Towards Bridging Time and Causal Reversibility

Marco Bernardo and Claudio Antares Mezzina
Dipartimento di Scienze Pure e Applicate, Università di Urbino, Italy

Reversibility?

In a reversible system we can observe two directions of computation: forward and backward

Different interpretations of reversibility in different fields:

- Petri nets $=$ the ability to return to the initial marking
- Distributed systems = the ability to return to a past consistent state
- Performances evaluation = time reversibility
- Thermodynamics = entropy is minimised when a process is nearly reversible

Our Aim

- Our focus is in the relationship between time and causal consistent reversibility
- from a process algebraic point of view

Causal Consistent Reversibility

- If something goes wrong start undoing from the last action till the "nearest" safe state
- In a distributed system it is hard to tell which was the last performed action
- A good approximation is to consider as last action any action which has no causes
- Causal Consistent reversibility relates causality with reversibility
- Concurrent/independent actions can be reverted in any order

Causal Consistent Reversibility in PA

There exist two approaches to reverse CCS

- Dynamic approach proposed by Danos \& Krivine
- uses a stack-based memory to remember all the actions
- more suitable with calculi with reduction semantics
- Static approach proposed by Ulidowski \& Phillips
- makes all the operator static
- very handy with CCS-like calculi with LTSs

Static Reversibility

Dynamic operators (e.g., prefixes and non-deterministic choices) are forgetful

$$
a . P+b . Q \xrightarrow{a} P
$$

After the reduction we lose informations about the discarded branch and the executed action

$$
a \cdot P+b \cdot Q \xrightarrow{a[i]} a[i] \cdot P+b \cdot Q
$$

The red terms are considered decorations of the process

$$
a[i] \cdot P+b \cdot Q=C[P]
$$

Time Reversibility

- Time reversibility is instrumental to develop efficient analysis methods
- Considered in the performance evaluation field
- Related to time-reversal Markov chains
- A continuous-time Markov chain is time reversible if its behaviour remains the same when the direction of time is reversed [Kelly]
- Mostly used in the theory of queuing networks
[Kelly] Reversibility and Stochastic Networks. John Wiley \& Sons, 1979.

Markov process syllabus

- A reversible process is an ergodic process
- A CTMC is time reversible
iff $\left(X\left(t_{i}\right)\right)_{1 \leq i \leq n}$ has the same joint distribution as $\left(X\left(t^{\prime}-t_{i}\right)\right)_{1 \leq i \leq n}$
- In which case $X(t)$ and its reversed $\operatorname{Xr}(\mathrm{t})$ are stocastically equivalent
- For a stationary CTMC to be time reversible it is necessary and sufficient to verify the partial balance equation for every state

$$
\pi(s) \cdot q_{s, s^{\prime}}=\pi\left(s^{\prime}\right) \cdot q_{s^{\prime}, s}
$$

RMPC - Syntax

Reversible Markovian Process Calculus

$$
\begin{aligned}
P, Q & ::=\mathbf{0}|(a, \lambda) \cdot P| P+Q \mid P \|_{L} Q \\
R, S & ::=P|(a, \lambda)[i] \cdot R| R+S \mid R \|_{L} S
\end{aligned}
$$

- Each action is paired with a real positive rate λ, μ
- Cooperation is done à la CSP $\|_{L}$
- No recursion (otherwise infinite state)
- From a stochastic process algebra a CTMC can be derived [Hillston]
[Hillston] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

RMPC Semantics

$\operatorname{std}(R)=$ history less process

$$
\begin{array}{r}
\operatorname{ACT} 1 \frac{\operatorname{std}(R)}{(a, \lambda) \cdot R \xrightarrow{(a, \lambda)[i]} \longrightarrow(a, \lambda)[i]} R \\
\operatorname{AcT} 2 \frac{R \xrightarrow{(b, \mu)[j]} R^{\prime} \quad j \neq i}{(a, \lambda)[i] \cdot R \xrightarrow{(b, \mu)[j]}(a, \lambda)[i] \cdot R^{\prime}} \\
\text { Сно } \frac{R \xrightarrow{(a, \lambda)[i]} R^{\prime}}{R+S \xrightarrow{(a, \lambda)[i]} R^{\prime}+S} \operatorname{std}(S)
\end{array}
$$

$$
\operatorname{Act1}^{\bullet} \frac{\operatorname{std}(R)}{(a, \lambda)[i] \cdot R \stackrel{(a, \bar{\lambda})[i]}{\sim}(a, \lambda) \cdot R}
$$

How do we set $\bar{\lambda}$?
$\operatorname{ACT}^{\bullet} \frac{R \stackrel{(b, \bar{\mu})[j]}{\leadsto} R^{\prime} \quad j \neq i}{(a, \lambda)[i] \cdot R \stackrel{(b, \bar{\mu})[j]}{\rightsquigarrow}(a, \lambda)[i] \cdot R^{\prime}}$

$\operatorname{PAR} \frac{R \xrightarrow{(a, \lambda)[i]} R^{\prime} \quad a \notin L \quad i \notin \operatorname{key}(S)}{R\left\|_{L} S \xrightarrow{(a, \lambda)[i]} R^{\prime}\right\|_{L} S}$

$$
\operatorname{PAR}^{\bullet} \frac{R \stackrel{(a, \bar{\lambda})[i]}{\leadsto} R^{\prime} \quad a \notin L \quad i \notin \operatorname{key}(S)}{R\left\|_{L} S \stackrel{(a, \bar{\lambda})[i]}{\leadsto} R^{\prime}\right\|_{L} S}
$$

$$
\mathrm{CoO} \frac{R \xrightarrow{(a, \lambda)[i]} R^{\prime} \quad S \xrightarrow{(a, \mu)[i]} S^{\prime} \quad a \in L}{R\left\|_{L} S \xrightarrow{(a, \lambda \cdot \mu)[i]} R^{\prime}\right\|_{L} S^{\prime}}
$$

$\stackrel{(a, \lambda)[i]}{ } R^{\prime} S \stackrel{(a, \bar{\mu})[i]}{ }$
$\mathrm{CoO}^{\bullet} \xrightarrow{R \stackrel{(a, \bar{\lambda})}{\longrightarrow} R^{\prime} S \xrightarrow[\sim]{(a, \bar{\mu}(i)} S^{\prime} \quad a \in L}$
$R\left\|_{L} S \xrightarrow[\sim]{(a, \bar{\lambda} \cdot \bar{\mu})[i]} R^{\prime}\right\|_{L} S^{\prime}$

RMPC results $\mathbf{1 / 2}$

To prove causal consistency there is no need to specify how $\bar{\lambda}$ is calculated

Lemma 1 (loop lemma). Let $R \in \mathcal{P}$ be a reachable process. Then $R \xrightarrow{(a, \lambda)[i]} S$
iff $S \stackrel{(a, \bar{\lambda})[i]}{\sim} R$.

Theorem 1 (causal consistency). Let ω_{1} and ω_{2} be coinitial computations. Then $\omega_{1} \asymp \omega_{2}$ iff ω_{1} and ω_{2} are cofinal too.

Explanation of causal consistency on traces

RMPC results 2/2

Markov Chain associated to process R

Theorem 2 (time reversibility). Let $R \in \mathcal{P}$ be an initial process. If every backward rate is equal to the corresponding forward rate, then $\mathcal{M} \llbracket R \rrbracket$ is time reversible.

Corollary 3 (product form). Let $R, S \in \mathcal{P}$ be initial processes and $L \subseteq \mathcal{A}$. If every backward rate is equal to the corresponding forward rate and the set of states \mathcal{S} of $\mathcal{M} \llbracket R \|_{L} S \rrbracket$ is equal to $\mathcal{S}_{R} \times \mathcal{S}_{S}$ where \mathcal{S}_{R} is the set of states of $\mathcal{M} \llbracket R \rrbracket$ and \mathcal{S}_{S} is the set of states of $\mathcal{M} \llbracket S \rrbracket$, then $\pi(r, s)=\pi_{R}(r) \cdot \pi_{S}(s)$ for all $(r, s) \in \mathcal{S}_{R} \times \mathcal{S}_{S}$.

RMPC results sum up

- Reversibility induced by RMPC is causal consistent (whatever the negative rate is)
- Reversibility induced by RMPC is time reversible if we set $\lambda=\bar{\lambda}$
- Hence when $\lambda=\bar{\lambda}$ reversibility in RMPC is both time and causal consistent

Future work

- The cooperation operator may not require communication keys
- No communication keys = no state explosion with recursion

$$
P=(a, \lambda) \cdot P
$$

- Find new condition (e.g., different from rate equality) under which time and causal reversibility holds

Easter egg

Probabilistic bisimulation

- back and forth bisimulation coincides with strong bisimulation [DNMVaandrager90]
- Following this result we have shown that back and forth markovian bisimulation coincides with markovian bisimulation (e.g., the extortion of normal bisimulation with rates)
- Open question: what about Sproston\&Donatelli's Backward Bisimulation

Ester egg 2

Process Algebras and Markovian Chains [Brinksma\&Hermanns]

Maximal progress of TPL (and revTPL) has tight connection with Markov chains [3]: a behaviour $\tau . P+(\lambda) \cdot Q$ (where λ is a rate) will not be delayed since τ is instantaneously enabled. This somehow resembles the maximal progress for the timeout operator.

$$
\begin{array}{r}
\operatorname{SToUT} \frac{X \xrightarrow{\pi} \quad \operatorname{std}(X) \quad \operatorname{std}(Y)}{\lfloor X\rfloor(Y) \xrightarrow{\sigma[i]}\lfloor X\rfloor[\underset{\rightarrow}{i}](Y)} \\
\text { SYNW } \xrightarrow{X \xrightarrow{\sigma[u]} X^{\prime} \quad Y \xrightarrow{\sigma[v]} Y^{\prime} \quad(X \| Y) \xrightarrow{\tau} \rightarrow \quad \delta(u, v)=w} \\
X\left\|Y \xrightarrow{\sigma[w]} X^{\prime}\right\| Y^{\prime}
\end{array}
$$

