto8/b+rYJW/JPumShHwkx+Qr6ZMhYeQH+UOuyd/gZ3AV/Atu1tFGsJl5Q+6h0bwFnuyxcg==</latexit>

m . (a.P + b.Q)
<latexit sha1_base64="NZQTJUyBcBfNs+9Ddz6Fjp4fpnM=">AAACS3icbVBLbxMxGPSGBtrlFeDIxWoaKYhotVuhwrGCC8dEatpK2VX0reMkVv1Y2d9SolX+Hxcu3PgTXHooQj3U2eTQpoxkaTwznx+TF1I4jOPfQePRTvPxk9298Omz5y9etl69PnWmtIwPmZHGnufguBSaD1Gg5OeF5aByyc/yiy8r/+wbt04YfYKLgmcKZlpMBQP00riVH3RUilaAnkluxWyOtAtRn76neTR4R8P0ey2CteaygpHIljSVdZhCz0d6IrX1NmUTg1TRrcP64cG41Y6juAZ9SJINaZMN+uPWr3RiWKm4RibBuVESF5hVYFEwyZdhWjpeALuAGR95qkFxl1V1F0va8cqETo31SyOt1bsTFSjnFir3SQU4d9veSvyfNypx+imrhC5K5JqtL5qWkqKhq2LpRFjOUC48AWaFfytlc7DA0Ncf+hKS7S8/JKeHUXIUfRgcto8/b+rYJW/JPumShHwkx+Qr6ZMhYeQH+UOuyd/gZ3AV/Atu1tFGsJl5Q+6h0bwFmhqxcg==</latexit>

a[i]��! ha, b.Q, ii ·m . P

Memory monitoring the process Information about the previous state

<latexit sha1_base64="oY690Xx5TxtZXWCjK7YknRx0IW8=">AAACh3icfVFLb9NAEF6bPg1tAxy5rEgjtaVy7VKVHgtcOKYSaSvFVjReb5JV92HtjoHIyl/hR3Hj37BxcqApYqSVvvnmm8fOFJUUDpPkdxA+29jc2t7ZjZ6/2Ns/6Lx8detMbRkfMCONvS/AcSk0H6BAye8ry0EVkt8VD58X8btv3Dph9FecVTxXMNFiLBigp0adn4c9laEVoCeSWzGZIj2CuE/f0SK+OaZRL/vRsmCt+d7AUORzmslWTeHUa05FZls3Y6VBquhatX70qEJW65LbxbTLYnP6n/bR4ajTTeKkNfoUpCvQJSvrjzq/stKwWnGNTIJzwzSpMG/AomCSz6OsdrwC9gATPvRQg+Iub9o9zmnPMyUdG+ufRtqyf2c0oJybqcIrFeDUrccW5L9iwxrHV3kjdFUj12zZaFxLioYujkJLYTlDOfMAmBV+VsqmYIGhP13kl5Cuf/kpuD2P08v44ua8e/1ptY4d8oa8JUckJR/INflC+mRAWLARnATvg4twNzwLL8OrpTQMVjmvySMLP/4BFevBqw==</latexit>

a[i]
��! m . (a.P + b.Q)

CCSK
<latexit sha1_base64="SS1oo8GbKPw3HfXXxuIS2K6yYJk=">AAAClnicfVHbattAEF0pvaTqzW1eCn1ZahtSGoQUSi8vJSSU9lGBOglYwoxWa3vJXsTuKIkR/qT+TN/6N13LprRO6cDCmTNnLjtT1lI4TJKfQbhz5+69+7sPooePHj952nv2/MyZxjI+YkYae1GC41JoPkKBkl/UloMqJT8vL09W8fMrbp0w+hsual4omGkxFQzQU5Pe9+FA5WgF6JnkVszmSPchzugbWsanr2k0zG86Fqw11y2MRbGkuezUFA685kDktnNzVhmkim5Vy7ZK5I2uuF2Nu662pP/pHw0HUTT47Q8mvX4SJ53R2yDdgD7ZWDbp/cgrwxrFNTIJzo3TpMaiBYuCSb6M8sbxGtglzPjYQw2Ku6Lt1rqkQ89UdGqsfxppx/6Z0YJybqFKr1SAc7cdW5H/io0bnH4oWqHrBrlm60bTRlI0dHUjWgnLGcqFB8Cs8LNSNgcLDP0lI7+EdPvLt8HZYZy+i9+eHvaPjjfr2CUvySuyT1LynhyRryQjI8KCveBjcBychC/CT+Hn8MtaGgabnD3yl4XZL+IVxRI=</latexit>

a.P + b.Q
<latexit sha1_base64="WRA9sjZBacXBVQokzbbA0vNtd70=">AAACrHicfVFbb9MwFHYyLiNcVuCRF4u20iamKJkQ8DiNF97opHUrSqLqxHFaa44d2SdAFfXX7R/sjX+DkxYJuokj2fr8ne9cfE5eS2Exin55/t6Dh48e7z8Jnj57/uJg8PLVpdWNYXzKtNRmloPlUig+RYGSz2rDocolv8qvP3f+q+/cWKHVBa5qnlWwUKIUDNBR88HNeFSlaASoheRGLJZIDyGc0Hc0D8+PaDBOf/YsGKN/tJCIbE1T2aspHDvNsUhN/0xZoZFWdCfbZCdF2qiCm67dTbY1/U/9YDwKgtE9LXT3H9VoPhhGYdQbvQviLRiSrU3mg9u00KypuEImwdokjmrMWjAomOTrIG0sr4Fdw4InDiqouM3afthrOnZMQUtt3FFIe/bviBYqa1dV7pQV4NLu+jryPl/SYPkpa4WqG+SKbQqVjaSoabc5WgjDGcqVA8CMcL1StgQDDN1+AzeEePfLd8HlSRh/CN+fnwxPz7bj2CdvyFtySGLykZySL2RCpoR5R95Xb+Z980P/wk/8bCP1vW3Ma/KP+eVvJzjOxg==</latexit>

a[i]��! a[i].P + b.Q
<latexit sha1_base64="lRSNJxVXHIizD/UZGA/4vKB3bW4=">AAACtXichVFLa9tAEF4pfaTqy0mPvSy1DSkNQjIl6TG0lx4dqBODJcxotbKX7EPsjpoY4X/YU2/9N13LprROaQcWvvnmm8fOFLUUDpPkRxAePHj46PHhk+jps+cvXvaOjq+caSzjE2aksdMCHJdC8wkKlHxaWw6qkPy6uPm0iV9/5dYJo7/gqua5goUWlWCAnpr3vg0HKkMrQC8kt2KxRHoC8Zi+o0V8+ZZGw+yuY8Fac9vCTORrmslOTeHUa05FZjs3Y6VBquhetfFeiazRJbebcbfV1vQf/aPhIIoG/8n/JR/Me/0kTjqj90G6A32ys/G89z0rDWsU18gkODdLkxrzFiwKJvk6yhrHa2A3sOAzDzUo7vK22/qaDj1T0spY/zTSjv09owXl3EoVXqkAl24/tiH/Fps1WH3IW6HrBrlm20ZVIykaujkhLYXlDOXKA2BW+FkpW4IFhv7QkV9Cuv/l++BqFKdn8fvLUf/i424dh+Q1eUNOSErOyQX5TMZkQlgwCqYBBEV4HuZhGVZbaRjscl6RPyw0PwEOr9MZ</latexit>

a[i]
��! a.P + b.Q

No need of extra memories History information

directly in the term

Results
The two approaches are
equivalent

Cross-Fertilization results

More expressive power: pi calculus

Reversible Higher order Pi calculus

<latexit sha1_base64="Cp/SPXEzexVLLuGDgQ64DJRC+p0=">AAACJ3icbZDLSgMxFIYz9V5vVZduglWomzpTRF1JQRcuW7Ba6NRyJj1tQzOZIckoZejbuPFV3AgqokvfxPSy8HYg8PH/53By/iAWXBvX/XAyM7Nz8wuLS9nlldW19dzG5pWOEsWwxiIRqXoAGgWXWDPcCKzHCiEMBF4H/bORf32LSvNIXppBjM0QupJ3OANjpVbudBd8AbIrkFaorybkx6BACBQUCvX9YtUavNszoFR0R6t+elM5aKX1oT/cbeXybtEdF/0L3hTyZFqVVu7Zb0csCVEaJkDrhufGppmCMpwJHGb9RGMMrA9dbFiUEKJupuM7h3TPKm3aiZR90tCx+n0ihVDrQRjYzhBMT//2RuJ/XiMxnZNmymWcGJRssqiTCGoiOgqNtrlCZsTAAjDF7V8p69mMmLHRZm0I3u+T/8JVqegdFQ+rpXz5fBrHItkmO6RAPHJMyuSCVEiNMHJPHskLeXUenCfnzXmftGac6cwW+VHO5xcU56Th</latexit>

ahP i k a(X).Q ! Q{P /X}

Message content is a process Substitution is not bijective

Reversible Higher Order Pi: rhoPI

• Unique identifier per process

• “Dumping” the previous state

<latexit sha1_base64="Vrn02q9nnZy+UBZrvsCBcd3N1zo=">AAACi3icnVFNj9MwEHXCVyksW+DIxaKLVC4hKYhddTmsBEgcW4nuVqpDNHGnrRXHsWwHVEX9M/wkbvwb3DaHZZcTT7L09OaNZvwm11JYF8e/g/DO3Xv3H3Qedh89Pnpy3Hv67NJWteE45ZWszCwHi1IonDrhJM60QShziVd58XFXv/qOxopKfXUbjWkJKyWWgoPzUtb7ecIK0BqyZARMglpJpGPKzIExDQakRElb13AEg9nraOIdYrV2YEz1gzJV04KdD2gxmrDm2/hN1sy2bHute/5/Q85pkdKTrNePo3gPepskLemTFuOs94stKl6XqByXYO08ibVLGzBOcInbLqstauAFrHDuqYISbdrss9zSV15Z0GVl/FOO7tXrHQ2U1m7K3DtLcGt7s7YT/1Wb1255ljZC6dqh4odBy1pSV9HdYehCGORObjwBboTflfK1T4Y7f76uDyG5+eXb5HIYJe+jd5Nh/+JTG0eHvCAvyYAk5JRckC9kTKaEB50gCk6Ds/AofBuOwg8Haxi0Pc/JXwg//wEcG8Gc</latexit>

1 : ahP i k 2 : a(X).Q ! ⌫k (k : Q{P /X} k [1 : ahP i k 2 : a(X).Q; k]

Process identifiers identifiers Memory / Snapshot

RhoPi rules

Controlling reversibility

• So far we have seen uncontrolled reversibility

• Each step can be undone

• Rules free to be triggered

• We want to enable reversibility as a reaction to a failure

• Reversible steps should be triggered by a specific command (e.g., a rollback)

Controlling Reversibility in rhoPi

• We want an operator which is able to bring the system before the happening
of an event

• E.g., we want to undo an event along with its computational history

• We use a specific rollback operator

Rollback operator
Communication rule as before

Marks the snapshot we want

to restore

Part of the system which is caused by k

Rollback operator: implementation

• The previous semantics uses a big atomic step to undo an entire
computational history

• Works as a High Level specification

• We have implemented a low-level semantics (based on message) which is
bisimilar to the HL one

Reversible Debuggers

Reverse debugging is the ability of a debugger to stop after a failure in a
program has been observed and go back into the history of the execution to
uncover the reason for the failure [Jakob Engblom, S4D 2012]

Implications:

• Ability to execute a program both in forward and backward way

• Reproduce or keep track of the past of an execution

Reversible debuggers

• GDB version 7.0 (September 2009) supports reversibility

• step -> reverse-step, next -> reverse-next

• UndoDB improves GDB history bookkeeping

• Mozilla RR, Microsoft Intellitrace and many more

Reversible Debuggers: state of the art

Non-deterministi replay

The execution is replayed non deterministically from the start (or from a
previous checkpoint) till the desired point.

Deterministic replay/reverse-execute debugging

A log of the scheduling among threads is kept and then actions are reversed
or replayed accordingly.

Causal Consistent Rev Deb

Actions are reversed respecting the causes

• Only actions that have caused no successive actions can be undone

• Concurrent actions can be reverted in any order

• Dependent action are reverted starting from the consequences

Benefit

The programmer can easily individuate and undo the actions that caused a
given misbehaviour.

CareDeb: Fase2014

Back to system modelling: biology

Sometimes causes are not respected: out-of-causal-order reversibility

A further step back

Two well-known models to describe concurrent systems:

• Event structures

• Event occurrences and constraints on events

• Denotational view of a system

• Petri nets

• Consumption / production of data from repositories

• Places, tokens, transitions

• Operational view of a system

Example

A distributed operational view of Reversible Prime
Event Structures

Hernán Melgratti
ICC - Universidad de Buenos Aires,

Conicet, Argentina

Claudio Antares Mezzina
Dipartimento di Scienze Pure e Applicate,

Università di Urbino, Italy

G. Michele Pinna
Dipartimento di Matematica e Informatica,

Università di Cagliari, Italy

Abstract—Reversible prime event structures extend the well-

known model of prime event structures to represent reversible
computational processes. Essentially, they give abstract descrip-

tions of processes capable of undoing computation steps. Since

their introduction, event structures have played a pivotal role

in connecting operational models (traditionally, Petri nets and

process calculi) with denotational ones (algebraic domains).

For this reason, there has been a lot of interest in linking

different classes of operational models with different kinds

of event structures. Hence, it is natural to ask which is the

operational counterpart of reversible prime event structures.

Such question has been previously addressed for a subclass of

reversible prime event structures in which the interplay between

causality and reversibility is restricted to the so-called cause-
respecting reversible structures. In this paper, we present an

operational characterisation of the full-fledged model and show

that reversible prime event structures correspond to a subclass of

contextual Petri nets, called reversible causal nets. The distinctive

feature of reversible causal nets is that causality is recovered

from inhibitor arcs instead of the usual overlap between post and

presets of transitions. In this way, we are able to operationally

explain also out-of-causal order reversibility.

I. INTRODUCTION

Event structures are a well-established model of concur-
rency. They were originally proposed by Nielsen, Plotkin and
Winskel [18] as an intermediate abstraction in between Scott
domains (i.e., a denotational model) and Petri nets (i.e., an
operational model). While Petri nets describe the behaviour of
a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
of five places s1, s2, s3, s4 and s5, three transitions a, b and
c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there

Partially supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement 778233, by the French ANR project
DCore ANR-18-CE25-0007 and by the Italian INdAM – GNCS 2020 project
Sistemi Reversibili Concorrenti: dai Modelli ai Linguaggi, and by the UBA-
CyT projects 20020170100544BA and 20020170100086BA.

s1

s3s2

s4 s5

a

b c

(a) N

b

a

c

(b) P

{a, b}

{a, c}

{a}

{c}

;

(c) Transition system

Fig. 1: A simple Petri net and its associated Event Structure

is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely978-1-6654-4895-6/21/$31.00 ©2021 IEEE

A distributed operational view of Reversible Prime
Event Structures

Hernán Melgratti
ICC - Universidad de Buenos Aires,

Conicet, Argentina

Claudio Antares Mezzina
Dipartimento di Scienze Pure e Applicate,

Università di Urbino, Italy

G. Michele Pinna
Dipartimento di Matematica e Informatica,

Università di Cagliari, Italy

Abstract—Reversible prime event structures extend the well-

known model of prime event structures to represent reversible
computational processes. Essentially, they give abstract descrip-

tions of processes capable of undoing computation steps. Since

their introduction, event structures have played a pivotal role

in connecting operational models (traditionally, Petri nets and

process calculi) with denotational ones (algebraic domains).

For this reason, there has been a lot of interest in linking

different classes of operational models with different kinds

of event structures. Hence, it is natural to ask which is the

operational counterpart of reversible prime event structures.

Such question has been previously addressed for a subclass of

reversible prime event structures in which the interplay between

causality and reversibility is restricted to the so-called cause-
respecting reversible structures. In this paper, we present an

operational characterisation of the full-fledged model and show

that reversible prime event structures correspond to a subclass of

contextual Petri nets, called reversible causal nets. The distinctive

feature of reversible causal nets is that causality is recovered

from inhibitor arcs instead of the usual overlap between post and

presets of transitions. In this way, we are able to operationally

explain also out-of-causal order reversibility.

I. INTRODUCTION

Event structures are a well-established model of concur-
rency. They were originally proposed by Nielsen, Plotkin and
Winskel [18] as an intermediate abstraction in between Scott
domains (i.e., a denotational model) and Petri nets (i.e., an
operational model). While Petri nets describe the behaviour of
a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
of five places s1, s2, s3, s4 and s5, three transitions a, b and
c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there

Partially supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement 778233, by the French ANR project
DCore ANR-18-CE25-0007 and by the Italian INdAM – GNCS 2020 project
Sistemi Reversibili Concorrenti: dai Modelli ai Linguaggi, and by the UBA-
CyT projects 20020170100544BA and 20020170100086BA.

s1

s3s2

s4 s5

a

b c

(a) N

b

a

c

(b) P

{a, b}

{a, c}

{a}

{c}

;

(c) Transition system

Fig. 1: A simple Petri net and its associated Event Structure

is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely978-1-6654-4895-6/21/$31.00 ©2021 IEEE

A distributed operational view of Reversible Prime
Event Structures

Hernán Melgratti
ICC - Universidad de Buenos Aires,

Conicet, Argentina

Claudio Antares Mezzina
Dipartimento di Scienze Pure e Applicate,

Università di Urbino, Italy

G. Michele Pinna
Dipartimento di Matematica e Informatica,

Università di Cagliari, Italy

Abstract—Reversible prime event structures extend the well-

known model of prime event structures to represent reversible
computational processes. Essentially, they give abstract descrip-

tions of processes capable of undoing computation steps. Since

their introduction, event structures have played a pivotal role

in connecting operational models (traditionally, Petri nets and

process calculi) with denotational ones (algebraic domains).

For this reason, there has been a lot of interest in linking

different classes of operational models with different kinds

of event structures. Hence, it is natural to ask which is the

operational counterpart of reversible prime event structures.

Such question has been previously addressed for a subclass of

reversible prime event structures in which the interplay between

causality and reversibility is restricted to the so-called cause-
respecting reversible structures. In this paper, we present an

operational characterisation of the full-fledged model and show

that reversible prime event structures correspond to a subclass of

contextual Petri nets, called reversible causal nets. The distinctive

feature of reversible causal nets is that causality is recovered

from inhibitor arcs instead of the usual overlap between post and

presets of transitions. In this way, we are able to operationally

explain also out-of-causal order reversibility.

I. INTRODUCTION

Event structures are a well-established model of concur-
rency. They were originally proposed by Nielsen, Plotkin and
Winskel [18] as an intermediate abstraction in between Scott
domains (i.e., a denotational model) and Petri nets (i.e., an
operational model). While Petri nets describe the behaviour of
a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
of five places s1, s2, s3, s4 and s5, three transitions a, b and
c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there

Partially supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement 778233, by the French ANR project
DCore ANR-18-CE25-0007 and by the Italian INdAM – GNCS 2020 project
Sistemi Reversibili Concorrenti: dai Modelli ai Linguaggi, and by the UBA-
CyT projects 20020170100544BA and 20020170100086BA.

s1

s3s2

s4 s5

a

b c

(a) N

b

a

c

(b) P

{a, b}

{a, c}

{a}

{c}

;

(c) Transition system

Fig. 1: A simple Petri net and its associated Event Structure

is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely978-1-6654-4895-6/21/$31.00 ©2021 IEEE

b and c are in conflict

b causally depends on a

Since b and c are in conflict there
is no configuration containing both

If b is present in a configuration then
also a is present

A further step back 2/2

• A seminal work of Winskel showed a relation between Occurrence Nets (ON)
and Prime Event Structure (PES)

• A lot of effort connecting guises of event structure with their nets counterpart

• Lately PESs have been extended to account for reversible computing

• accomodate the undoing of executed actions by removing events from
configurations

• accounts for different kinds of reversibility: backtracking, causal-respecting
(transactions / checkpoint rollback) and out-of-order (biochemical reactions)

Reversibility on Nets (so far)

• Melgratti, Mezzina & Ulidowski proposed a causal reversible semantics for 1-
safe petri nets by exploiting the natural unfolding in ON

• from ON reversible ON (RON) are derived

• Psara & Philippou proposed a new model of PT able to capture all the three
kinds of reversibility

• uses ad-hoc tokens to keep track of the path

• uses extra information (histories) to store the scheduling

Background: Simple idea

{a, b}

{a, c}

{a}

{c}

;

(a) Transition system

s1

s3s2

s4 s5

a a

b b c c

(b) N

Fig. 2: Causal-consistent reversible version of N

a class of systems that have lately received lot of attention
because of their applications in different fields [1], [16],
including programming abstractions for reliable systems [8],
[13], [10], program analysis and debugging [11], modelling
bio-chemical simulations [9] and quantum computing [19].
The distinctive feature of a reversible system is that the
execution of actions is liable to be undone. Reversible prime
event structures (rPES) [21] accommodate the undoing of
executed actions by allowing configurations to evolve by
removing events. For instance, if c were an undoable event
of the event structure P in Figure 1b, then the associated
transition system would include the transition {a, c} ! {a}.
This is a disruptive feature in event structures since it breaks
the underlying assumption by which configurations evolve by
adding events. In fact, if X and Y are two configurations of an
rPES then X ! Y does not imply X ✓ Y . As a consequence,
the existing approaches to recover Petri nets out of event
structures, even the most general ones [25], are not applicable.
As a matter of fact, we still lack a procedure to associate a Petri
net to a given rPES. Previous attempts [15] do this job just for
the subclass of cause-respecting rPESes, i.e., rPESes that allow
the reversing of an event once all events it caused have been
reversed. For instance, the transition system associated with a
cause-respecting reversible version of the event structure P in
Figure 1b is depicted in Figure 2a. Note that each transition
X ! Y is paired with a reversing one Y ! X; consequently,
the configuration {a, b} can be reversed only by undoing first
b and then a, i.e., {a, b} ! {a} ! ;. Contrastingly, the
transition {a, b} ! {b} is not included because it accounts
for the reversal of a before the reversal of the event b, which
causally depends on a.

As shown in [15], the transition system of a cause-
respecting rPES can be implemented (concurrently / distribut-
edly) as a Petri net where the undoing of events is achieved via
reversing transitions, i.e., each transition t (corresponding to
some event of the rPES) is accompanied by another transition t

that undoes the effects of the firing of t, i.e., t (i) consumes the
tokens produced by t; and (ii) produces the tokens consumed
by t. The transition system in Figure 2a is implemented by
the net N in Figure 2b, which is essentially the extension of
N (Figure 1a) with the reversing transitions a, b and c.

This approach however falls short when addressing the full

s1

s3s2

s4 s5

a a

b b c c

(a) c . a

s1

s3s2

s4 s5

a a

b b c c

(b) c � a

Fig. 3: Prevention and reverse causality operationally

expressivity of rPESes, which accommodates different flavours
of reversibility [1], [16]. The reversing mechanism of an rPES
is defined in terms of two relations (additional to the classical
causality and conflicts): prevention and reverse causality. For
instance, an rPES can stipulate that some event can be undone
only when some other events have not occurred (prevention).
For instance, if we stipulate that c prevents the undoing of
a (written c . a), then {a, c} ! {c} is banned from the
transition system even though a is undoable and c does not
causally depend on a. We can also specify that a particular
event can be undone only when some other events have already
occurred (reverse causality). For instance, if c is a reverse
cause of a (written c � a) then a cannot be reversed until
c occurs, i.e., the transition {a} ! ; is not admissible. We
note that these constraints can be translated into Petri nets in
the form of contextual arcs; in particular, inhibitor arcs [17],
[2] that prevent the firing of a transition if a token is present
in some place of the net. For instance, the prevention c . a

can be represented in a Petri net with an inhibitor arc in a,
as shown in Figure 3a; the added arc (depicted as () forbids
the firing of a when s5 contains a token. Note that s5 contains
a token only when c has been fired, hence a cannot be fired
if c has occurred. Along the same lines, the reverse causality
c � a can be represented as shown in Figure 3b: in this case,
the inhibitor arc is connected to s3, which will contain a token
if c has not been fired. Hence, a will be enabled only after c
is fired.

Unfortunately, the previous observation is insufficient for
capturing the full spectrum of rPESes due to the interplay
among causality, prevention and reverse causality. This be-
comes clear when addressing rPESes enjoying out-of-causal
order reversibility, which is typical in bio-chemical reac-
tions [22]. Consider again the reversible system in Figure 1b.
Assume now that a can be undone also in an out-of-causal
order fashion, i.e., a can be reversed independently of the
events that it may have caused (which in this case is b).
Hence, the transition system would be extended to include the
transition {a, b} ! {b}, in which a is reversed even though
b is not, and also {b} ! {b, a}, in which the minimal event
a is executed. When looking at the net N in Figure 2b, the
transition {a, b} ! {b} would require to be able to fire the
reversing transition a also when the place s2 does not contain

{a, b}

{a, c}

{a}

{c}

;

(a) Transition system

s1

s3s2

s4 s5

a a

b b c c

(b) N

Fig. 2: Causal-consistent reversible version of N

a class of systems that have lately received lot of attention
because of their applications in different fields [1], [16],
including programming abstractions for reliable systems [8],
[13], [10], program analysis and debugging [11], modelling
bio-chemical simulations [9] and quantum computing [19].
The distinctive feature of a reversible system is that the
execution of actions is liable to be undone. Reversible prime
event structures (rPES) [21] accommodate the undoing of
executed actions by allowing configurations to evolve by
removing events. For instance, if c were an undoable event
of the event structure P in Figure 1b, then the associated
transition system would include the transition {a, c} ! {a}.
This is a disruptive feature in event structures since it breaks
the underlying assumption by which configurations evolve by
adding events. In fact, if X and Y are two configurations of an
rPES then X ! Y does not imply X ✓ Y . As a consequence,
the existing approaches to recover Petri nets out of event
structures, even the most general ones [25], are not applicable.
As a matter of fact, we still lack a procedure to associate a Petri
net to a given rPES. Previous attempts [15] do this job just for
the subclass of cause-respecting rPESes, i.e., rPESes that allow
the reversing of an event once all events it caused have been
reversed. For instance, the transition system associated with a
cause-respecting reversible version of the event structure P in
Figure 1b is depicted in Figure 2a. Note that each transition
X ! Y is paired with a reversing one Y ! X; consequently,
the configuration {a, b} can be reversed only by undoing first
b and then a, i.e., {a, b} ! {a} ! ;. Contrastingly, the
transition {a, b} ! {b} is not included because it accounts
for the reversal of a before the reversal of the event b, which
causally depends on a.

As shown in [15], the transition system of a cause-
respecting rPES can be implemented (concurrently / distribut-
edly) as a Petri net where the undoing of events is achieved via
reversing transitions, i.e., each transition t (corresponding to
some event of the rPES) is accompanied by another transition t

that undoes the effects of the firing of t, i.e., t (i) consumes the
tokens produced by t; and (ii) produces the tokens consumed
by t. The transition system in Figure 2a is implemented by
the net N in Figure 2b, which is essentially the extension of
N (Figure 1a) with the reversing transitions a, b and c.

This approach however falls short when addressing the full

s1

s3s2

s4 s5

a a

b b c c

(a) c . a

s1

s3s2

s4 s5

a a

b b c c

(b) c � a

Fig. 3: Prevention and reverse causality operationally

expressivity of rPESes, which accommodates different flavours
of reversibility [1], [16]. The reversing mechanism of an rPES
is defined in terms of two relations (additional to the classical
causality and conflicts): prevention and reverse causality. For
instance, an rPES can stipulate that some event can be undone
only when some other events have not occurred (prevention).
For instance, if we stipulate that c prevents the undoing of
a (written c . a), then {a, c} ! {c} is banned from the
transition system even though a is undoable and c does not
causally depend on a. We can also specify that a particular
event can be undone only when some other events have already
occurred (reverse causality). For instance, if c is a reverse
cause of a (written c � a) then a cannot be reversed until
c occurs, i.e., the transition {a} ! ; is not admissible. We
note that these constraints can be translated into Petri nets in
the form of contextual arcs; in particular, inhibitor arcs [17],
[2] that prevent the firing of a transition if a token is present
in some place of the net. For instance, the prevention c . a

can be represented in a Petri net with an inhibitor arc in a,
as shown in Figure 3a; the added arc (depicted as () forbids
the firing of a when s5 contains a token. Note that s5 contains
a token only when c has been fired, hence a cannot be fired
if c has occurred. Along the same lines, the reverse causality
c � a can be represented as shown in Figure 3b: in this case,
the inhibitor arc is connected to s3, which will contain a token
if c has not been fired. Hence, a will be enabled only after c
is fired.

Unfortunately, the previous observation is insufficient for
capturing the full spectrum of rPESes due to the interplay
among causality, prevention and reverse causality. This be-
comes clear when addressing rPESes enjoying out-of-causal
order reversibility, which is typical in bio-chemical reac-
tions [22]. Consider again the reversible system in Figure 1b.
Assume now that a can be undone also in an out-of-causal
order fashion, i.e., a can be reversed independently of the
events that it may have caused (which in this case is b).
Hence, the transition system would be extended to include the
transition {a, b} ! {b}, in which a is reversed even though
b is not, and also {b} ! {b, a}, in which the minimal event
a is executed. When looking at the net N in Figure 2b, the
transition {a, b} ! {b} would require to be able to fire the
reversing transition a also when the place s2 does not contain

Reversing
transitions

A distributed operational view of Reversible Prime
Event Structures

Hernán Melgratti
ICC - Universidad de Buenos Aires,

Conicet, Argentina

Claudio Antares Mezzina
Dipartimento di Scienze Pure e Applicate,

Università di Urbino, Italy

G. Michele Pinna
Dipartimento di Matematica e Informatica,

Università di Cagliari, Italy

Abstract—Reversible prime event structures extend the well-

known model of prime event structures to represent reversible
computational processes. Essentially, they give abstract descrip-

tions of processes capable of undoing computation steps. Since

their introduction, event structures have played a pivotal role

in connecting operational models (traditionally, Petri nets and

process calculi) with denotational ones (algebraic domains).

For this reason, there has been a lot of interest in linking

different classes of operational models with different kinds

of event structures. Hence, it is natural to ask which is the

operational counterpart of reversible prime event structures.

Such question has been previously addressed for a subclass of

reversible prime event structures in which the interplay between

causality and reversibility is restricted to the so-called cause-
respecting reversible structures. In this paper, we present an

operational characterisation of the full-fledged model and show

that reversible prime event structures correspond to a subclass of

contextual Petri nets, called reversible causal nets. The distinctive

feature of reversible causal nets is that causality is recovered

from inhibitor arcs instead of the usual overlap between post and

presets of transitions. In this way, we are able to operationally

explain also out-of-causal order reversibility.

I. INTRODUCTION

Event structures are a well-established model of concur-
rency. They were originally proposed by Nielsen, Plotkin and
Winskel [18] as an intermediate abstraction in between Scott
domains (i.e., a denotational model) and Petri nets (i.e., an
operational model). While Petri nets describe the behaviour of
a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
of five places s1, s2, s3, s4 and s5, three transitions a, b and
c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there

Partially supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement 778233, by the French ANR project
DCore ANR-18-CE25-0007 and by the Italian INdAM – GNCS 2020 project
Sistemi Reversibili Concorrenti: dai Modelli ai Linguaggi, and by the UBA-
CyT projects 20020170100544BA and 20020170100086BA.

s1

s3s2

s4 s5

a

b c

(a) N

b

a

c

(b) P

{a, b}

{a, c}

{a}

{c}

;

(c) Transition system

Fig. 1: A simple Petri net and its associated Event Structure

is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely978-1-6654-4895-6/21/$31.00 ©2021 IEEE

• This simple idea works just for causal order reversibility

• rPES are more expressive as they use prevention and reverse causality
operators

So far

PES ON
Winskel

rPES rcPES

rON

Reversible Realm

• Melgratti et al. shown a correspondence between RON and causal RPES (e.g., RPES
with just causal reversibility)

• Failed in the general case

Prevention and Reverse Causality

{a, b}

{a, c}

{a}

{c}

;

(a) Transition system

s1

s3s2

s4 s5

a a

b b c c

(b) N

Fig. 2: Causal-consistent reversible version of N

a class of systems that have lately received lot of attention
because of their applications in different fields [1], [16],
including programming abstractions for reliable systems [8],
[13], [10], program analysis and debugging [11], modelling
bio-chemical simulations [9] and quantum computing [19].
The distinctive feature of a reversible system is that the
execution of actions is liable to be undone. Reversible prime
event structures (rPES) [21] accommodate the undoing of
executed actions by allowing configurations to evolve by
removing events. For instance, if c were an undoable event
of the event structure P in Figure 1b, then the associated
transition system would include the transition {a, c} ! {a}.
This is a disruptive feature in event structures since it breaks
the underlying assumption by which configurations evolve by
adding events. In fact, if X and Y are two configurations of an
rPES then X ! Y does not imply X ✓ Y . As a consequence,
the existing approaches to recover Petri nets out of event
structures, even the most general ones [25], are not applicable.
As a matter of fact, we still lack a procedure to associate a Petri
net to a given rPES. Previous attempts [15] do this job just for
the subclass of cause-respecting rPESes, i.e., rPESes that allow
the reversing of an event once all events it caused have been
reversed. For instance, the transition system associated with a
cause-respecting reversible version of the event structure P in
Figure 1b is depicted in Figure 2a. Note that each transition
X ! Y is paired with a reversing one Y ! X; consequently,
the configuration {a, b} can be reversed only by undoing first
b and then a, i.e., {a, b} ! {a} ! ;. Contrastingly, the
transition {a, b} ! {b} is not included because it accounts
for the reversal of a before the reversal of the event b, which
causally depends on a.

As shown in [15], the transition system of a cause-
respecting rPES can be implemented (concurrently / distribut-
edly) as a Petri net where the undoing of events is achieved via
reversing transitions, i.e., each transition t (corresponding to
some event of the rPES) is accompanied by another transition t

that undoes the effects of the firing of t, i.e., t (i) consumes the
tokens produced by t; and (ii) produces the tokens consumed
by t. The transition system in Figure 2a is implemented by
the net N in Figure 2b, which is essentially the extension of
N (Figure 1a) with the reversing transitions a, b and c.

This approach however falls short when addressing the full

s1

s3s2

s4 s5

a a

b b c c

(a) c . a

s1

s3s2

s4 s5

a a

b b c c

(b) c � a

Fig. 3: Prevention and reverse causality operationally

expressivity of rPESes, which accommodates different flavours
of reversibility [1], [16]. The reversing mechanism of an rPES
is defined in terms of two relations (additional to the classical
causality and conflicts): prevention and reverse causality. For
instance, an rPES can stipulate that some event can be undone
only when some other events have not occurred (prevention).
For instance, if we stipulate that c prevents the undoing of
a (written c . a), then {a, c} ! {c} is banned from the
transition system even though a is undoable and c does not
causally depend on a. We can also specify that a particular
event can be undone only when some other events have already
occurred (reverse causality). For instance, if c is a reverse
cause of a (written c � a) then a cannot be reversed until
c occurs, i.e., the transition {a} ! ; is not admissible. We
note that these constraints can be translated into Petri nets in
the form of contextual arcs; in particular, inhibitor arcs [17],
[2] that prevent the firing of a transition if a token is present
in some place of the net. For instance, the prevention c . a

can be represented in a Petri net with an inhibitor arc in a,
as shown in Figure 3a; the added arc (depicted as () forbids
the firing of a when s5 contains a token. Note that s5 contains
a token only when c has been fired, hence a cannot be fired
if c has occurred. Along the same lines, the reverse causality
c � a can be represented as shown in Figure 3b: in this case,
the inhibitor arc is connected to s3, which will contain a token
if c has not been fired. Hence, a will be enabled only after c
is fired.

Unfortunately, the previous observation is insufficient for
capturing the full spectrum of rPESes due to the interplay
among causality, prevention and reverse causality. This be-
comes clear when addressing rPESes enjoying out-of-causal
order reversibility, which is typical in bio-chemical reac-
tions [22]. Consider again the reversible system in Figure 1b.
Assume now that a can be undone also in an out-of-causal
order fashion, i.e., a can be reversed independently of the
events that it may have caused (which in this case is b).
Hence, the transition system would be extended to include the
transition {a, b} ! {b}, in which a is reversed even though
b is not, and also {b} ! {b, a}, in which the minimal event
a is executed. When looking at the net N in Figure 2b, the
transition {a, b} ! {b} would require to be able to fire the
reversing transition a also when the place s2 does not contain

c prevents
the undoing of a

{a, b}

{a, c}

{a}

{c}

;

(a) Transition system

s1

s3s2

s4 s5

a a

b b c c

(b) N

Fig. 2: Causal-consistent reversible version of N

a class of systems that have lately received lot of attention
because of their applications in different fields [1], [16],
including programming abstractions for reliable systems [8],
[13], [10], program analysis and debugging [11], modelling
bio-chemical simulations [9] and quantum computing [19].
The distinctive feature of a reversible system is that the
execution of actions is liable to be undone. Reversible prime
event structures (rPES) [21] accommodate the undoing of
executed actions by allowing configurations to evolve by
removing events. For instance, if c were an undoable event
of the event structure P in Figure 1b, then the associated
transition system would include the transition {a, c} ! {a}.
This is a disruptive feature in event structures since it breaks
the underlying assumption by which configurations evolve by
adding events. In fact, if X and Y are two configurations of an
rPES then X ! Y does not imply X ✓ Y . As a consequence,
the existing approaches to recover Petri nets out of event
structures, even the most general ones [25], are not applicable.
As a matter of fact, we still lack a procedure to associate a Petri
net to a given rPES. Previous attempts [15] do this job just for
the subclass of cause-respecting rPESes, i.e., rPESes that allow
the reversing of an event once all events it caused have been
reversed. For instance, the transition system associated with a
cause-respecting reversible version of the event structure P in
Figure 1b is depicted in Figure 2a. Note that each transition
X ! Y is paired with a reversing one Y ! X; consequently,
the configuration {a, b} can be reversed only by undoing first
b and then a, i.e., {a, b} ! {a} ! ;. Contrastingly, the
transition {a, b} ! {b} is not included because it accounts
for the reversal of a before the reversal of the event b, which
causally depends on a.

As shown in [15], the transition system of a cause-
respecting rPES can be implemented (concurrently / distribut-
edly) as a Petri net where the undoing of events is achieved via
reversing transitions, i.e., each transition t (corresponding to
some event of the rPES) is accompanied by another transition t

that undoes the effects of the firing of t, i.e., t (i) consumes the
tokens produced by t; and (ii) produces the tokens consumed
by t. The transition system in Figure 2a is implemented by
the net N in Figure 2b, which is essentially the extension of
N (Figure 1a) with the reversing transitions a, b and c.

This approach however falls short when addressing the full

s1

s3s2

s4 s5

a a

b b c c

(a) c . a

s1

s3s2

s4 s5

a a

b b c c

(b) c � a

Fig. 3: Prevention and reverse causality operationally

expressivity of rPESes, which accommodates different flavours
of reversibility [1], [16]. The reversing mechanism of an rPES
is defined in terms of two relations (additional to the classical
causality and conflicts): prevention and reverse causality. For
instance, an rPES can stipulate that some event can be undone
only when some other events have not occurred (prevention).
For instance, if we stipulate that c prevents the undoing of
a (written c . a), then {a, c} ! {c} is banned from the
transition system even though a is undoable and c does not
causally depend on a. We can also specify that a particular
event can be undone only when some other events have already
occurred (reverse causality). For instance, if c is a reverse
cause of a (written c � a) then a cannot be reversed until
c occurs, i.e., the transition {a} ! ; is not admissible. We
note that these constraints can be translated into Petri nets in
the form of contextual arcs; in particular, inhibitor arcs [17],
[2] that prevent the firing of a transition if a token is present
in some place of the net. For instance, the prevention c . a

can be represented in a Petri net with an inhibitor arc in a,
as shown in Figure 3a; the added arc (depicted as () forbids
the firing of a when s5 contains a token. Note that s5 contains
a token only when c has been fired, hence a cannot be fired
if c has occurred. Along the same lines, the reverse causality
c � a can be represented as shown in Figure 3b: in this case,
the inhibitor arc is connected to s3, which will contain a token
if c has not been fired. Hence, a will be enabled only after c
is fired.

Unfortunately, the previous observation is insufficient for
capturing the full spectrum of rPESes due to the interplay
among causality, prevention and reverse causality. This be-
comes clear when addressing rPESes enjoying out-of-causal
order reversibility, which is typical in bio-chemical reac-
tions [22]. Consider again the reversible system in Figure 1b.
Assume now that a can be undone also in an out-of-causal
order fashion, i.e., a can be reversed independently of the
events that it may have caused (which in this case is b).
Hence, the transition system would be extended to include the
transition {a, b} ! {b}, in which a is reversed even though
b is not, and also {b} ! {b, a}, in which the minimal event
a is executed. When looking at the net N in Figure 2b, the
transition {a, b} ! {b} would require to be able to fire the
reversing transition a also when the place s2 does not contain

a can be undone if c happens

Two questions

• Which kind of net can ben associated with an rPES?

• Can we do it by relying on standard notion of Petri nets?

Answer
Inhibitor arcs can be used to model causality, but also more complex relations
such as reverse causation and prevention

s1 s2 s3

s4 s5 s6

a b c

a < b b#c

(a) N1

s1 s2

s3 s4

a ba

b � a

(b) N2

s1 s2

s3 s4

a ba

b . a

(c) N3

Fig. 4: Examples on how inhibitor acts ((arcs) can be used to model causality <, reverse causality � and prevention .

relation among events

any token (because the firing of b has consumed that token).
Hence, a more involved definition of a would be needed for
handling the undoing of a. Moreover, after reversing a we
should be able to fire a again, since the transition system
associated to the rPES allows both {a} ! ; ! {a} and
{a, b} ! {b} ! {a, b}. It should be noted that the execution
of a has different effects in the two computations above:
while the configuration {a} allows for the firing of b, the
configuration {a, b} does not (because, b has been already
fired). The way in which the causality relation between a

and b is described in N (Figure 2b) would be insufficient
to distinguish the cases above.

In this paper, we take a different approach by observing that
inhibitor arcs can be used to model also causality. This simple
idea is rendered by the net in Figure 4a, which is an operational
counterpart of the event structure P in Figure 1b. The inhibitor
arc in Figure 4a is used to model causality among the events a
and b. Indeed, b can happen only after a has happened, hence
a < b. As previously discussed, we represent prevention and
reverse causality with inhibitor arcs, as illustrated in Figures 4b
and 4c. On the one hand, the inhibitor arc in Figure 4b models
the reverse causality b � a, i.e., a can be reversed only when
b has been executed. On the other hand, the inhibitor arc in
Figure 4c models prevention b . a, i.e., the undoing of a

cannot be executed if the event b has happened. A liberal
usage of inhibitor arcs would not do the work. Therefore, we
impose some (structural) constraints on nets to achieve our
purpose, namely to identify a subclass of nets with inhibitor
arcs that corresponds to reversible prime structures. The main
contribution of our work is the definition of an operational
interpretation of rPESes in terms of (a proper subclass of) Petri
nets with inhibitor arcs, called reversible causal nets.

This paper is structured as follows: we start by recalling
the basics of prime event structures and reversible prime
event structures (Section II), and those of nets with inhibitor
arcs (Section III). Then, we introduce causal nets, which are
subclass of nets with inhibitor arcs, and show that they are
a suitable counterpart of prime event structures (Section IV).
In Section V, we introduce a reversible notion of causal nets
and prove that they fully correspond to reversible prime event
structures, thus giving a proper operational model of them. In
Section VI we compare and discuss the relationship between
a more classical operational model for prime event structures,

namely occurrence nets, with our proposal, and illustrates
the reasons that undermine the possibility of generalising
occurrence nets to cope with richer models of reversibility
as, e.g., out-of-causal order reversibility.

II. EVENT STRUCTURES

In this section we summarise the basics of prime event
structures and reversible prime event structures by following
the presentation in [21]. In what follows, we say that a binary
relation < ✓ A⇥A is an irreflexive partial order whenever it
is irreflexive and transitive, and use to denote its reflexive
closure. We write bac< for the set {a0 2 A | a

0
 a} and shall

omit the subscript < when it is clear from the context.

A. pre-PES and PES

Pre-prime event structures are a relaxed form of prime event
structures in which conflict heredity may not hold. They play
a key role in the definition of reversible prime event structures.

Definition 1: A pre-prime event structure (pPES) is a triple
P = (E,<,#), where

• E is a countable set of events;
• # ✓ E ⇥ E is an irreflexive and symmetric relation,

called the conflict relation; and
• < ✓ E ⇥ E is an irreflexive partial order, called the

causality relation, defined such that 8e 2 E. bec< is
finite and 8e

0
, e

00
2 bec<. ¬(e0 # e

00).
We say a pPES P is a prime event structure (PES) when

is hereditary with respect to <, i.e., if e # e
0
< e

00 then
e # e

00 for all e, e0, e00 2 E.
We write CF(X) when X ✓ E is a conflict-free set of

events, i.e., for all e, e0 2 X it holds that ¬(e # e
0). Note that

for all Y ✓ X ✓ E, CF(X) implies CF(Y).
Example 1: Let P = (E,<,#) be defined such that

E = {a, b, c, d} # = {(a, b), (b, a)} < = {(b, c)}

It is immediate to check that # is irreflexive and symmetric,
and < is an irreflexive partial order. Moreover, if e 2 E and
e 6= c then bec = {e}, which is finite and conflict free.
Additionally, bcc = {b, c}, which is also finite and conflict
free. Hence, P is a pPES. However, P is not a PES because
conflicts are not inherited along < because a#b < c but
a#c does not hold. P would be a PES if # were defined
as {(a, b), (b, a), (a, c), (c, a)}.

s1 s2 s3

s4 s5 s6

a b c

a < b b#c

(a) N1

s1 s2

s3 s4

a ba

b � a

(b) N2

s1 s2

s3 s4

a ba

b . a

(c) N3

Fig. 4: Examples on how inhibitor acts ((arcs) can be used to model causality <, reverse causality � and prevention .

relation among events

any token (because the firing of b has consumed that token).
Hence, a more involved definition of a would be needed for
handling the undoing of a. Moreover, after reversing a we
should be able to fire a again, since the transition system
associated to the rPES allows both {a} ! ; ! {a} and
{a, b} ! {b} ! {a, b}. It should be noted that the execution
of a has different effects in the two computations above:
while the configuration {a} allows for the firing of b, the
configuration {a, b} does not (because, b has been already
fired). The way in which the causality relation between a

and b is described in N (Figure 2b) would be insufficient
to distinguish the cases above.

In this paper, we take a different approach by observing that
inhibitor arcs can be used to model also causality. This simple
idea is rendered by the net in Figure 4a, which is an operational
counterpart of the event structure P in Figure 1b. The inhibitor
arc in Figure 4a is used to model causality among the events a
and b. Indeed, b can happen only after a has happened, hence
a < b. As previously discussed, we represent prevention and
reverse causality with inhibitor arcs, as illustrated in Figures 4b
and 4c. On the one hand, the inhibitor arc in Figure 4b models
the reverse causality b � a, i.e., a can be reversed only when
b has been executed. On the other hand, the inhibitor arc in
Figure 4c models prevention b . a, i.e., the undoing of a

cannot be executed if the event b has happened. A liberal
usage of inhibitor arcs would not do the work. Therefore, we
impose some (structural) constraints on nets to achieve our
purpose, namely to identify a subclass of nets with inhibitor
arcs that corresponds to reversible prime structures. The main
contribution of our work is the definition of an operational
interpretation of rPESes in terms of (a proper subclass of) Petri
nets with inhibitor arcs, called reversible causal nets.

This paper is structured as follows: we start by recalling
the basics of prime event structures and reversible prime
event structures (Section II), and those of nets with inhibitor
arcs (Section III). Then, we introduce causal nets, which are
subclass of nets with inhibitor arcs, and show that they are
a suitable counterpart of prime event structures (Section IV).
In Section V, we introduce a reversible notion of causal nets
and prove that they fully correspond to reversible prime event
structures, thus giving a proper operational model of them. In
Section VI we compare and discuss the relationship between
a more classical operational model for prime event structures,

namely occurrence nets, with our proposal, and illustrates
the reasons that undermine the possibility of generalising
occurrence nets to cope with richer models of reversibility
as, e.g., out-of-causal order reversibility.

II. EVENT STRUCTURES

In this section we summarise the basics of prime event
structures and reversible prime event structures by following
the presentation in [21]. In what follows, we say that a binary
relation < ✓ A⇥A is an irreflexive partial order whenever it
is irreflexive and transitive, and use to denote its reflexive
closure. We write bac< for the set {a0 2 A | a

0
 a} and shall

omit the subscript < when it is clear from the context.

A. pre-PES and PES

Pre-prime event structures are a relaxed form of prime event
structures in which conflict heredity may not hold. They play
a key role in the definition of reversible prime event structures.

Definition 1: A pre-prime event structure (pPES) is a triple
P = (E,<,#), where

• E is a countable set of events;
• # ✓ E ⇥ E is an irreflexive and symmetric relation,

called the conflict relation; and
• < ✓ E ⇥ E is an irreflexive partial order, called the

causality relation, defined such that 8e 2 E. bec< is
finite and 8e

0
, e

00
2 bec<. ¬(e0 # e

00).
We say a pPES P is a prime event structure (PES) when

is hereditary with respect to <, i.e., if e # e
0
< e

00 then
e # e

00 for all e, e0, e00 2 E.
We write CF(X) when X ✓ E is a conflict-free set of

events, i.e., for all e, e0 2 X it holds that ¬(e # e
0). Note that

for all Y ✓ X ✓ E, CF(X) implies CF(Y).
Example 1: Let P = (E,<,#) be defined such that

E = {a, b, c, d} # = {(a, b), (b, a)} < = {(b, c)}

It is immediate to check that # is irreflexive and symmetric,
and < is an irreflexive partial order. Moreover, if e 2 E and
e 6= c then bec = {e}, which is finite and conflict free.
Additionally, bcc = {b, c}, which is also finite and conflict
free. Hence, P is a pPES. However, P is not a PES because
conflicts are not inherited along < because a#b < c but
a#c does not hold. P would be a PES if # were defined
as {(a, b), (b, a), (a, c), (c, a)}.

s1 s2 s3

s4 s5 s6

a b c

a < b b#c

(a) N1

s1 s2

s3 s4

a ba

b � a

(b) N2

s1 s2

s3 s4

a ba

b . a

(c) N3

Fig. 4: Examples on how inhibitor acts ((arcs) can be used to model causality <, reverse causality � and prevention .

relation among events

any token (because the firing of b has consumed that token).
Hence, a more involved definition of a would be needed for
handling the undoing of a. Moreover, after reversing a we
should be able to fire a again, since the transition system
associated to the rPES allows both {a} ! ; ! {a} and
{a, b} ! {b} ! {a, b}. It should be noted that the execution
of a has different effects in the two computations above:
while the configuration {a} allows for the firing of b, the
configuration {a, b} does not (because, b has been already
fired). The way in which the causality relation between a

and b is described in N (Figure 2b) would be insufficient
to distinguish the cases above.

In this paper, we take a different approach by observing that
inhibitor arcs can be used to model also causality. This simple
idea is rendered by the net in Figure 4a, which is an operational
counterpart of the event structure P in Figure 1b. The inhibitor
arc in Figure 4a is used to model causality among the events a
and b. Indeed, b can happen only after a has happened, hence
a < b. As previously discussed, we represent prevention and
reverse causality with inhibitor arcs, as illustrated in Figures 4b
and 4c. On the one hand, the inhibitor arc in Figure 4b models
the reverse causality b � a, i.e., a can be reversed only when
b has been executed. On the other hand, the inhibitor arc in
Figure 4c models prevention b . a, i.e., the undoing of a

cannot be executed if the event b has happened. A liberal
usage of inhibitor arcs would not do the work. Therefore, we
impose some (structural) constraints on nets to achieve our
purpose, namely to identify a subclass of nets with inhibitor
arcs that corresponds to reversible prime structures. The main
contribution of our work is the definition of an operational
interpretation of rPESes in terms of (a proper subclass of) Petri
nets with inhibitor arcs, called reversible causal nets.

This paper is structured as follows: we start by recalling
the basics of prime event structures and reversible prime
event structures (Section II), and those of nets with inhibitor
arcs (Section III). Then, we introduce causal nets, which are
subclass of nets with inhibitor arcs, and show that they are
a suitable counterpart of prime event structures (Section IV).
In Section V, we introduce a reversible notion of causal nets
and prove that they fully correspond to reversible prime event
structures, thus giving a proper operational model of them. In
Section VI we compare and discuss the relationship between
a more classical operational model for prime event structures,

namely occurrence nets, with our proposal, and illustrates
the reasons that undermine the possibility of generalising
occurrence nets to cope with richer models of reversibility
as, e.g., out-of-causal order reversibility.

II. EVENT STRUCTURES

In this section we summarise the basics of prime event
structures and reversible prime event structures by following
the presentation in [21]. In what follows, we say that a binary
relation < ✓ A⇥A is an irreflexive partial order whenever it
is irreflexive and transitive, and use to denote its reflexive
closure. We write bac< for the set {a0 2 A | a

0
 a} and shall

omit the subscript < when it is clear from the context.

A. pre-PES and PES

Pre-prime event structures are a relaxed form of prime event
structures in which conflict heredity may not hold. They play
a key role in the definition of reversible prime event structures.

Definition 1: A pre-prime event structure (pPES) is a triple
P = (E,<,#), where

• E is a countable set of events;
• # ✓ E ⇥ E is an irreflexive and symmetric relation,

called the conflict relation; and
• < ✓ E ⇥ E is an irreflexive partial order, called the

causality relation, defined such that 8e 2 E. bec< is
finite and 8e

0
, e

00
2 bec<. ¬(e0 # e

00).
We say a pPES P is a prime event structure (PES) when

is hereditary with respect to <, i.e., if e # e
0
< e

00 then
e # e

00 for all e, e0, e00 2 E.
We write CF(X) when X ✓ E is a conflict-free set of

events, i.e., for all e, e0 2 X it holds that ¬(e # e
0). Note that

for all Y ✓ X ✓ E, CF(X) implies CF(Y).
Example 1: Let P = (E,<,#) be defined such that

E = {a, b, c, d} # = {(a, b), (b, a)} < = {(b, c)}

It is immediate to check that # is irreflexive and symmetric,
and < is an irreflexive partial order. Moreover, if e 2 E and
e 6= c then bec = {e}, which is finite and conflict free.
Additionally, bcc = {b, c}, which is also finite and conflict
free. Hence, P is a pPES. However, P is not a PES because
conflicts are not inherited along < because a#b < c but
a#c does not hold. P would be a PES if # were defined
as {(a, b), (b, a), (a, c), (c, a)}.

Roadmap

• We first introduce causal nets (CN), where causality is modelled by inhibitor
arcs instead of the classic flow relation

• We show that CN are the right model for PES

• We show that rCN are the right model for rPES

• We show that ON can be modelled into CN

Causal Nets and PES

s1 s2 s3 s4 s5

s6 s7 s8 s9

a b c d

(a) C1

s0

s1

s2

s3

s4

s5

s6 s7 s8 s9

a b c d

(b) C2

Fig. 5: Two pre-causal nets

relation is the irreflexive partial order l = {(b, c)}, which
satisfies Condition 5. If t 2 T and t 6= c then btcl = {t}.
For t = c we have bccl = {b, c} and •

b and •
c are disjoint,

which satisfies Condition 6. Condition 7 is immediate.
We remark that C1 is not a CN because conflicts are not

inherited along l. In fact, a\b and bl c but a\c. The IPT C2

in Figure 5b, which makes explicit the conflict between a and
c, is a CN.

Definition 11: Let C = hS, T, F, I,mi be a pCN. A set of
transitions X ✓ T is a configuration of C if:

• 8t, t
0
2 X.t\t

0
) t = t

0 (conflict freeness), and
• 8t 2 X . btcl ✓ X (left closedness with respect to l).

The set of configurations of a pCN C is denoted by
ConfpCN(C).

Should C be a CN, we write ConfCN(C) in lieu of
ConfpCN(C).

Example 13: Consider the pCN C1 and the CN C2 in
Figure 5. Their sets of configurations coincide and are shown
below

ConfpCN(C1) = ConfCN(C2) = {{a}, {b},

{d}, {a, d}, {b, c}, {b, d}, {b, c, d}}

There is a close correspondence between the configurations
of a pCN and its reachable markings: any reachable marking
determines a configuration of the net and vice versa. This is
formally stated by the proposition below.

Proposition 2: Let C = hS, T, F, I,mi be a pCN. Then,
1) if m0

2 MC then •
m

0
2 ConfpCN(C); and

2) if X 2 ConfpCN(C) then m�
•
X +X

•
2 MC .

Example 14: Consider the CN C2 in Figure 5b. The marking
m

0 = {s1, s7, s8, s9} is reachable because of the following
firing sequence:

m [{b, d}i {s0, s1, s4, s7, s9} [{c}im
0

Then, it holds that •
m

0 = {b, c, d} is a configuration of C2

(where ConfCN(C2) is defined in Example 13). Conversely,

({a, c},#)

(⇤, a)

({a, b},#)

(⇤, b)

(⇤, c) (⇤, d)

(a, ⇤) (b, ⇤) (c, ⇤) (d, ⇤)

a b c d

Fig. 6: A(P)

take X = {b, c, d} 2 ConfCN(C2), and note that •
X =

{s0, s2, s3, s4, s5} and X
• = {s7, s8, s9}. Then, we have that

m�
•
X+X

• = {s1, s4, s7, s9} = m
0 is a reachable marking

of C2.
The notion of equivalence for causal nets specialises to con-

figurations, i.e., C1 ⌘ C2 iff ConfpCN(C1) = ConfpCN(C2).

A. From pPESes to pCNs
We now show that every pPES can be associated with a pCN

that has the same configurations. We start by introducing the
mapping A from pPESes to pCN.

Definition 12: Let P = (E,<,#) be a pPES. The associated
pCN is A(P) = hS,E, F, I,mi where

• S = {(⇤, e) | e 2 E} [{(e, ⇤) | e 2 E}

[{({e, e0},#) | e # e
0
},

• F = {(s, e) | s = (⇤, e) _ (s = (W,#) ^ e 2 W)}

[{(e, s) | s = (e, ⇤)},
• I = {(s, e) | s = (⇤, e0) ^ e

0
< e}, and

• m = {(⇤, e) | e 2 E} [{({e, e0},#) | e # e
0
}.

The construction associates the pPES P with a pCN that has
as many transitions as events are in P. Places are identified
with pairs, which may have one of the following forms: (i)
(⇤, e) for the precondition of e, (e, ⇤) for the postcondition of
e, and ({e, e0},#) for the conflict e # e

0. The flow relation
is defined so that each transition e consumes tokens from
(⇤, e) and every (W,#) where e 2 W ; and only produces
a token in (e, ⇤). Different from the classical construction of
occurrence nets out of PESes [27], places do not convey causal
dependencies, which are modelled here via inhibitor arcs: if e
causally depends on e

0 (i.e., e0 < e), then there is an inhibitor
arc between the transition e and the place (⇤, e0), i.e., a place
of the preset of e

0. The initial marking m assigns a token to
any place appearing in the preset of a transition.

Example 15: Let P = (E,<,#) be a pPES where

E = {a, b, c, d} < = {(b, c)}
= {(a, b), (b, a), (a, c), (c, a)}

The associated pCN is shown in Figure 6. Note that the
transition c is not enabled because of the inhibitor arc from
(⇤, b); all remaining transitions are enabled; also a and b are
in conflict because they both consume from ({a, b},#).

The adequacy of A is formally stated by showing the
equivalence of the respective sets of configurations.

s1 s2 s3 s4 s5

s6 s7 s8 s9

a b c d

(a) C1

s0

s1

s2

s3

s4

s5

s6 s7 s8 s9

a b c d

(b) C2

Fig. 5: Two pre-causal nets

relation is the irreflexive partial order l = {(b, c)}, which
satisfies Condition 5. If t 2 T and t 6= c then btcl = {t}.
For t = c we have bccl = {b, c} and •

b and •
c are disjoint,

which satisfies Condition 6. Condition 7 is immediate.
We remark that C1 is not a CN because conflicts are not

inherited along l. In fact, a\b and bl c but a\c. The IPT C2

in Figure 5b, which makes explicit the conflict between a and
c, is a CN.

Definition 11: Let C = hS, T, F, I,mi be a pCN. A set of
transitions X ✓ T is a configuration of C if:

• 8t, t
0
2 X.t\t

0
) t = t

0 (conflict freeness), and
• 8t 2 X . btcl ✓ X (left closedness with respect to l).

The set of configurations of a pCN C is denoted by
ConfpCN(C).

Should C be a CN, we write ConfCN(C) in lieu of
ConfpCN(C).

Example 13: Consider the pCN C1 and the CN C2 in
Figure 5. Their sets of configurations coincide and are shown
below

ConfpCN(C1) = ConfCN(C2) = {{a}, {b},

{d}, {a, d}, {b, c}, {b, d}, {b, c, d}}

There is a close correspondence between the configurations
of a pCN and its reachable markings: any reachable marking
determines a configuration of the net and vice versa. This is
formally stated by the proposition below.

Proposition 2: Let C = hS, T, F, I,mi be a pCN. Then,
1) if m0

2 MC then •
m

0
2 ConfpCN(C); and

2) if X 2 ConfpCN(C) then m�
•
X +X

•
2 MC .

Example 14: Consider the CN C2 in Figure 5b. The marking
m

0 = {s1, s7, s8, s9} is reachable because of the following
firing sequence:

m [{b, d}i {s0, s1, s4, s7, s9} [{c}im
0

Then, it holds that •
m

0 = {b, c, d} is a configuration of C2

(where ConfCN(C2) is defined in Example 13). Conversely,

({a, c},#)

(⇤, a)

({a, b},#)

(⇤, b)

(⇤, c) (⇤, d)

(a, ⇤) (b, ⇤) (c, ⇤) (d, ⇤)

a b c d

Fig. 6: A(P)

take X = {b, c, d} 2 ConfCN(C2), and note that •
X =

{s0, s2, s3, s4, s5} and X
• = {s7, s8, s9}. Then, we have that

m�
•
X+X

• = {s1, s4, s7, s9} = m
0 is a reachable marking

of C2.
The notion of equivalence for causal nets specialises to con-

figurations, i.e., C1 ⌘ C2 iff ConfpCN(C1) = ConfpCN(C2).

A. From pPESes to pCNs
We now show that every pPES can be associated with a pCN

that has the same configurations. We start by introducing the
mapping A from pPESes to pCN.

Definition 12: Let P = (E,<,#) be a pPES. The associated
pCN is A(P) = hS,E, F, I,mi where

• S = {(⇤, e) | e 2 E} [{(e, ⇤) | e 2 E}

[{({e, e0},#) | e # e
0
},

• F = {(s, e) | s = (⇤, e) _ (s = (W,#) ^ e 2 W)}

[{(e, s) | s = (e, ⇤)},
• I = {(s, e) | s = (⇤, e0) ^ e

0
< e}, and

• m = {(⇤, e) | e 2 E} [{({e, e0},#) | e # e
0
}.

The construction associates the pPES P with a pCN that has
as many transitions as events are in P. Places are identified
with pairs, which may have one of the following forms: (i)
(⇤, e) for the precondition of e, (e, ⇤) for the postcondition of
e, and ({e, e0},#) for the conflict e # e

0. The flow relation
is defined so that each transition e consumes tokens from
(⇤, e) and every (W,#) where e 2 W ; and only produces
a token in (e, ⇤). Different from the classical construction of
occurrence nets out of PESes [27], places do not convey causal
dependencies, which are modelled here via inhibitor arcs: if e
causally depends on e

0 (i.e., e0 < e), then there is an inhibitor
arc between the transition e and the place (⇤, e0), i.e., a place
of the preset of e

0. The initial marking m assigns a token to
any place appearing in the preset of a transition.

Example 15: Let P = (E,<,#) be a pPES where

E = {a, b, c, d} < = {(b, c)}
= {(a, b), (b, a), (a, c), (c, a)}

The associated pCN is shown in Figure 6. Note that the
transition c is not enabled because of the inhibitor arc from
(⇤, b); all remaining transitions are enabled; also a and b are
in conflict because they both consume from ({a, b},#).

The adequacy of A is formally stated by showing the
equivalence of the respective sets of configurations.

s1 s2 s3 s4 s5

s6 s7 s8 s9

a b c d

(a) C1

s0

s1

s2

s3

s4

s5

s6 s7 s8 s9

a b c d

(b) C2

Fig. 5: Two pre-causal nets

relation is the irreflexive partial order l = {(b, c)}, which
satisfies Condition 5. If t 2 T and t 6= c then btcl = {t}.
For t = c we have bccl = {b, c} and •

b and •
c are disjoint,

which satisfies Condition 6. Condition 7 is immediate.
We remark that C1 is not a CN because conflicts are not

inherited along l. In fact, a\b and bl c but a\c. The IPT C2

in Figure 5b, which makes explicit the conflict between a and
c, is a CN.

Definition 11: Let C = hS, T, F, I,mi be a pCN. A set of
transitions X ✓ T is a configuration of C if:

• 8t, t
0
2 X.t\t

0
) t = t

0 (conflict freeness), and
• 8t 2 X . btcl ✓ X (left closedness with respect to l).

The set of configurations of a pCN C is denoted by
ConfpCN(C).

Should C be a CN, we write ConfCN(C) in lieu of
ConfpCN(C).

Example 13: Consider the pCN C1 and the CN C2 in
Figure 5. Their sets of configurations coincide and are shown
below

ConfpCN(C1) = ConfCN(C2) = {{a}, {b},

{d}, {a, d}, {b, c}, {b, d}, {b, c, d}}

There is a close correspondence between the configurations
of a pCN and its reachable markings: any reachable marking
determines a configuration of the net and vice versa. This is
formally stated by the proposition below.

Proposition 2: Let C = hS, T, F, I,mi be a pCN. Then,
1) if m0

2 MC then •
m

0
2 ConfpCN(C); and

2) if X 2 ConfpCN(C) then m�
•
X +X

•
2 MC .

Example 14: Consider the CN C2 in Figure 5b. The marking
m

0 = {s1, s7, s8, s9} is reachable because of the following
firing sequence:

m [{b, d}i {s0, s1, s4, s7, s9} [{c}im
0

Then, it holds that •
m

0 = {b, c, d} is a configuration of C2

(where ConfCN(C2) is defined in Example 13). Conversely,

({a, c},#)

(⇤, a)

({a, b},#)

(⇤, b)

(⇤, c) (⇤, d)

(a, ⇤) (b, ⇤) (c, ⇤) (d, ⇤)

a b c d

Fig. 6: A(P)

take X = {b, c, d} 2 ConfCN(C2), and note that •
X =

{s0, s2, s3, s4, s5} and X
• = {s7, s8, s9}. Then, we have that

m�
•
X+X

• = {s1, s4, s7, s9} = m
0 is a reachable marking

of C2.
The notion of equivalence for causal nets specialises to con-

figurations, i.e., C1 ⌘ C2 iff ConfpCN(C1) = ConfpCN(C2).

A. From pPESes to pCNs
We now show that every pPES can be associated with a pCN

that has the same configurations. We start by introducing the
mapping A from pPESes to pCN.

Definition 12: Let P = (E,<,#) be a pPES. The associated
pCN is A(P) = hS,E, F, I,mi where

• S = {(⇤, e) | e 2 E} [{(e, ⇤) | e 2 E}

[{({e, e0},#) | e # e
0
},

• F = {(s, e) | s = (⇤, e) _ (s = (W,#) ^ e 2 W)}

[{(e, s) | s = (e, ⇤)},
• I = {(s, e) | s = (⇤, e0) ^ e

0
< e}, and

• m = {(⇤, e) | e 2 E} [{({e, e0},#) | e # e
0
}.

The construction associates the pPES P with a pCN that has
as many transitions as events are in P. Places are identified
with pairs, which may have one of the following forms: (i)
(⇤, e) for the precondition of e, (e, ⇤) for the postcondition of
e, and ({e, e0},#) for the conflict e # e

0. The flow relation
is defined so that each transition e consumes tokens from
(⇤, e) and every (W,#) where e 2 W ; and only produces
a token in (e, ⇤). Different from the classical construction of
occurrence nets out of PESes [27], places do not convey causal
dependencies, which are modelled here via inhibitor arcs: if e
causally depends on e

0 (i.e., e0 < e), then there is an inhibitor
arc between the transition e and the place (⇤, e0), i.e., a place
of the preset of e

0. The initial marking m assigns a token to
any place appearing in the preset of a transition.

Example 15: Let P = (E,<,#) be a pPES where

E = {a, b, c, d} < = {(b, c)}
= {(a, b), (b, a), (a, c), (c, a)}

The associated pCN is shown in Figure 6. Note that the
transition c is not enabled because of the inhibitor arc from
(⇤, b); all remaining transitions are enabled; also a and b are
in conflict because they both consume from ({a, b},#).

The adequacy of A is formally stated by showing the
equivalence of the respective sets of configurations.

s1 s2 s3 s4 s5

s6 s7 s8 s9

a b c d

(a) C1

s0

s1

s2

s3

s4

s5

s6 s7 s8 s9

a b c d

(b) C2

Fig. 5: Two pre-causal nets

relation is the irreflexive partial order l = {(b, c)}, which
satisfies Condition 5. If t 2 T and t 6= c then btcl = {t}.
For t = c we have bccl = {b, c} and •

b and •
c are disjoint,

which satisfies Condition 6. Condition 7 is immediate.
We remark that C1 is not a CN because conflicts are not

inherited along l. In fact, a\b and bl c but a\c. The IPT C2

in Figure 5b, which makes explicit the conflict between a and
c, is a CN.

Definition 11: Let C = hS, T, F, I,mi be a pCN. A set of
transitions X ✓ T is a configuration of C if:

• 8t, t
0
2 X.t\t

0
) t = t

0 (conflict freeness), and
• 8t 2 X . btcl ✓ X (left closedness with respect to l).

The set of configurations of a pCN C is denoted by
ConfpCN(C).

Should C be a CN, we write ConfCN(C) in lieu of
ConfpCN(C).

Example 13: Consider the pCN C1 and the CN C2 in
Figure 5. Their sets of configurations coincide and are shown
below

ConfpCN(C1) = ConfCN(C2) = {{a}, {b},

{d}, {a, d}, {b, c}, {b, d}, {b, c, d}}

There is a close correspondence between the configurations
of a pCN and its reachable markings: any reachable marking
determines a configuration of the net and vice versa. This is
formally stated by the proposition below.

Proposition 2: Let C = hS, T, F, I,mi be a pCN. Then,
1) if m0

2 MC then •
m

0
2 ConfpCN(C); and

2) if X 2 ConfpCN(C) then m�
•
X +X

•
2 MC .

Example 14: Consider the CN C2 in Figure 5b. The marking
m

0 = {s1, s7, s8, s9} is reachable because of the following
firing sequence:

m [{b, d}i {s0, s1, s4, s7, s9} [{c}im
0

Then, it holds that •
m

0 = {b, c, d} is a configuration of C2

(where ConfCN(C2) is defined in Example 13). Conversely,

({a, c},#)

(⇤, a)

({a, b},#)

(⇤, b)

(⇤, c) (⇤, d)

(a, ⇤) (b, ⇤) (c, ⇤) (d, ⇤)

a b c d

Fig. 6: A(P)

take X = {b, c, d} 2 ConfCN(C2), and note that •
X =

{s0, s2, s3, s4, s5} and X
• = {s7, s8, s9}. Then, we have that

m�
•
X+X

• = {s1, s4, s7, s9} = m
0 is a reachable marking

of C2.
The notion of equivalence for causal nets specialises to con-

figurations, i.e., C1 ⌘ C2 iff ConfpCN(C1) = ConfpCN(C2).

A. From pPESes to pCNs
We now show that every pPES can be associated with a pCN

that has the same configurations. We start by introducing the
mapping A from pPESes to pCN.

Definition 12: Let P = (E,<,#) be a pPES. The associated
pCN is A(P) = hS,E, F, I,mi where

• S = {(⇤, e) | e 2 E} [{(e, ⇤) | e 2 E}

[{({e, e0},#) | e # e
0
},

• F = {(s, e) | s = (⇤, e) _ (s = (W,#) ^ e 2 W)}

[{(e, s) | s = (e, ⇤)},
• I = {(s, e) | s = (⇤, e0) ^ e

0
< e}, and

• m = {(⇤, e) | e 2 E} [{({e, e0},#) | e # e
0
}.

The construction associates the pPES P with a pCN that has
as many transitions as events are in P. Places are identified
with pairs, which may have one of the following forms: (i)
(⇤, e) for the precondition of e, (e, ⇤) for the postcondition of
e, and ({e, e0},#) for the conflict e # e

0. The flow relation
is defined so that each transition e consumes tokens from
(⇤, e) and every (W,#) where e 2 W ; and only produces
a token in (e, ⇤). Different from the classical construction of
occurrence nets out of PESes [27], places do not convey causal
dependencies, which are modelled here via inhibitor arcs: if e
causally depends on e

0 (i.e., e0 < e), then there is an inhibitor
arc between the transition e and the place (⇤, e0), i.e., a place
of the preset of e

0. The initial marking m assigns a token to
any place appearing in the preset of a transition.

Example 15: Let P = (E,<,#) be a pPES where

E = {a, b, c, d} < = {(b, c)}
= {(a, b), (b, a), (a, c), (c, a)}

The associated pCN is shown in Figure 6. Note that the
transition c is not enabled because of the inhibitor arc from
(⇤, b); all remaining transitions are enabled; also a and b are
in conflict because they both consume from ({a, b},#).

The adequacy of A is formally stated by showing the
equivalence of the respective sets of configurations.

rCN and rPES

The following definition introduces the notion of (labelled)
transitions between sets of events of a pPES.

Definition 2: Let P = (E,<,#) be a pPES and X ✓ E a
conflict-free set of events. We say A ✓ E is enabled at X if

• A \X = ; and CF(X [A), and
• 8e 2 A. if e0 < e then e

0
2 X .

If A is enabled at X , then X
A

�! Y where Y = X [A.
Example 2: Consider the pPES P in Example 1. The

sets {a}, {b}, {d}, {a, d}, and {b, d} are all enabled at ;

because they are all conflict free and they contain just minimal
elements (according to <). Then, we can derive, e.g., the
transitions ;

{a}
�! {a} and ;

{b,d}
�! {b, d}. On the contrary,

neither {a, b} nor {c} are enabled at ;. The former, because a

and b are in conflict; the latter because ; does not contain b,
which is a cause of c. Moreover, {c} is enabled at {b}, because
the unique cause of c is b; consequently, {b}

{c}
�! {b, c} holds.

The notion of configurations of a pPES is formally defined
below.

Definition 3: Let P = (E,<,#) be a pPES. A set of events
X ✓ E is a reachable configuration if it is conflict free, i.e.,
CF(X), and there exists a sequence A1, . . . , An, such that
Xi

Ai
�! Xi+1 for all i, X1 = ; and Xn+1 = X . We write

ConfpPES(P) for the set of all reachable configurations of P .
We shall write ConfPES(P) instead of ConfpPES(P) when P

is a PES.
Example 3: Consider again the pPES P in Example 1 and

note that some conflict-free sets of events do not correspond to
a state of the computation of P . For instance, the set {c, d},
which is conflict free, is not a configuration of P because
it cannot be reached from the initial state ;: c cannot be
introduced to a configuration that does not contain b.

The following definition and result from [21] highlight that
we can always recover a PES out of a pPES by making conflicts
hereditary.

Definition 4: Let P = (E,<,#) be a pPES. Then hc(P) =
(E,<,]) is the hereditary closure of P , where] is derived by
using the following rules

e # e
0

e] e
0

e] e
0

e
0
< e

00

e] e
00

e
0
] e

e] e
0

Proposition 1: Let P = (E,<,#) be a pPES, then
• hc(P) = (E,,]) is a PES,
• if P is a PES, then hc(P) = P , and
• ConfpPES(P) = ConfPES(hc(P)).

B. Reversible prime event structures
We now recall the notion of reversible prime event structure

following the presentation in [21]. Reversible event structures
extend PESes by allowing some of their events to be reversible
or undoable. A reversible event u (implicitly) has an associated
reversing event u capable of removing its effects, i.e., the exe-
cution of u followed by u cannot be observed. For this reason,
the configurations of a reversible prime event structure may
not evolve monotonically: reversible events can disappear to
account for the fact that its reversing event has been executed.

In order to account for different flavours of reversibility, a
reversible prime event structure is equipped with two relations,
dubbed prevention and reverse causality, dictating the way in
which reversing events can be executed.

Definition 5: A reversible prime event structure (rPES) is
a tuple P = (E,U,<,#,�, .) where (E,<,#) is a pPES,
U ✓ E are the reversible/undoable events (with reverse events
being denoted by U = {u | u 2 U} and disjoint from E, i.e.,
U \ E = ;) and

1) � ✓ E ⇥ U is the reverse causality relation and it is
such that u � u for each u 2 U and {e 2 E | e � u} is
finite and conflict-free for every u 2 U ,

2) . ✓ E ⇥U is the prevention relation defined such that
� \ . = ;,

3) the sustained causation ⌧ is a transitive relation defined
such that if e ⌧ e

0 then
• e < e

0,
• if e 2 U then e

0
. e,

4) # is hereditary with respect to ⌧: if e # e
0
⌧ e

00, then
e # e

00.
The reverse causality relation prescribes the events that are

required for the execution of each reversing event, i.e., e � u

says that u can be executed (or equivalently, u can be undone)
only when e is present. Hence, the condition u � u stands for
the fact that an event u can be undone only when it is present
in a configuration. The prevention relation models instead the
cases in which an event can be reversed only if some other
event is not in the configuration: e . u means that u can be
reversed only if e is not in the configuration.

Despite the underlying structure (E,<,#) is a pPES and,
hence, conflicts may not be inherited through causality, the
definition requires conflicts to be inherited through the new
sustained causation relation ⌧, which is coarser that <, and
accounts for the fact that the causes of some events may
disappear from a configuration (see Example 8).

Example 4: Let P1 = (E,U,<,#,�, .) be an rPES defined
such that

E = {a, b, c, d} U = {b, c}

< = {(b, c)} # = {(a, b), (b, a), (a, c), (c, a)}
� = {(b, b), (c, c))} . = {(c, b)}

While b and c are reversible in P1, a and d are not because
a, d 62 U . Moreover, c causally depends on b because b < c;
and a is in conflict with both b and c because of the definition
of #. Consequently, d is concurrent w.r.t. a, b and c. The
definition of the reverse causality contains the expected pairs
stating that each reversible event can be undone only if it has
been executed (i.e., b � b and c � c). The definition of the
prevention relation states that b cannot be reversed if c has
been executed, i.e., c . b, which is typical of causal reversible
models. In this example, sustained causation coincides with
causality, i.e., ⌧= <, since b ⌧ c holds because b < c and
c . b do so. Note that conflicts are inherited along the sustained
causation (and also causality), i.e., a#b < c and a#c.

Example 5: Let P2 = (E,U,<,#,�, .) be a variant of
P1 above obtained by extending the definition of � with the

s0

s1

s2

s3 s4

s5

s6 s7 s8 s9

a b

b

c

c

d

Fig. 7: A simple rCN

({a, c},#)

(⇤, a) ({a, b},#) (⇤, b) (⇤, c) (⇤, d)

(a, ⇤)

(b, ⇤)

(c, ⇤) (d, ⇤)

a b

(b, r)

c

(c, r)
d

Fig. 8: Ar(P1)

2) F = F
0
[{(s, (u, r)) | s 2 u

•
}[{((u, r), s) | s 2 •

u};
3) I = I

0
[{((⇤, e), (u, r)) | e � u}

[{((e, ⇤), (u, r)) | e . u}.
The construction uses the mapping A() for obtaining a pCN

out of the underlying pPES consisting of just forward events,
which is then extended with as many backward transitions as
reversible events in P. A backward transition (u, r), which
reverses u, is defined such that its preset is the postset of u,
and its poset is the preset of u. Inhibitors arcs are as expected:
the reverse causality e � u translates into an arc connecting
the backward transition (u, r) to the enabling condition of e,
i.e., (⇤, e); the prevention e.u is mapped to an arc connecting
(u, r) to the post condition of e, i.e., (e, ⇤).

Example 18: Consider the rPES P1 = (E,U,<,#,�, .) in
Example 4. Note that (E,<,#) and its associated CN are the
ones discussed in Example 15. Then, Ar(P1), which is shown
in Figure 7, is obtained by extending the CN in Figure 6 with
the transitions (b, r) and (c, r) corresponding to the reversing
events b and c. The inhibitor arcs from (b, ⇤) to (b, r) and (c, ⇤)
to (c, r) indicate that the backward transitions are enabled
only after the corresponding forward transitions are fired. The
inhibitor arc from (⇤, c) to (b, r) indicates that b cannot be
fired if c has been executed.

The rCN A(P3) associated with the rPES P3 in Example 8 is
depicted in Figure 9. Note the absence of the place ({a, c},#)
(because a and c are not in conflict in P3) and the inhibitor
arc from (⇤, c) to (b, r) (since b can be reversed even when
(⇤, c) is marked). Moreover, the inhibitor arc from (d, ⇤) to
(c, r) prevents c to be reversed until d is fired.

(⇤, a)({a, b},#) (⇤, b) (⇤, c) (⇤, d)

(a, ⇤)

(b, ⇤)

(c, ⇤) (d, ⇤)

a b

(b, r)

c

(c, r)
d

Fig. 9: Ar(P3)

The encoding of the rPES P2 in Example 5 produces a net
isomorphic to the one shown in Figure 7 (just places and
transitions are named differently).

Proposition 5: If P is an rPES then Ar(P) is an rCN.

C. From rCNes to rPESes

The encoding of rCNs into rPESes is given below.
Definition 16: Let V

T = hS, T, F, I,mi be an rCN with
backward transitions T . Then, Qr(V T) = (E,U,<,#,�, .)
where:

1) E = T \ T ;
2) U = {t | t 2 T ^ t 2 T ^

•
t = t

•
};

3) < = l|E⇥E ;
4) # = {(e, e0) | e 6= e

0
2 E ^ e\e

0
};

5) �= {(t, t0) | t 2 E ^ t
0
2 T ^

•
t \

�
t
0
6= ;};

6) . = {(t, t0) | t 2 E ^ t
0
2 T ^ t

•
\

�
t
0
6= ;}.

The construction maps an rCN V
T to an rPES whose events

are the forward transitions T \ T of V
T . Only the forward

transitions that have a reversing transition in T are undoable
events (i.e, they belong to U). The causality < and conflict #
relations are obtained as the proper restrictions of those defined
on V

T . Finally, the reverse causation � and the prevention .

are recovered from inhibitor arcs.
Example 19: Consider the rCN in Figure 7. The events

of the associated rPES are {a, b, c, d}, from which {b, c} are
reversible. The only causal dependency is bl c. Conflicts are
induced from shared places in the presets of transitions, which
in this case are s0 and s2. Hence, a#c and b#d. The inhibitor
arc connecting s3 to b is mapped to the reverse causality b � b

because s3 belongs to the preset of b. Analogously, the arc
from s4 to c (resp., from s5 to c) is mapped to c � c (resp.,
d � c). On the contrary, the arc from s8 to b gives c.b because
s8 belongs to the postset of c. Hence, the obtained rPES is the
one defined in Example 5.

Proposition 6: If V T is an rCN then Qr(V T) is an rPES.

D. rCNes and rPESes correspondence

We show that the mappings introduced in the previous
sections establish a tight correspondence between rPESes and
rCNs in terms of configurations.

Definition 17: Let V
T = hS, T, F, I,mi be an rCN. A

pre-configuration X of V
T is a conflict-free set of forward

transitions, i.e., X ✓ T \ T and 8t, t
0
2 X.

•
t \

•
t
0
6= ;)

t = t
0. Its associated marking is mX = m�

•
X +X

•.

reversibe events

conflict
causality

reverse causation Prevention

Results

• (Reversible) Causal Nets are an operationally counterpart of (reversible) Prime
Event Structures

• The key idea is that inhibitor arcs can model all the operator of (reversible)
Prime Event Structures

From ON to CN and vice versa

A. Occurrence nets

We recall the notion of occurrence nets1. We adopt the
usual convention by which places and transitions are called
conditions and events; and write B and E for their respective
sets (instead of S and T) and c for the initial marking.
We may confuse conditions with places and events with
transitions. Moreover, we will omit the inhibiting relation I

since occurrence nets do not have inhibitor arcs (i.e., I = ;).
Definition 20: An occurrence net (ON) O = hB,E, F, ci

is an acyclic, safe net satisfying the following restrictions:
• 8b 2 B. •

b is either empty or a singleton, and 8b 2 c.
•
b = ;,

• 8b 2 B. 9b0 2 c such that b0 O b,
• for all e 2 E the set {e0 2 E | e

0
O e} is finite, and

• # is an irreflexive and symmetric relation defined as
follows:

– e #0 e
0 iff e, e0 2 E, e 6= e

0 and •
e \

•
e
0
6= ;,

– x # x
0 iff 9y, y0 2 E such that y #0 y

0 and y O x

and y
0
O x

0.
Each condition b in an ON represents the occurrence of a token.
Hence, b either belongs to the initial marking c or is produced
by the unique event in •

b. The flow relation is interpreted
as the causality relation among the elements of the net; for
this reason we say that x causally depends on y iff y O x.
Observe that O\(E ⇥ E) is a partial order and # is inherited
along O; hence, e # e

0
O e

00 implies e # e
00.

Proposition 8: Let O = hB,E, F, ci be an occurrence net.
Then, O is a single execution net.

As for Proposition 7, every single execution IPT can be
converted into an equivalent conflict-saturated net. Since the
construction does not modify the inhibitor relation, the same
holds for occurrence nets.

Definition 21: Let O = hB,E, F, ci be an ON. A set of
events X ✓ E is a configuration of O if:

• 8e, e
0
2 X.e 6= e

0
) ¬(e # e

0), i.e., it is conflict-free;
and

• 8e 2 X . bec ✓ X , i.e., it is left-closed.
The set of configurations of O is denoted by ConfON(O).
If a ON is conflict-saturated then the first condition can be
rewritten as 8e, e

0
2 X.

•
e \

•
e
0
6= ;) e = e

0. Moreover,
observe that each configuration of an ON is also a state.

B. From ON to CN

We show that every occurrence net can be turned into a
causal one, and hence that the latter notion is a conservative
extension of the former one.

Definition 22: Given an occurrence net O = hB,E, F, ci
we can associate to it a net O(O) defined as hS,E, F

0
, I,mi

where

1Occurrence nets are often the result of the unfolding of a (safe) net. In
this perspective an occurrence net is meant to describe precisely the non-
sequential semantics of a net, and each reachable marking of the occurrence
net corresponds to a reachable marking of the unfolded net. Here we focus
purely on occurrence nets and not on the nets they are the unfoldings of, nor
on the relation between the net and its unfolding.

• S = {(⇤, e) | e 2 E} [{(e, ⇤) | e 2 E}

[{({e, e0},#) | e # e
0
};

• F
0 = {(s, e) | s = (⇤, e) _ (s = (W,#) ^ e 2 W)};

[{(e, s) | s = (e, ⇤)};
• I = {(s, e) | s = (⇤, e0) ^ e

0
<C e}; and

• m : S ! N is such that m(s) = 0 if s = (e, ⇤) and
m(s) = 1 otherwise,

The construction resembles the one from PESes to CNs:
each event e of an occurrence net is associated with an
homonymous transition and two places (⇤, e) and (e, ⇤) in the
corresponding causal net. When marked, (⇤, e) represents the
fact that e has not been fired yet, while (e, ⇤) describes the
fact that e has been executed. Moreover, there is one additional
place ({e, e0},#) for any pair of conflicting events e#e

0 in O.
As expected, the preset of an event e consists of the place (⇤, e)
and all the places of the form ({e, e0},#), which represent the
conflicts of e with some other event e0. Causal dependencies
are mapped into inhibitor arcs so that (e0, ⇤) belongs to the
inhibitor set of e only if e causally depends on e

0 in O. The
initial marking assigns a token to every place belonging to the
the preset of some transition.

Example 21: Figure 11 shows the encoding of the ON O in
Figure 11a as the CN O(O) in Figure 11b.

a b

c

d

(a) O

({a, c},#)

(⇤, a)

({a, b},#)

(⇤, b)

(⇤, c) (⇤, d)

(a, ⇤) (b, ⇤) (c, ⇤) (d, ⇤)

a b c d

(b) O(O)

Fig. 11: An occurrence net as a causal net

Proposition 9: Let O be an occurrence net. Then O(O) is
a CN and O ⌘ O(O).

We stress that O(O) is conflict-saturated for any ON O.

C. From pCN to ON

The encoding from pCNs to ONs basically requires to embed
causal dependencies expressed in terms of inhibitor arcs into
the the flow relation. For this reason, the encoding incorporates
new places of the form (t, t0) as a way for representing the
dependency tl t

0.
Definition 23: Let C = hS, T, F, I,mi be a pCN. The

associated ON is a net Z(C) = hB, T, F
0
, ci where

• B = S [{(t, t0) | tl t
0
};

• F
0 = F [{(s, t) | s = (t0, t)}[{(t, s) | s = (t, t0)}; and

• c : B ! N is such that c(b) = m(b) if b 2 S and c(b) = 0
if b 62 S.

Note that the flow relation is extended to account for causal
dependencies: each transition t produces tokens in the places
(t, t0) (i.e., (t, (t, t0)) 2 F) and consumes tokens from (t00, t)

a # b
a # c a < c

A. Occurrence nets

We recall the notion of occurrence nets1. We adopt the
usual convention by which places and transitions are called
conditions and events; and write B and E for their respective
sets (instead of S and T) and c for the initial marking.
We may confuse conditions with places and events with
transitions. Moreover, we will omit the inhibiting relation I

since occurrence nets do not have inhibitor arcs (i.e., I = ;).
Definition 20: An occurrence net (ON) O = hB,E, F, ci

is an acyclic, safe net satisfying the following restrictions:
• 8b 2 B. •

b is either empty or a singleton, and 8b 2 c.
•
b = ;,

• 8b 2 B. 9b0 2 c such that b0 O b,
• for all e 2 E the set {e0 2 E | e

0
O e} is finite, and

• # is an irreflexive and symmetric relation defined as
follows:

– e #0 e
0 iff e, e0 2 E, e 6= e

0 and •
e \

•
e
0
6= ;,

– x # x
0 iff 9y, y0 2 E such that y #0 y

0 and y O x

and y
0
O x

0.
Each condition b in an ON represents the occurrence of a token.
Hence, b either belongs to the initial marking c or is produced
by the unique event in •

b. The flow relation is interpreted
as the causality relation among the elements of the net; for
this reason we say that x causally depends on y iff y O x.
Observe that O\(E ⇥ E) is a partial order and # is inherited
along O; hence, e # e

0
O e

00 implies e # e
00.

Proposition 8: Let O = hB,E, F, ci be an occurrence net.
Then, O is a single execution net.

As for Proposition 7, every single execution IPT can be
converted into an equivalent conflict-saturated net. Since the
construction does not modify the inhibitor relation, the same
holds for occurrence nets.

Definition 21: Let O = hB,E, F, ci be an ON. A set of
events X ✓ E is a configuration of O if:

• 8e, e
0
2 X.e 6= e

0
) ¬(e # e

0), i.e., it is conflict-free;
and

• 8e 2 X . bec ✓ X , i.e., it is left-closed.
The set of configurations of O is denoted by ConfON(O).
If a ON is conflict-saturated then the first condition can be
rewritten as 8e, e

0
2 X.

•
e \

•
e
0
6= ;) e = e

0. Moreover,
observe that each configuration of an ON is also a state.

B. From ON to CN

We show that every occurrence net can be turned into a
causal one, and hence that the latter notion is a conservative
extension of the former one.

Definition 22: Given an occurrence net O = hB,E, F, ci
we can associate to it a net O(O) defined as hS,E, F

0
, I,mi

where

1Occurrence nets are often the result of the unfolding of a (safe) net. In
this perspective an occurrence net is meant to describe precisely the non-
sequential semantics of a net, and each reachable marking of the occurrence
net corresponds to a reachable marking of the unfolded net. Here we focus
purely on occurrence nets and not on the nets they are the unfoldings of, nor
on the relation between the net and its unfolding.

• S = {(⇤, e) | e 2 E} [{(e, ⇤) | e 2 E}

[{({e, e0},#) | e # e
0
};

• F
0 = {(s, e) | s = (⇤, e) _ (s = (W,#) ^ e 2 W)};

[{(e, s) | s = (e, ⇤)};
• I = {(s, e) | s = (⇤, e0) ^ e

0
<C e}; and

• m : S ! N is such that m(s) = 0 if s = (e, ⇤) and
m(s) = 1 otherwise,

The construction resembles the one from PESes to CNs:
each event e of an occurrence net is associated with an
homonymous transition and two places (⇤, e) and (e, ⇤) in the
corresponding causal net. When marked, (⇤, e) represents the
fact that e has not been fired yet, while (e, ⇤) describes the
fact that e has been executed. Moreover, there is one additional
place ({e, e0},#) for any pair of conflicting events e#e

0 in O.
As expected, the preset of an event e consists of the place (⇤, e)
and all the places of the form ({e, e0},#), which represent the
conflicts of e with some other event e0. Causal dependencies
are mapped into inhibitor arcs so that (e0, ⇤) belongs to the
inhibitor set of e only if e causally depends on e

0 in O. The
initial marking assigns a token to every place belonging to the
the preset of some transition.

Example 21: Figure 11 shows the encoding of the ON O in
Figure 11a as the CN O(O) in Figure 11b.

a b

c

d

(a) O

({a, c},#)

(⇤, a)

({a, b},#)

(⇤, b)

(⇤, c) (⇤, d)

(a, ⇤) (b, ⇤) (c, ⇤) (d, ⇤)

a b c d

(b) O(O)

Fig. 11: An occurrence net as a causal net

Proposition 9: Let O be an occurrence net. Then O(O) is
a CN and O ⌘ O(O).

We stress that O(O) is conflict-saturated for any ON O.

C. From pCN to ON

The encoding from pCNs to ONs basically requires to embed
causal dependencies expressed in terms of inhibitor arcs into
the the flow relation. For this reason, the encoding incorporates
new places of the form (t, t0) as a way for representing the
dependency tl t

0.
Definition 23: Let C = hS, T, F, I,mi be a pCN. The

associated ON is a net Z(C) = hB, T, F
0
, ci where

• B = S [{(t, t0) | tl t
0
};

• F
0 = F [{(s, t) | s = (t0, t)}[{(t, s) | s = (t, t0)}; and

• c : B ! N is such that c(b) = m(b) if b 2 S and c(b) = 0
if b 62 S.

Note that the flow relation is extended to account for causal
dependencies: each transition t produces tokens in the places
(t, t0) (i.e., (t, (t, t0)) 2 F) and consumes tokens from (t00, t)

Causality is modelled directly via inhibitor arcs, not through the flow relation

Results Graphically

PES ON
Winskel

rPES rcPES

rONCN

rCN

Forward Realm

Reversible Realm

• Back in the past there has been a lot of effort to give to CCS a true concurrent
semantics

• CCS semantics is given in terms of an interleaved one

Toward a truly semantics for RCCS

a | b a.b + b.a

The two processes (and traces)

are deemed equivalent in CCS

Background

• Different works have given an truly concurrent semantics of CCS in

• Occurrence Nets

• Event Structures

• Prime Event Structures

• What about reversible CCS?

• Two different flavours of reversible CCS: RCCS and CCSK but both are in the interleaved
semantics

• An interpretation of (controlled) CCSK in (reversible) bundle event structures [Graversen,
Phillips, Yoshida 2021]

• The simple process is encoded as a Petri
net with one transition named

From CCS to Petri net: example

Towards a truly concurrent semantics for reversible CCS 3

a a

a

a

a

Fig. 1: Encoding of R = hi . a.0

of Figure 1. It should be noted that the net on the right of Figure 1 corresponds
to the derivative R0. Consequently, the encoding of a CCS term as a net al-
ready bears all the information needed for reversing it; which contrasts with the
required memories of RCCS. This observation gives an almost straightforward
true concurrent representation of RCCS processes.

Organization of the paper. After setting up some notation, we recall CCS and
RCCS (Section 2). In Section 3 we summarise the basics of Petri nets, unravel
nets and present their reversible counterpart. In Section 4, describe the encoding
of CCS into unravel nets and introduce the mapping from RCCS terms into
reversible unravel nets. In the final section we draw some conclusions and discuss
future developments.

Preliminaries. We denote with N the set of natural numbers. Let A be a set,
a multiset of A is a function m : A ! N. The set of multisets of A is denoted by
@A. We assume the usual operations on multisets such as union + and di↵erence
�. We write m ✓ m0 if m(a) m0(a) for all a 2 A. For m 2 @A, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a 2 m to denote that
m(a) 6= 0, and often confuse the multiset m with the set {a 2 A | m(a) 6= 0} or
a subset X ✓ A with the multiset X(a) = 1 if a 2 A and X(a) = 0 otherwise.
Furthermore we use the standard set operations like \, [or \. The multiset m
such that [[m]] = ; is denoted with abuse of notation as ;.

2 CCS and reversible CCS

Let A be a set of actions a, b, c, . . ., and A = {a | a 2 A} the set of their co-
actions. We denote the set of all possible actions with Act = A [A. We write
↵,� for the elements of Act⌧ = Act [{⌧}, where ⌧ /2 Act stands for a silent

action. The syntax of (finite) CCS is reported in Figure 2. A prefix (or action)
is either an input a, an output a or the silent action ⌧ . A term of the formP

i2I ↵i.Pi represents a process that (non-deterministically) starts by selecting
and performing some action ↵i and then continues as Pi. We write 0, the idle
process, in lieu of

P
i2I ↵i.Pi when I = ; ; similarly, ↵i.P for a unitary sum in

which I is the singleton {i}. The term P k Q represents the parallel composition
of the processes P and Q. An action a can be restricted so to be visible only

<latexit sha1_base64="nKvnlRVzEHJUPJtOfaTn5rsyE80=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IruYqEeiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD2Va7hVLbsWdg6wSLyMlyFDvFb+6/ZilEVfIJDWm47kJ+hOqUTDJp4VuanhC2YgOeMdSRSNu/Mn81Ck5s0qfhLG2pZDM1d8TExoZM44C2xlRHJplbyb+53VSDK/9iVBJilyxxaIwlQRjMvub9IXmDOXYEsq0sLcSNqSaMrTpFGwI3vLLq6RZrXiXlYv7aql2k8WRhxM4hXPw4ApqcAd1aACDATzDK7w50nlx3p2PRWvOyWaO4Q+czx98+41H</latexit>a
<latexit sha1_base64="nKvnlRVzEHJUPJtOfaTn5rsyE80=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IruYqEeiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD2Va7hVLbsWdg6wSLyMlyFDvFb+6/ZilEVfIJDWm47kJ+hOqUTDJp4VuanhC2YgOeMdSRSNu/Mn81Ck5s0qfhLG2pZDM1d8TExoZM44C2xlRHJplbyb+53VSDK/9iVBJilyxxaIwlQRjMvub9IXmDOXYEsq0sLcSNqSaMrTpFGwI3vLLq6RZrXiXlYv7aql2k8WRhxM4hXPw4ApqcAd1aACDATzDK7w50nlx3p2PRWvOyWaO4Q+czx98+41H</latexit>a

Redundant place in the post-set of a

How to reverse?
Towards a truly concurrent semantics for reversible CCS 3

a a

a

a

a

Fig. 1: Encoding of R = hi . a.0

of Figure 1. It should be noted that the net on the right of Figure 1 corresponds
to the derivative R0. Consequently, the encoding of a CCS term as a net al-
ready bears all the information needed for reversing it; which contrasts with the
required memories of RCCS. This observation gives an almost straightforward
true concurrent representation of RCCS processes.

Organization of the paper. After setting up some notation, we recall CCS and
RCCS (Section 2). In Section 3 we summarise the basics of Petri nets, unravel
nets and present their reversible counterpart. In Section 4, describe the encoding
of CCS into unravel nets and introduce the mapping from RCCS terms into
reversible unravel nets. In the final section we draw some conclusions and discuss
future developments.

Preliminaries. We denote with N the set of natural numbers. Let A be a set,
a multiset of A is a function m : A ! N. The set of multisets of A is denoted by
@A. We assume the usual operations on multisets such as union + and di↵erence
�. We write m ✓ m0 if m(a) m0(a) for all a 2 A. For m 2 @A, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a 2 m to denote that
m(a) 6= 0, and often confuse the multiset m with the set {a 2 A | m(a) 6= 0} or
a subset X ✓ A with the multiset X(a) = 1 if a 2 A and X(a) = 0 otherwise.
Furthermore we use the standard set operations like \, [or \. The multiset m
such that [[m]] = ; is denoted with abuse of notation as ;.

2 CCS and reversible CCS

Let A be a set of actions a, b, c, . . ., and A = {a | a 2 A} the set of their co-
actions. We denote the set of all possible actions with Act = A [A. We write
↵,� for the elements of Act⌧ = Act [{⌧}, where ⌧ /2 Act stands for a silent

action. The syntax of (finite) CCS is reported in Figure 2. A prefix (or action)
is either an input a, an output a or the silent action ⌧ . A term of the formP

i2I ↵i.Pi represents a process that (non-deterministically) starts by selecting
and performing some action ↵i and then continues as Pi. We write 0, the idle
process, in lieu of

P
i2I ↵i.Pi when I = ; ; similarly, ↵i.P for a unitary sum in

which I is the singleton {i}. The term P k Q represents the parallel composition
of the processes P and Q. An action a can be restricted so to be visible only

Towards a truly concurrent semantics for reversible CCS 3

a a

a

a

a

Fig. 1: Encoding of R = hi . a.0

of Figure 1. It should be noted that the net on the right of Figure 1 corresponds
to the derivative R0. Consequently, the encoding of a CCS term as a net al-
ready bears all the information needed for reversing it; which contrasts with the
required memories of RCCS. This observation gives an almost straightforward
true concurrent representation of RCCS processes.

Organization of the paper. After setting up some notation, we recall CCS and
RCCS (Section 2). In Section 3 we summarise the basics of Petri nets, unravel
nets and present their reversible counterpart. In Section 4, describe the encoding
of CCS into unravel nets and introduce the mapping from RCCS terms into
reversible unravel nets. In the final section we draw some conclusions and discuss
future developments.

Preliminaries. We denote with N the set of natural numbers. Let A be a set,
a multiset of A is a function m : A ! N. The set of multisets of A is denoted by
@A. We assume the usual operations on multisets such as union + and di↵erence
�. We write m ✓ m0 if m(a) m0(a) for all a 2 A. For m 2 @A, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a 2 m to denote that
m(a) 6= 0, and often confuse the multiset m with the set {a 2 A | m(a) 6= 0} or
a subset X ✓ A with the multiset X(a) = 1 if a 2 A and X(a) = 0 otherwise.
Furthermore we use the standard set operations like \, [or \. The multiset m
such that [[m]] = ; is denoted with abuse of notation as ;.

2 CCS and reversible CCS

Let A be a set of actions a, b, c, . . ., and A = {a | a 2 A} the set of their co-
actions. We denote the set of all possible actions with Act = A [A. We write
↵,� for the elements of Act⌧ = Act [{⌧}, where ⌧ /2 Act stands for a silent

action. The syntax of (finite) CCS is reported in Figure 2. A prefix (or action)
is either an input a, an output a or the silent action ⌧ . A term of the formP

i2I ↵i.Pi represents a process that (non-deterministically) starts by selecting
and performing some action ↵i and then continues as Pi. We write 0, the idle
process, in lieu of

P
i2I ↵i.Pi when I = ; ; similarly, ↵i.P for a unitary sum in

which I is the singleton {i}. The term P k Q represents the parallel composition
of the processes P and Q. An action a can be restricted so to be visible only

<latexit sha1_base64="nKvnlRVzEHJUPJtOfaTn5rsyE80=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IruYqEeiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD2Va7hVLbsWdg6wSLyMlyFDvFb+6/ZilEVfIJDWm47kJ+hOqUTDJp4VuanhC2YgOeMdSRSNu/Mn81Ck5s0qfhLG2pZDM1d8TExoZM44C2xlRHJplbyb+53VSDK/9iVBJilyxxaIwlQRjMvub9IXmDOXYEsq0sLcSNqSaMrTpFGwI3vLLq6RZrXiXlYv7aql2k8WRhxM4hXPw4ApqcAd1aACDATzDK7w50nlx3p2PRWvOyWaO4Q+czx98+41H</latexit>a
<latexit sha1_base64="DGQTjavQkB20zbHklP7smECL8yk=">AAACC3icbZC7TsMwFIadcivlFmBksdoiMVVJkYCxgoWxSPQitVXluE5q1XEi+wSpirqz8CosDCDEyguw8Ta4aQZoOZLlT/9/juzze7HgGhzn2yqsrW9sbhW3Szu7e/sH9uFRW0eJoqxFIxGprkc0E1yyFnAQrBsrRkJPsI43uZn7nQemNI/kPUxjNghJILnPKQEjDe1ytS+IDATDfZXfoHhGigdjwKQ6tCtOzckKr4KbQwXl1RzaX/1RRJOQSaCCaN1znRgGKVHAqWCzUj/RLCZ0QgLWMyhJyPQgzXaZ4VOjjLAfKXMk4Ez9PZGSUOtp6JnOkMBYL3tz8T+vl4B/NUi5jBNgki4e8hOBIcLzYPCIK0ZBTA0Qqrj5K6ZjoggFE1/JhOAur7wK7XrNvaid39Urjes8jiI6QWV0hlx0iRroFjVRC1H0iJ7RK3qznqwX6936WLQWrHzmGP0p6/MHLvGagg==</latexit>

hi . a

• For each transition we create an exact inverse of it

Towards a truly concurrent semantics for reversible CCS 3

a a

a

a

a

Fig. 1: Encoding of R = hi . a.0

of Figure 1. It should be noted that the net on the right of Figure 1 corresponds
to the derivative R0. Consequently, the encoding of a CCS term as a net al-
ready bears all the information needed for reversing it; which contrasts with the
required memories of RCCS. This observation gives an almost straightforward
true concurrent representation of RCCS processes.

Organization of the paper. After setting up some notation, we recall CCS and
RCCS (Section 2). In Section 3 we summarise the basics of Petri nets, unravel
nets and present their reversible counterpart. In Section 4, describe the encoding
of CCS into unravel nets and introduce the mapping from RCCS terms into
reversible unravel nets. In the final section we draw some conclusions and discuss
future developments.

Preliminaries. We denote with N the set of natural numbers. Let A be a set,
a multiset of A is a function m : A ! N. The set of multisets of A is denoted by
@A. We assume the usual operations on multisets such as union + and di↵erence
�. We write m ✓ m0 if m(a) m0(a) for all a 2 A. For m 2 @A, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a 2 m to denote that
m(a) 6= 0, and often confuse the multiset m with the set {a 2 A | m(a) 6= 0} or
a subset X ✓ A with the multiset X(a) = 1 if a 2 A and X(a) = 0 otherwise.
Furthermore we use the standard set operations like \, [or \. The multiset m
such that [[m]] = ; is denoted with abuse of notation as ;.

2 CCS and reversible CCS

Let A be a set of actions a, b, c, . . ., and A = {a | a 2 A} the set of their co-
actions. We denote the set of all possible actions with Act = A [A. We write
↵,� for the elements of Act⌧ = Act [{⌧}, where ⌧ /2 Act stands for a silent

action. The syntax of (finite) CCS is reported in Figure 2. A prefix (or action)
is either an input a, an output a or the silent action ⌧ . A term of the formP

i2I ↵i.Pi represents a process that (non-deterministically) starts by selecting
and performing some action ↵i and then continues as Pi. We write 0, the idle
process, in lieu of

P
i2I ↵i.Pi when I = ; ; similarly, ↵i.P for a unitary sum in

which I is the singleton {i}. The term P k Q represents the parallel composition
of the processes P and Q. An action a can be restricted so to be visible only

<latexit sha1_base64="Jk5utIdgPA4RjkSKK2wpInDMYEM=">AAACGXicbVDLSgMxFM3UV62vqks3wVYQKWWmgrosunFZwT6gU0omzbShmcyQ3BHK0N9w46+4caGIS135N2amXWjrgcDJOfdy7z1eJLgG2/62ciura+sb+c3C1vbO7l5x/6Clw1hR1qShCFXHI5oJLlkTOAjWiRQjgSdY2xvfpH77gSnNQ3kPk4j1AjKU3OeUgJH6RbvsCiKHgmFSOavYrpp9XFA8Y4oPR4DdgMDI8xN7Wu4XS3bVzoCXiTMnJTRHo1/8dAchjQMmgQqiddexI+glRAGngk0LbqxZROiYDFnXUEkCpntJdtkUnxhlgP1QmScBZ+rvjoQEWk8Cz1SmK+pFLxX/87ox+Fe9hMsoBibpbJAfCwwhTmPCA64YBTExhFDFza6YjogiFEyYBROCs3jyMmnVqs5F9fyuVqpfz+PIoyN0jE6Rgy5RHd2iBmoiih7RM3pFb9aT9WK9Wx+z0pw17zlEf2B9/QAASJ+2</latexit>

ha, ⇤, 0i . 0

• What changes from to in terms of nets is the marking
<latexit sha1_base64="DGQTjavQkB20zbHklP7smECL8yk=">AAACC3icbZC7TsMwFIadcivlFmBksdoiMVVJkYCxgoWxSPQitVXluE5q1XEi+wSpirqz8CosDCDEyguw8Ta4aQZoOZLlT/9/juzze7HgGhzn2yqsrW9sbhW3Szu7e/sH9uFRW0eJoqxFIxGprkc0E1yyFnAQrBsrRkJPsI43uZn7nQemNI/kPUxjNghJILnPKQEjDe1ytS+IDATDfZXfoHhGigdjwKQ6tCtOzckKr4KbQwXl1RzaX/1RRJOQSaCCaN1znRgGKVHAqWCzUj/RLCZ0QgLWMyhJyPQgzXaZ4VOjjLAfKXMk4Ez9PZGSUOtp6JnOkMBYL3tz8T+vl4B/NUi5jBNgki4e8hOBIcLzYPCIK0ZBTA0Qqrj5K6ZjoggFE1/JhOAur7wK7XrNvaid39Urjes8jiI6QWV0hlx0iRroFjVRC1H0iJ7RK3qznqwX6936WLQWrHzmGP0p6/MHLvGagg==</latexit>

hi . a
<latexit sha1_base64="Jk5utIdgPA4RjkSKK2wpInDMYEM=">AAACGXicbVDLSgMxFM3UV62vqks3wVYQKWWmgrosunFZwT6gU0omzbShmcyQ3BHK0N9w46+4caGIS135N2amXWjrgcDJOfdy7z1eJLgG2/62ciura+sb+c3C1vbO7l5x/6Clw1hR1qShCFXHI5oJLlkTOAjWiRQjgSdY2xvfpH77gSnNQ3kPk4j1AjKU3OeUgJH6RbvsCiKHgmFSOavYrpp9XFA8Y4oPR4DdgMDI8xN7Wu4XS3bVzoCXiTMnJTRHo1/8dAchjQMmgQqiddexI+glRAGngk0LbqxZROiYDFnXUEkCpntJdtkUnxhlgP1QmScBZ+rvjoQEWk8Cz1SmK+pFLxX/87ox+Fe9hMsoBibpbJAfCwwhTmPCA64YBTExhFDFza6YjogiFEyYBROCs3jyMmnVqs5F9fyuVqpfz+PIoyN0jE6Rgy5RHd2iBmoiih7RM3pFb9aT9WK9Wx+z0pw17zlEf2B9/QAASJ+2</latexit>

ha, ⇤, 0i . 0

The preset of a are the postset of a

A very simple idea

• The encoding of a CCS term into a net already bears all the information
needed for reversing it

• This contrasts with RCCS memories (e.g., the need to add memories to
remember)

• An initial RCCS term (e.g., with empty memory) and all its derivate have the
same net, what changes is the marking

• Markings correspond to RCCS memories

• This simple observation gives an almost straightforward true concurrent
representation of RCCS terms

Method

• Starting from the observation that the encoding of a CCS process into a net
bears all the needed information

• We modify the encoding of finite CCS processes into unravel nets
[Boudol,Castellani94]

• We show how unravel nets can be made causal-consistent reversible

Unravel nets (in a nutshel)

• Unravel net are (1)-safe nets

• Each place can hold at most one token per time

• If a place has two incoming transition then these transitions are in conflict

Unravel net: example

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

a and b are in conflict

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

Unravel net: how to reverse?

How do we know that this token has
been produced by a instead of b?

• The idea is then to add extra-place signalling the execution of a transition

• We call these unravel net complete UN

• These extra place preserve the original semantics of urnavel nets

Reversible Unravel Net

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

Extra places to remember computation
(they can be seen as communication keys) Symmetric reversible transitions

Encoding: nil and prefix

10 H. Melgratti, C. A. Mezzina, G. M. Pinna

0

(a) N (0)

b.0

b̂.0

b̂.b

b

(b) N (b.0)

a.b.0 â.b.0

â.a

â.b̂.0

â.b̂.b

a â.b

(c) N (a.b.0)

Fig. 8: Example of nets corresponding to CCS processes

4 CCS processes as unravel nets

We now recall the encoding of CCS terms into Petri nets due to Boudol and
Castellani [3]. We just recall that originally the encoding was on proved terms
instead of plain CCS. The di↵erence between proved terms and CCS is that
somehow in a proved term the labels carry the position of the process who
did the action. Hence, we will use decorated version of labels. For instance, â.b
denotes an event b which past was a. That is, if we want to indicate the event
b of the term a.b we will write â.b. Analogously, labels carry also information
about the syntactical structure of a term, actions corresponding to subterms of
a choice and of a parallel composition are also decorated with an index i that
indicates the subterm that performs the actions. An interesting aspect of this
encoding is that these information is reflected in the name of the places and
the transitions of the nets, which simplifies the formulation of the behavioural
correspondence of a term and its associated net. We write `() for the function
that removes decorations for a name, e.g., `(â.b̂.c) = c.

We now are in place to define and comment the encoding of a CCS term into
a net. The encoding is inductively defined on the structure of the CCS process.
For a CCS process P , its encoded net is N (P) = hSP , TP , FP ,mP i. The net
corresponding to the inactive process 0, is just a net with just one marked place
and with no transition, that is:

Definition 8. The net N (0) = h{0}, ;, ;, {0}i is the net associated to 0 and it

is called zero.

To ease notation in the constructions we are going to present, we adopt following
conventions: let X ✓ S [T be a set of places and transitions, we write â.X for
the set {â.x | x 2 X} containing the decorated versions of places and transitions
in X. Analogously we lift this notation to relations: if R is a binary relation on
(S [T), then ↵̂.R = {(↵̂.x, ↵̂.y) | (x, y) 2 R} is a binary relation on (↵.S [↵.T).

The net N (↵.P) corresponding to a process ↵.P extends N (P) with two
extra places ↵.P and â.↵ and one transition ↵. The place ↵.P stands for the
process that executes the prefix ↵ and follows by P . The place â.↵ is not in
the original encoding of [3]; we have add it to ensure that the obtained net
is complete, which is essential for the definition of the reversible net. This will
become clearer when commenting the encoding of the parallel composition. It
should be noted that this addition does not interfere with the behaviour of the
net, since all added places are final. Also a new transition, named ↵ is created
and added to the net, and the flow relation is updated accordingly. Figures 8a,

Towards a truly concurrent semantics for reversible CCS 11

8b and 8c report the respectively the encoding of the inactive process, of the
process b.0 and a.b.0. Moreover the aforementioned figures systematically show
how the prefixing operator is rendered into Petri nets. As a matter of fact, the
net a.b.0 is built starting from the net corresponding to b.0 by adding the prefix
a. We note that also the label of transitions is a↵ected by appending the label
of the new prefix at the beginning. This is rendered in Figure 8c where the
transition mimicking the action b is labeled as â.b indicating that an a was done
before b. In what follows we will often omit such representation from figures.

Definition 9. Let P a CCS process and N (P) = hSP , TP , FP ,mP i be the asso-

ciated net. Then N (↵.P) is the net hS↵.P , T↵.P , F↵.P ,m↵.P i where

S↵.P = {↵.P, ↵̂.↵} [↵̂.SP

T↵.P = {↵} [↵̂.Tp

F↵.P = {(↵.P,↵), (↵, ↵̂.↵)} [{(↵, ↵̂.b) | b 2 m0P } [↵̂.FP

m↵.P = {↵.P}

For a setX of transitions we write kiX for {kix | x 2 X}, which straightforwardly
lifts to relations.

The encoding of the parallel goes along the line of the prefixing one. Also in
this case we have to decorate the places (and transitions) with the position of
the term in the syntax tree. To this end, each branch of the parallel is decorated
with ki with i being the i-th position. Regarding the transitions, we have to add
all the possible synchronisations among the processes in parallel. This is why,
along with the transitions of the branches (properly decorated with ki) we have
to add extra transitions to indicate the possible synchronisation. Naturally a
synchronisation is possible when one label is the co-label of the other transition.
Figure 9a shows the net corresponding to the process a.b k a.c. As we can see, the
encoding builds upon the encoding of a.b and a.c, by (i) adding to all the places
and transitions whether the branch is the left one or the right one and (ii) adding
an extra transition and place for the only possible synchronisation. We add an
extra place (in line with the prefixes) to mark the fact that a synchronisation has
taken place. Let us note that the extra places a, a and ⌧ are used to understand
whether the two prefixes have been executed singularly (e.g., no synchronisation)
or they contributed to do a synchronisation. Suppose, for example, that the net
had not such places, and suppose that we have two tokens in the places k0 â.b and
k1 ˆ̄a.b. Now, how can we understand whether these two tokens are the result of
the firing sequence a,a or they are the result of the ⌧ transition? It is impossible,
but by using the aforementioned extra-places, which are instrumental to tell if
a single prefix has executed, we can distinguish the ⌧ from the firing sequence
a,a and then reverse accordingly.

Extra place to remember

e.g. similar to a communication key

<latexit sha1_base64="hwxHILeQkL/92QnbqdzAZP9KmMk=">AAAB73icdVDLSgNBEOyNrxhfUY9eBhPB07K7CUm8BTzoMYJ5QLKE2clsMmT24cysEJb8hBcPinj1d7z5N84mEVS0oKGo6qa7y4s5k8qyPozc2vrG5lZ+u7Czu7d/UDw86sgoEYS2ScQj0fOwpJyFtK2Y4rQXC4oDj9OuN73M/O49FZJF4a2axdQN8DhkPiNYaalXHmAeT3B5WCxZ5kWj5lRryDItq247dkacerVSRbZWMpRghdaw+D4YRSQJaKgIx1L2bStWboqFYoTTeWGQSBpjMsVj2tc0xAGVbrq4d47OtDJCfiR0hQot1O8TKQ6knAWe7gywmsjfXib+5fUT5TfclIVxomhIlov8hCMVoex5NGKCEsVnmmAimL4VkQkWmCgdUUGH8PUp+p90HNOumZUbp9S8WsWRhxM4hXOwoQ5NuIYWtIEAhwd4gmfjzng0XozXZWvOWM0cww8Yb5+peI/B</latexit>↵

Two places per prefix
One transition per prefix

Decorates all the places/transitions with

indicating that is their past is <latexit sha1_base64="VjvLTB4wWNbYb/oP0+UnZF6+W6s=">AAAB73icdVDJSgNBEO1xjXGLevTSmAiehp5Joskt6MVjBLNAMoSaTidp0rPY3SOEIT/hxYMiXv0db/6NnUVQ0QcFj/eqqKrnx4IrTciHtbK6tr6xmdnKbu/s7u3nDg6bKkokZQ0aiUi2fVBM8JA1NNeCtWPJIPAFa/njq5nfumdS8Si81ZOYeQEMQz7gFLSR2oUuiHgEhV4uT+xqlZRKZUzsMnFdt2IIKbqVqoMdm8yRR0vUe7n3bj+iScBCTQUo1XFIrL0UpOZUsGm2mygWAx3DkHUMDSFgykvn907xqVH6eBBJU6HGc/X7RAqBUpPAN50B6JH67c3Ev7xOogcVL+VhnGgW0sWiQSKwjvDsedznklEtJoYAldzciukIJFBtIsqaEL4+xf+Tpms753bxxs3XLpdxZNAxOkFnyEEXqIauUR01EEUCPaAn9GzdWY/Wi/W6aF2xljNH6Aest0+xzY/D</latexit>↵

<latexit sha1_base64="k9xPJKftoMbgFxFCgFzcfN8XnYQ=">AAAB9XicdVDJTgJBEO3BDXFDPXrpCCaeJj0DKNyIXjxiIksCSGqaBjr0LOnu0ZAJ/+HFg8Z49V+8+Tc2i4kafUklL+9VpaqeFwmuNCEfVmpldW19I72Z2dre2d3L7h80VBhLyuo0FKFseaCY4AGra64Fa0WSge8J1vTGlzO/ecek4mFwoycR6/owDPiAU9BGus13RqCTDohoBNN8L5sjdqVCisUSJnaJuK5bNoQU3HLFwY5N5sihJWq97HunH9LYZ4GmApRqOyTS3QSk5lSwaaYTKxYBHcOQtQ0NwGeqm8yvnuITo/TxIJSmAo3n6veJBHylJr5nOn3QI/Xbm4l/ee1YD8rdhAdRrFlAF4sGscA6xLMIcJ9LRrWYGAJUcnMrpiOQQLUJKmNC+PoU/08aru2c2YVrN1e9WMaRRkfoGJ0iB52jKrpCNVRHFEn0gJ7Qs3VvPVov1uuiNWUtZw7RD1hvn4vbkpA=</latexit>

↵̂

Encoding: nil and prefix examples
10 H. Melgratti, C. A. Mezzina, G. M. Pinna

0

(a) N (0)

b.0

b̂.0

b̂.b

b

(b) N (b.0)

a.b.0 â.b.0

â.a

â.b̂.0

â.b̂.b

a â.b

(c) N (a.b.0)

Fig. 8: Example of nets corresponding to CCS processes

4 CCS processes as unravel nets

We now recall the encoding of CCS terms into Petri nets due to Boudol and
Castellani [3]. We just recall that originally the encoding was on proved terms
instead of plain CCS. The di↵erence between proved terms and CCS is that
somehow in a proved term the labels carry the position of the process who
did the action. Hence, we will use decorated version of labels. For instance, â.b
denotes an event b which past was a. That is, if we want to indicate the event
b of the term a.b we will write â.b. Analogously, labels carry also information
about the syntactical structure of a term, actions corresponding to subterms of
a choice and of a parallel composition are also decorated with an index i that
indicates the subterm that performs the actions. An interesting aspect of this
encoding is that these information is reflected in the name of the places and
the transitions of the nets, which simplifies the formulation of the behavioural
correspondence of a term and its associated net. We write `() for the function
that removes decorations for a name, e.g., `(â.b̂.c) = c.

We now are in place to define and comment the encoding of a CCS term into
a net. The encoding is inductively defined on the structure of the CCS process.
For a CCS process P , its encoded net is N (P) = hSP , TP , FP ,mP i. The net
corresponding to the inactive process 0, is just a net with just one marked place
and with no transition, that is:

Definition 8. The net N (0) = h{0}, ;, ;, {0}i is the net associated to 0 and it

is called zero.

To ease notation in the constructions we are going to present, we adopt following
conventions: let X ✓ S [T be a set of places and transitions, we write â.X for
the set {â.x | x 2 X} containing the decorated versions of places and transitions
in X. Analogously we lift this notation to relations: if R is a binary relation on
(S [T), then ↵̂.R = {(↵̂.x, ↵̂.y) | (x, y) 2 R} is a binary relation on (↵.S [↵.T).

The net N (↵.P) corresponding to a process ↵.P extends N (P) with two
extra places ↵.P and â.↵ and one transition ↵. The place ↵.P stands for the
process that executes the prefix ↵ and follows by P . The place â.↵ is not in
the original encoding of [3]; we have add it to ensure that the obtained net
is complete, which is essential for the definition of the reversible net. This will
become clearer when commenting the encoding of the parallel composition. It
should be noted that this addition does not interfere with the behaviour of the
net, since all added places are final. Also a new transition, named ↵ is created
and added to the net, and the flow relation is updated accordingly. Figures 8a,

Key place to remember b has been done

Net corresponding to b.0
Parts corresponding to prefix a

^ is used to indicate a past transition

Encoding: parallel example12 H. Melgratti, C. A. Mezzina, G. M. Pinna

k0 a.b k1 a.c

k0 â.b

a a

⌧

b c

k1 ˆ̄a.c

k0 â.b̂ k1 ˆ̄a.ĉ

a

b

⌧ ā

c

(a) N (a.b k ā.c)

+0a.b +1a.c

+0â.b +1ˆ̄a.c

+0â.b̂ +1ˆ̄a.ĉ

b c

a a

a

b

ā

c

(b) N (a.b+ ā.c)

Fig. 9: Example of nets corresponding to CCS parallel and choice operator. We
omit the trailing 0

Definition 10. Let N (P1) and N (P2) be the net associated to the processes P1

and P2. Then N (P1kP2) is the net hSP1kP2
, TP1kP2

, FP1kP2
,mP1kP2

i where

SP1kP2
= k0SP1 [k1SP2 [{s{t,t0} | t 2 TP1 ^ t0 2 TP2 ^ `(t) = `(t0)}

TP1kP2
= k0TP1 [k1TP2 [{{t, t0} | t 2 TP1 ^ t0 2 TP2 ^ `(t) = `(t0)}

FP1kP2
= k0FP1 [k1FP2 [{({t, t0}, s{t,t0}) | t 2 TP1 ^ t0 2 TP2 ^ `(t) = `(t0)}

[{(kis, (t1, t2)) | (s, ti) 2 FPi} [{(kis, (t1, t2)) | (s, ti) 2 FPi}
mP0kP2 = k0mP0 [k1mP1

The encoding of choice operator is similar to the parallel one. The only
di↵erence is that we do not have to deal with possible synchronisations since the
branches of a choice operator are mutually exclusive. Figure 9b reports the net
corresponding to the process a.b + ā.c. As in the previous examples, the net is
built upon the subnets representing a.b and ā.c.

Definition 11. Let N (Pi) be the net associated to the processes Pi for i 2 I.
Then +i2IPi is the net hS+i2IPi , T+i2IPi , F+i2IPi ,m+i2IPii where:

S+i2IPi = [i2I+iSPi

T+i2IPi = [i2I+iTPi

F+i2IPi = {(+ix,+iy) | (x, y) 2 FPi} [{(+js,+it) | s 2 mPj ^ •t 2 mPi ^ i 6= j}
m+i2IPi = [i2I+imPi .

We write T a for the set {t 2 T | nm(`(t)) = a}. The encoding of the hiding
operator simply removes all transitions whose labels corresponds to actions over
the restricted name.

Left part of the parallel is the process

decorated with ||0 to indicate it is the left one

• All the transitions/places are decorated  

with ||0

We add all the possible synchronisations/tau moves

Right part of the parallel is the process

decorated with ||1 to indicate it is the right one

• All the transitions/places are decorated  

with ||1

Encoding: choice example
12 H. Melgratti, C. A. Mezzina, G. M. Pinna

k0 a.b k1 a.c

k0 â.b

a a

⌧

b c

k1 ˆ̄a.c

k0 â.b̂ k1 ˆ̄a.ĉ

a

b

⌧ ā

c

(a) N (a.b k ā.c)

+0a.b +1a.c

+0â.b +1ˆ̄a.c

+0â.b̂ +1ˆ̄a.ĉ

b c

a a

a

b

ā

c

(b) N (a.b+ ā.c)

Fig. 9: Example of nets corresponding to CCS parallel and choice operator. We
omit the trailing 0

Definition 10. Let N (P1) and N (P2) be the net associated to the processes P1

and P2. Then N (P1kP2) is the net hSP1kP2
, TP1kP2

, FP1kP2
,mP1kP2

i where

SP1kP2
= k0SP1 [k1SP2 [{s{t,t0} | t 2 TP1 ^ t0 2 TP2 ^ `(t) = `(t0)}

TP1kP2
= k0TP1 [k1TP2 [{{t, t0} | t 2 TP1 ^ t0 2 TP2 ^ `(t) = `(t0)}

FP1kP2
= k0FP1 [k1FP2 [{({t, t0}, s{t,t0}) | t 2 TP1 ^ t0 2 TP2 ^ `(t) = `(t0)}

[{(kis, (t1, t2)) | (s, ti) 2 FPi} [{(kis, (t1, t2)) | (s, ti) 2 FPi}
mP0kP2 = k0mP0 [k1mP1

The encoding of choice operator is similar to the parallel one. The only
di↵erence is that we do not have to deal with possible synchronisations since the
branches of a choice operator are mutually exclusive. Figure 9b reports the net
corresponding to the process a.b + ā.c. As in the previous examples, the net is
built upon the subnets representing a.b and ā.c.

Definition 11. Let N (Pi) be the net associated to the processes Pi for i 2 I.
Then +i2IPi is the net hS+i2IPi , T+i2IPi , F+i2IPi ,m+i2IPii where:

S+i2IPi = [i2I+iSPi

T+i2IPi = [i2I+iTPi

F+i2IPi = {(+ix,+iy) | (x, y) 2 FPi} [{(+js,+it) | s 2 mPj ^ •t 2 mPi ^ i 6= j}
m+i2IPi = [i2I+imPi .

We write T a for the set {t 2 T | nm(`(t)) = a}. The encoding of the hiding
operator simply removes all transitions whose labels corresponds to actions over
the restricted name.

Similarly to the encoding of || we distinguish left +0 part of the process from the right one +1
Mutual exclusion/conflict of initial transitions

Reversible Unravel nets

Towards a truly concurrent semantics for reversible CCS 9

with a unique non-reversing transition t (condition 1) and its e↵ects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U ! T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = hS, T, U, F,mi be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = hS, T, U, F,mi be an rUN and � be an fs. Then, there exists an fs �0 such
that X�0 ✓ T \ U and lead(�) = lead(�0).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = hS, T, F,mi be a complete unravel net and U ✓ T the

set of transitions to be reversed. Define
�!

NU = hS0, T0, U0, F0,m0i where S = S0
,

U 0 = U ⇥ {r}, T 0 = (T ⇥ {f}) [U 0
,

F 0 = {(s, (t, f)) | (s, t) 2 F} [{((t, f), s) | (t, s) 2 F} [
{(s, (t, r)) | (t, s) 2 F} [{((t, r), s) | (s, t) 2 F}

and m0 = m. Then
�!

NU
is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
�!

N instead of
�!

N T when N = hS, T, F,mi, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N 0

aa b b

cc

(c)
�!

N 0

Fig. 7: An UN N , its complete version N 0 and the associated rUN
�!

N 0

For each forward transition we add an exact inverse one

Results

14 H. Melgratti, C. A. Mezzina, G. M. Pinna

⇢(hi . P) = P

⇢(h ,↵z
z,

X

i2I\{z}

↵i.Pii ·m . P) = ⇢(m .
X

i2I

↵i.Pi)

⇢(hii ·m . P) = hii ·m . P

⇢(P1kP2) = ⇢(m . P 0
1kP 0

2) where ⇢(Pi) = hii ·m . P 0
i ^ i 2 {1, 2}

⇢(P \ a) = ⇢(P) \ a

Fig. 11: The ancestor of an RCCS process

stored into memories. The only point in which a process has to wait for its sibling
is when a memory fork h1i or h2i is met.

Definition 13. Given a coherent RCCS process R, its ancestor ⇢(R) is induc-

tively defined as in Figure 11.

The idea behind the ancestor process is that the encoding of an RCCS process
and of its ancestor should give the same net, what changes is the position where
the markings are placed. And such position is derived by the information stored
into memories. We then define the marking function µ(·) defined inductively as
follows:

µ(hi . P) = {P} µ(P0kP1) = k0µ(P0) [k1µ(P1) µ(P \ a) = \aµ(P1)

µ(hm0,↵i, Qi ·m . P) = µ(m .+i↵̂.P) [{st,t0 | t = m .+i↵ ^ t = m0 .+i
0↵}

µ(h⇤,↵i, Qi ·m . P) = µ(m .+i↵̂.P) [µ(m .+i↵)

We are now in place to define what is the reversible net corresponding to an
RCCS process:

Definition 14. Let R be an RCCS term with ⇢(R) = P . Then
���!

N (R) is the net

hS, T, F, µ(R)i where N (P) = hS, T, F,mi.

Proposition 3. Let R be an RCCS term with ⇢(R) = P . Then
���!

N (R) is a

reversible unravel net.

In a few words Proposition 3 tells us that the reversible net corresponding to
a coherent RCCS R is that one of its ancestor. The contribution of R to the
construction of its net relies in the markings, that is the computational history
contained in R is what determines the markings. This is rendered in Figures 12a
and 12b where the two nets are the same since the two processes R1 and R2

shares the same origin. What changes is the where markings are placed, since
R1 and R2 represents di↵erent computation from the origin process.

We can now state our main result in terms of bisimulation:

Ancestor of R
Marking derived from the memory of R

What changes from N(R) and N(P) is the marking

Towards a truly concurrent semantics for reversible CCS 15

k0 a.b k1 a.c

k0 â.b k1 ˆ̄a.c

k0 â.b̂ k1 ˆ̄a.ĉ

a a

b c

⌧

aa

bb

⌧ ⌧ ā ā

c c

(a)
����!

N (R1)

k0 a.b k1 a.c

k0 â.b k1 ˆ̄a.c

k0 â.b̂ k1 ˆ̄a.ĉ

a a

b c

⌧

aa

bb

⌧ ⌧ ā ā

c c

(b)
����!

N (R2)

Fig. 12: Example of nets corresponding to RCCS process R1 = h⇤, a1,0i ·h1i · hi.
b k h2i · hi . ā.c and R2 = h⇤, b1,0i · hm2, a1,0i · h1i · hi . b k hm1, a

1,0i · h2i · hi . c
with mi = hii · hi

Theorem 1. Let P be a finite CCS process, then hi . P ⇠
���!

N (P).

Proof sketch. It is su�cient to show that

R = {(R, hS, T, F, µ(R)i) | ⇢(R) = P,
���!

N (P) = hS, T, F,mi}

is a bisimulation. Let us note that all the transitions in the generated net have a
unique name, which is the path from the root to the term in the abstract syntax
tree. There is a one to one correspondence between this path and the memory
of a process which can mimic the same action/transition.

5 Conclusions and future works

On the line of previous research we have equipped a reversible process calculus
with a non sequential semantics by using the classical encoding of process calculi
into nets. What comes out from the encoding is that the machinery to reverse a
process was already present in the encoding.

Our result relies on unravel nets, that are able to represent or -causality.
The consequence is that the same event may have di↵erent pasts. Unravel nets
are naturally related to bundle event structures [11,12], where the dependencies
are represented using bundles, namely finite subsets of conflicting events, and
the bundle relation is usually written as X 7! e. Starting from an unravel net
hS, T, F,mi, and considering the transition t 2 T , the bundles representing the
dependencies are •s 7! t for each s 2 •t, and the conflict relation can be easily
inferred by the semantic one definable on the unravel net. This result relies on the
fact that in any unravel net, for each place s, the transitions in •s are pairwise
conflicting. The reversible bundle structures add to the bundle relation (defined
also on the reversing events) a prevention relation, and the intuition behind

Towards a truly concurrent semantics for reversible CCS 15

k0 a.b k1 a.c

k0 â.b k1 ˆ̄a.c

k0 â.b̂ k1 ˆ̄a.ĉ

a a

b c

⌧

aa

bb

⌧ ⌧ ā ā

c c

(a)
����!

N (R1)

k0 a.b k1 a.c

k0 â.b k1 ˆ̄a.c

k0 â.b̂ k1 ˆ̄a.ĉ

a a

b c

⌧

aa

bb

⌧ ⌧ ā ā

c c

(b)
����!

N (R2)

Fig. 12: Example of nets corresponding to RCCS process R1 = h⇤, a1,0i ·h1i · hi.
b k h2i · hi . ā.c and R2 = h⇤, b1,0i · hm2, a1,0i · h1i · hi . b k hm1, a

1,0i · h2i · hi . c
with mi = hii · hi

Theorem 1. Let P be a finite CCS process, then hi . P ⇠
���!

N (P).

Proof sketch. It is su�cient to show that

R = {(R, hS, T, F, µ(R)i) | ⇢(R) = P,
���!

N (P) = hS, T, F,mi}

is a bisimulation. Let us note that all the transitions in the generated net have a
unique name, which is the path from the root to the term in the abstract syntax
tree. There is a one to one correspondence between this path and the memory
of a process which can mimic the same action/transition.

5 Conclusions and future works

On the line of previous research we have equipped a reversible process calculus
with a non sequential semantics by using the classical encoding of process calculi
into nets. What comes out from the encoding is that the machinery to reverse a
process was already present in the encoding.

Our result relies on unravel nets, that are able to represent or -causality.
The consequence is that the same event may have di↵erent pasts. Unravel nets
are naturally related to bundle event structures [11,12], where the dependencies
are represented using bundles, namely finite subsets of conflicting events, and
the bundle relation is usually written as X 7! e. Starting from an unravel net
hS, T, F,mi, and considering the transition t 2 T , the bundles representing the
dependencies are •s 7! t for each s 2 •t, and the conflict relation can be easily
inferred by the semantic one definable on the unravel net. This result relies on the
fact that in any unravel net, for each place s, the transitions in •s are pairwise
conflicting. The reversible bundle structures add to the bundle relation (defined
also on the reversing events) a prevention relation, and the intuition behind

Reversibility in blockchains?
Revert in Solidity

Revert and Ethereum
From stack overflow

“Revert op code” means any EVM (that is the virtual machine that execute your
code or the code of the applications you use on the Ethereum network)
instruction that give to it the command to erase and nullify the last elaborations,
made by the current task, “reverting” the blockchain status to that before your
code run.

That is if you make some operations on the blockchain (mint, transfer, read,
write, etc) but a revert op code is encountered, all is erased and the blockchain
remain that it was before you tried to change (by your code).

