
NiRvAna Kick off meeting @ Fano

Towards Bridging Time and Causal Reversibility

Marco Bernardo and Claudio Antares Mezzina

Dipartimento di Scienze Pure e Applicate, Università di Urbino, Italy

Abstract. Causal consistent reversibility blends causality and reversibil-
ity. For a concurrent system, it says that an action can be undone pro-
vided this has no consequences, thereby making it possible to bring the
system back to a past consistent state. Time reversibility is considered
instead in the performance evaluation field. A continuous-time Markov
chain is time reversible if its behavior remains the same when the direc-
tion of time is reversed. We try to bridge these two theories by showing
the conditions under which both causal consistent reversibility and time
reversibility can be achieved in the setting of a stochastic process algebra.

1 Introduction

The interest into computation reversibility dates back to the 60’s, when it was
observed that irreversible computations cause heat dissipation into circuits [16].
This suggested that low energy consumption could be achieved by resorting to re-
versible computing, in which there is no information loss [3]. Nowadays, reversible
computing has several applications ranging from biochemical reactions [30,29]
and parallel discrete-event simulation [27,32] to robotics [22], control theory [33],
fault tolerant systems [6,36,17,35], and program debugging [7,20].

In a reversible system, we can observe two directions of computation: a for-
ward one, coinciding with the normal way of computing, and a backward one,
which is able to undo the e↵ects of the forward one. In the literature, there exist
di↵erent meanings of reversibility. For instance, in a Petri net model reversibil-
ity means that one can always reach the initial marking [2], while in distributed
systems it amounts to the capability of returning to a past consistent state [5].
In contrast, in the performance evaluation field, reversibility is intended as time
reversibility and is instrumental to develop e�cient analysis methods [13].

Our focus is on the relationship between causal consistent reversibility and
time reversibility, from a process algebraic perspective. On the one hand, quan-
titative aspects have been disregarded in the setting of causal consistent re-
versibility. On the other hand, the theory of time reversibility has been applied
to concurrent systems without explicitly taking causality into account.

In this paper, instead, we aim at bridging these two theories, by showing how
causal consistent reversibility and time reversibility can be jointly obtained. To
this purpose, we consider a stochastic process calculus in which every action is
equipped with a positive real number expressing the rate at which the action is
executed. As is well known in the literature [10], the stochastic process underlying
the calculus turns out to be a continuous-time Markov chain (CTMC) [14].

Reversibility?

In a reversible system we can observe two directions of computation: forward
and backward

Different interpretations of reversibility in different fields:

• Petri nets = the ability to return to the initial marking

• Distributed systems = the ability to return to a past consistent state

• Performances evaluation = time reversibility

• Thermodynamics = entropy is minimised when a process is nearly reversible

Our Aim

• Our focus is in the relationship between time and causal consistent
reversibility

• from a process algebraic point of view

Causal Consistent Reversibility

• If something goes wrong start undoing from the last action till the “nearest”
safe state

• In a distributed system it is hard to tell which was the last performed action

• A good approximation is to consider as last action any action which has no
causes

• Causal Consistent reversibility relates causality with reversibility

• Concurrent/independent actions can be reverted in any order

Causal Consistent Reversibility in PA

There exist two approaches to reverse CCS

• Dynamic approach proposed by Danos & Krivine

• uses a stack-based memory to remember all the actions

• more suitable with calculi with reduction semantics

• Static approach proposed by Ulidowski & Phillips

• makes all the operator static

• very handy with CCS-like calculi with LTSs

Static Reversibility

Dynamic operators (e.g., prefixes and non-deterministic choices) are forgetful

a.P + b.Q
a�! P

<latexit sha1_base64="rUH7P9q39gAIyZFe+0DjnwPthNo=">AAACBnicbVDJSgNBEO2JW4zbqEcRGhNBEIaZIKi3oBePEzALJEOo6fQkTXoWunvUMOTkxV/x4kERr36DN//GznLQxAcFj/eqqKrnJ5xJZdvfRm5peWV1Lb9e2Njc2t4xd/fqMk4FoTUS81g0fZCUs4jWFFOcNhNBIfQ5bfiD67HfuKNCsji6VcOEeiH0IhYwAkpLHfOwBJaLT7FvVXH7QbBeX4EQ8X0GI+yWOmbRtuwJ8CJxZqSIZnA75le7G5M0pJEiHKRsOXaivAyEYoTTUaGdSpoAGUCPtjSNIKTSyyZvjPCxVro4iIWuSOGJ+nsig1DKYejrzhBUX857Y/E/r5Wq4MLLWJSkikZkuihIOVYxHmeCu0xQovhQEyCC6Vsx6YMAonRyBR2CM//yIqmXLefMuqyWi5WrWRx5dICO0Aly0DmqoBvkohoi6BE9o1f0ZjwZL8a78TFtzRmzmX30B8bnD43Ol1A=</latexit>

After the reduction we lose informations about the discarded branch and the
executed action

a.P + b.Q
a[i]��! a[i].P+b.Q

<latexit sha1_base64="2VakcMtm7JBhWyHwmx8Af8OuWso=">AAACMHicbVDLSgMxFM34rPVVdekm2AqCMMwUQd0VXeiyBfuAzlDuZNI2NPMgyahlmE9y46foRkERt36F6WNhWw8EDufew7k5XsyZVJb1biwtr6yurec28ptb2zu7hb39howSQWidRDwSLQ8k5SykdcUUp61YUAg8Tpve4Ho0b95TIVkU3qlhTN0AeiHrMgJKS53CTQnMKj7FnlnDzqNgvb4CIaKHFNrMzXDqjCNSQf1spJhZFc+IE2tW6hSKlmmNgReJPSVFNEW1U3hx/IgkAQ0V4SBl27Zi5aYgFCOcZnknkTQGMoAebWsaQkClm46DM3ysFR93I6FfqPBY/etIIZByGHh6MwDVl/OzkfjfrJ2o7oWbsjBOFA3JJKibcKwiPGoP+0xQovhQEyCC6Vsx6YMAonTHeV2CPf/lRdIom/aZeVkrFytX0zpy6BAdoRNko3NUQbeoiuqIoCf0ij7Qp/FsvBlfxvdkdcmYeg7QDIyfX1jVqJ0=</latexit>

The red terms are considered decorations of the process

a[i].P+b.Q = C[P]

<latexit sha1_base64="TkdVjQ4bhVXkYStbON7IsuEWHnQ=">AAACM3icbVDLSsNAFJ34rPUVdelmsBUEISRFUBdCsRtxlYJ9QBrKZDJph04ezEyEEvJPbvwRF4K4UMSt/+A07aK2Xhg4c865984cL2FUSNN801ZW19Y3Nktb5e2d3b19/eCwLeKUY9LCMYt510OCMBqRlqSSkW7CCQo9RjreqDHRO4+ECxpHD3KcEDdEg4gGFCOpqL5+X816xZSMEz9HDnWN3IbZOZxjPaOZQ3gD550NJ7fn725e7esV0zCLgsvAmoEKmJXd1196fozTkEQSMySEY5mJdDPEJcWM5OVeKkiC8AgNiKNghEIi3KzYmcNTxfgwiLk6kYQFO9+RoVCIcegpZ4jkUCxqE/I/zUllcOVmNEpSSSI8XRSkDMoYTgKEPuUESzZWAGFO1VshHiKOsFQxl1UI1uKXl0G7ZlgXxnWzVqnfzuIogWNwAs6ABS5BHdwBG7QABk/gFXyAT+1Ze9e+tO+pdUWb9RyBP6X9/ALQD6ut</latexit>

Time Reversibility

• Time reversibility is instrumental to develop efficient analysis methods

• Considered in the performance evaluation field

• Related to time-reversal Markov chains

• A continuous-time Markov chain is time reversible if its behaviour remains the
same when the direction of time is reversed [Kelly]

• Mostly used in the theory of queuing networks

[Kelly] Reversibility and Stochastic Networks. John Wiley & Sons, 1979.

Markov process syllabus

• A reversible process is an ergodic process

• A CTMC is time reversible

• In which case X(t) and its reversed Xr(t) are stocastically equivalent

• For a stationary CTMC to be time reversible it is necessary and sufficient to
verify the partial balance equation for every state

4 M. Bernardo, C.A. Mezzina

of s. The average sojourn time in s is the inverse of such a sum and the probability
of moving from s to s0 is proportional to the corresponding rate.

Every time-homogeneous, ergodic CTMC X(t) is stationary, which means
that (X(ti + t0))1in has the same joint distribution as (X(ti))1in for all
n 2 N�1 and t1 < · · · < tn, t0 2 R�0. Specifically, X(t) has a unique steady-state
probability distribution ⇡ that for all s 2 S fulfills ⇡(s) = limt!1 Pr{X(t) = s |
X(0) = s0} for any s0 2 S. These probabilities can be computed by solving the
linear system of global balance equations ⇡ · Q = 0 subject to

P
s2S ⇡(s) = 1

and ⇡(s) 2 R>0 for all s 2 S. The infinitesimal generator matrix Q contains for
each pair of distinct states the rate of the corresponding move, which is 0 in the
absence of a direct move between them, with qs,s = �

P
s0 6=s qs,s0 for all s 2 S

so that every row of Q sums up to 0.
Due to state space explosion and numerical stability problems [35], the calcu-

lation of the solution of the global balance equation system is not always feasible.
However, it can be tackled in the case that the behavior of the considered CTMC
remains the same when the direction of time is reversed. A CTMC X(t) is
time reversible i↵ (X(ti))1in has the same joint distribution as (X(t0�ti))1in

for all n 2 N�1 and t1 < · · · < tn, t0 2 R�0, in which case X(t) and its
reversed version Xr(t) = X(t0 � t) are stochastically identical; in particular,
X(t) and Xr(t) share the same steady-state probability distribution ⇡ if any.
In order for a stationary CTMC X(t) to be time reversible, it is necessary and
su�cient that the partial balance equations ⇡(s) · qs,s0 = ⇡(s0) · qs0,s are satisfied
for all s, s0 2 S such that s 6= s0 or, equivalently, that qs1,s2 · . . . ·qsn�1,sn ·qsn,s1 =
qs1,sn · qsn,sn�1 · . . . · qs2,s1 for all n 2 N�2 and distinct s1, . . . , sn 2 S [14].

Time reversibility of CTMC-based compositional models of concurrent sys-
tems has been investigated in [9]. More precisely, conditions relying on the con-
servation of total exit rates of states and of rate products around cycles are
examined, which support the hierarchical and compositional reversal of stochas-
tic process algebra terms. These conditions also lead to the e�cient calculation
of steady-state probability distributions in a product form typical of queueing
theory [16], thus avoiding the need of solving the global balance equation system.
More recently, in [26] similar conditions have been employed to characterize the
class of ⇢-reversible stochastic automata. Under certain constraints, the joint
steady-state probability distribution of the composition of two such automata is
the product of the steady-state probability distributions of the two automata.

4 Integrating Causal and Time Reversibility

In this section, we integrate the two concepts of causal consistent reversibility and
time reversibility recalled in the previous two sections. To do so, we start with a
simple calculus called RMPC – Reversible Markovian Process Calculus, in which
actions are paired with rates, whose syntax and semantics are inspired by the
approach of [29]. Then, we show that the reversibility induced by RMPC is causal
consistent by importing the notion of concurrent transitions from [5]. Finally,
we exhibit the conditions under which time reversibility is achieved too and we

4 M. Bernardo, C.A. Mezzina

of s. The average sojourn time in s is the inverse of such a sum and the probability
of moving from s to s0 is proportional to the corresponding rate.

Every time-homogeneous, ergodic CTMC X(t) is stationary, which means
that (X(ti + t0))1in has the same joint distribution as (X(ti))1in for all
n 2 N�1 and t1 < · · · < tn, t0 2 R�0. Specifically, X(t) has a unique steady-state
probability distribution ⇡ that for all s 2 S fulfills ⇡(s) = limt!1 Pr{X(t) = s |
X(0) = s0} for any s0 2 S. These probabilities can be computed by solving the
linear system of global balance equations ⇡ · Q = 0 subject to

P
s2S ⇡(s) = 1

and ⇡(s) 2 R>0 for all s 2 S. The infinitesimal generator matrix Q contains for
each pair of distinct states the rate of the corresponding move, which is 0 in the
absence of a direct move between them, with qs,s = �

P
s0 6=s qs,s0 for all s 2 S

so that every row of Q sums up to 0.
Due to state space explosion and numerical stability problems [35], the calcu-

lation of the solution of the global balance equation system is not always feasible.
However, it can be tackled in the case that the behavior of the considered CTMC
remains the same when the direction of time is reversed. A CTMC X(t) is
time reversible i↵ (X(ti))1in has the same joint distribution as (X(t0�ti))1in

for all n 2 N�1 and t1 < · · · < tn, t0 2 R�0, in which case X(t) and its
reversed version Xr(t) = X(t0 � t) are stochastically identical; in particular,
X(t) and Xr(t) share the same steady-state probability distribution ⇡ if any.
In order for a stationary CTMC X(t) to be time reversible, it is necessary and
su�cient that the partial balance equations ⇡(s) · qs,s0 = ⇡(s0) · qs0,s are satisfied
for all s, s0 2 S such that s 6= s0 or, equivalently, that qs1,s2 · . . . ·qsn�1,sn ·qsn,s1 =
qs1,sn · qsn,sn�1 · . . . · qs2,s1 for all n 2 N�2 and distinct s1, . . . , sn 2 S [14].

Time reversibility of CTMC-based compositional models of concurrent sys-
tems has been investigated in [9]. More precisely, conditions relying on the con-
servation of total exit rates of states and of rate products around cycles are
examined, which support the hierarchical and compositional reversal of stochas-
tic process algebra terms. These conditions also lead to the e�cient calculation
of steady-state probability distributions in a product form typical of queueing
theory [16], thus avoiding the need of solving the global balance equation system.
More recently, in [26] similar conditions have been employed to characterize the
class of ⇢-reversible stochastic automata. Under certain constraints, the joint
steady-state probability distribution of the composition of two such automata is
the product of the steady-state probability distributions of the two automata.

4 Integrating Causal and Time Reversibility

In this section, we integrate the two concepts of causal consistent reversibility and
time reversibility recalled in the previous two sections. To do so, we start with a
simple calculus called RMPC – Reversible Markovian Process Calculus, in which
actions are paired with rates, whose syntax and semantics are inspired by the
approach of [29]. Then, we show that the reversibility induced by RMPC is causal
consistent by importing the notion of concurrent transitions from [5]. Finally,
we exhibit the conditions under which time reversibility is achieved too and we

RMPC - Syntax
Reversible Markovian Process Calculus

• Each action is paired with a real positive rate

• Cooperation is done à la CSP

• No recursion (otherwise infinite state)

• From a stochastic process algebra a CTMC can be derived [Hillston]

[Hillston] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

Towards Bridging Time and Causal Reversibility 5

compare our setting, in which time reversibility is ensured by construction, with
those of [9,26].

4.1 Syntax and Semantics for RMPC

The syntax of RMPC is shown in Table 1. A forward process P can be one of
the following: the idle process 0; the prefixed process (a,�).P , which is able to
perform an action a at rate � and then continues as process P ; the nondeter-
ministic choice P +Q between processes P and Q; or the cooperation P kL Q,
indicating that processes P and Q execute in parallel and must synchronise only
on actions prescribed by the set L.

A reversible process R is built on top of forward processes. As in [29], the
syntax of reversible processes di↵ers from the one of forward processes by the
fact that in the former each prefix (a,�) can be decorated with a communication
key i thus becoming (a,�)[i]. A process of the form (a,�)[i].R expresses that in
the past the process synchronised with the environment and this synchronisation
was identified by key i. Keys are thus attached only to already executed actions.

P,Q ::= 0 | (a,�).P | P +Q | P kL Q

R,S ::= P | (a,�)[i].R |R+ S |R kL S

Table 1. Syntax of RMPC forward/standard/initial processes and reversible processes

Let A be the set of actions such that a, b 2 A, R = R>0 be the set of rates
such that �, µ 2 R, and K be the set of keys such that i, j 2 K. Let L = A⇥R⇥K
be the set of labels each formed by an action, a rate, and a communication key.
We let ` and its decorated versions range over L. Moreover, given a forward
label ` = (a,�)[i], we denote by ` = (a,�)[i] the corresponding backward label.
Finally, P is the set of processes generated by the production for R in Table 1.

Definition 1 (standard process). Process R 2 P is standard, written std(R),
i↵ it can be derived from the production for P in Table 1.

Definition 2 (process key). The set of keys of process R 2 P, written key(R),
is inductively defined as follows:

key(P) = ; key((a,�)[i].R) = {i} [key(R)

key(R+ S) = key(R) [key(S) key(R kL S) = key(R) [key(S)

The semantics for RMPC is defined as a labeled transition system (P,L, 7�!).
Like in [29], the transition relation 7�!✓ P ⇥ L ⇥ P is given by �! [, where
the forward transition relation �! and the backward transition relation are
the least relations respectively induced by the forward rules in the left part and
the backward rules in the right part of Table 2.

�, µ

<latexit sha1_base64="AckUw8S8ANRh4YHkgk+f89UAABg=">AAAB9HicbVDLSsNAFL2pr1pfVZduBlvBhZSkCOqu6MZlBfuAJpTJZNIOnUnizKRQQr/DjQtF3Pox7vwbp20W2npg4HDOudw7x084U9q2v63C2vrG5lZxu7Szu7d/UD48aqs4lYS2SMxj2fWxopxFtKWZ5rSbSIqFz2nHH93N/M6YSsXi6FFPEuoJPIhYyAjWRvKqLjfZAF+4Iq32yxW7Zs+BVomTkwrkaPbLX24Qk1TQSBOOleo5dqK9DEvNCKfTkpsqmmAywgPaMzTCgiovmx89RWdGCVAYS/Mijebq74kMC6UmwjdJgfVQLXsz8T+vl+rw2stYlKSaRmSxKEw50jGaNYACJinRfGIIJpKZWxEZYomJNj2VTAnO8pdXSbtecy5rNw/1SuM2r6MIJ3AK5+DAFTTgHprQAgJP8Ayv8GaNrRfr3fpYRAtWPnMMf2B9/gDCLJF1</latexit>

kL

<latexit sha1_base64="bFSxVtjKY5Y6RzoID30H66ykyJ0=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEVPJWkCOqt6MWDhwr2A9oQNttNu3SzCbsboYb+Ei8eFPHqT/Hmv3Hb5qCtDwYe780wMy9IOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCcY3M7/zSKVisXjQk4R6ER4KFjKCtZF8u1ztJ1hizin3s7tp1bcrTs2ZA60SNycVyNH07a/+ICZpRIUmHCvVc51EexmWmhFOp6V+qmiCyRgPac9QgSOqvGx++BSdGmWAwliaEhrN1d8TGY6UmkSB6YywHqllbyb+5/VSHV56GRNJqqkgi0VhypGO0SwFNGCSEs0nhmAimbkVkZHJgWiTVcmE4C6/vEra9Zp7Xru6r1ca13kcRTiGEzgDFy6gAbfQhBYQSOEZXuHNerJerHfrY9FasPKZI/gD6/MHTC2S3w==</latexit>

RMPC Semantics
6 M. Bernardo, C.A. Mezzina

Act1
std(R)

(a,�).R
(a,�)[i]����! (a,�)[i].R

Act1• std(R)

(a,�)[i].R
(a,�)[i]

(a,�).R

Act2
R

(b,µ)[j]����! R0 j 6= i

(a,�)[i].R
(b,µ)[j]����! (a,�)[i].R0

Act2• R
(b,µ)[j]

R0 j 6= i

(a,�)[i].R
(b,µ)[j]

(a,�)[i].R0

Cho
R

(a,�)[i]����! R0 std(S)

R+ S
(a,�)[i]����! R0 + S

Cho• R
(a,�)[i]

R0 std(S)

R+ S
(a,�)[i]

R0 + S

Par
R

(a,�)[i]����! R0 a /2 L i /2 key(S)

R kL S
(a,�)[i]����! R0 kL S

Par• R
(a,�)[i]

R0 a /2 L i /2 key(S)

R kL S
(a,�)[i]

R0 kL S

Coo
R

(a,�)[i]����! R0 S
(a,µ)[i]����! S0 a 2 L

R kL S
(a,�·µ)[i]������! R0 kL S0

Coo• R
(a,�)[i]

R0 S
(a,µ)[i]

S0 a 2 L

R kL S
(a,�·µ)[i]

R0 kL S0

Table 2. Structural operational semantic rules for RMPC

Rule Act1 deals with prefixed processes of the form (a,�).P , with P written
as R subject to std(R). In addition to transforming the action prefix into a
transition label, it generates a fresh key i, which is bound to the action (a,�)
thus yielding the label (a,�)[i]. As we can note, the prefix is not discarded by
the application of the rule, instead it becomes a key-storing decoration in the
target process. Rule Act1• reverts the action (a,�)[i] of the process (a,�)[i].R
provided that R is a standard process, which ensures that (a,�)[i] is the only
past action that is left to undo. One of the main design choices of the entire
framework is how the rate � of the backward action is calculated. For the time
being, we leave it unspecified in Act1• as the value of this rate is not necessary
to prove the causal consistency part of reversibility, but as we will see later on
it is important in the proof of time reversibility.

The presence of rules Act2 and Act2• is motivated by the fact that rule
Act1 does not discard the executed prefix from the process it generates. In
particular, rule Act2 allows a prefixed process (a,�)[i].R to execute if R can
itself execute, provided that the action performed by R picks a key j di↵erent
from i. Rule Act2• simply propagates the execution of backward actions from
inner subprocesses that are not standard as long as key uniqueness is preserved.

Unlike the classical rules of the choice operator [26], rule Cho does not
discard the context, i.e., the part of the process that has not contributed to
the action. More in detail, if the process R+ S does an action, say (a,�)[i], and
becomes R0, then the entire process becomes R0+S. In this way, the information

= history less processstd(R)

<latexit sha1_base64="L6mvDQSAAsGznNbVV/E9qx5vFaE=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYCvUTUmKoO6KblxWsQ9oQ5lMJu3QyYOZG6XEfoobF4q49Uvc+TdO2iy09cDA4Zx7uWeOGwuuwLK+jZXVtfWNzcJWcXtnd2/fLB20VZRIylo0EpHsukQxwUPWAg6CdWPJSOAK1nHH15nfeWBS8Si8h0nMnIAMQ+5zSkBLA7NU6QcERgCpAm9avTutDMyyVbNmwMvEzkkZ5WgOzK++F9EkYCFQQZTq2VYMTkokcCrYtNhPFIsJHZMh62kakoApJ51Fn+ITrXjYj6R+IeCZ+nsjJYFSk8DVk1lOtehl4n9eLwH/wkl5GCfAQjo/5CcCQ4SzHrDHJaMgJpoQKrnOiumISEJBt1XUJdiLX14m7XrNPqtd3tbLjau8jgI6Qseoimx0jhroBjVRC1H0iJ7RK3oznowX4934mI+uGPnOIfoD4/MHcc2Tew==</latexit>

How do we set ? �

<latexit sha1_base64="FJtyt0Yp6L7F8ytJzCRJTRa+U2w=">AAAB/XicbVDLSgMxFM3UV62v8bFzE2wFV2WmCOqu6MZlBfuAzlAymUwbmkmGJCPUofgrblwo4tb/cOffmGlnoa0HAodz7uHenCBhVGnH+bZKK6tr6xvlzcrW9s7unr1/0FEilZi0sWBC9gKkCKOctDXVjPQSSVAcMNINxje5330gUlHB7/UkIX6MhpxGFCNtpIF9VPOE8fN45jGTC9G0NrCrTt2ZAS4TtyBVUKA1sL+8UOA0JlxjhpTqu06i/QxJTTEj04qXKpIgPEZD0jeUo5goP5tdP4WnRglhJKR5XMOZ+juRoVipSRyYyRjpkVr0cvE/r5/q6NLPKE9STTieL4pSBrWAeRUwpJJgzSaGICypuRXiEZIIa1NYxZTgLn55mXQadfe8fnXXqDavizrK4BicgDPgggvQBLegBdoAg0fwDF7Bm/VkvVjv1sd8tGQVmUPwB9bnD28flTo=</latexit>

RMPC results 1/2

To prove causal consistency there is no need to specify how is calculated �

<latexit sha1_base64="FJtyt0Yp6L7F8ytJzCRJTRa+U2w=">AAAB/XicbVDLSgMxFM3UV62v8bFzE2wFV2WmCOqu6MZlBfuAzlAymUwbmkmGJCPUofgrblwo4tb/cOffmGlnoa0HAodz7uHenCBhVGnH+bZKK6tr6xvlzcrW9s7unr1/0FEilZi0sWBC9gKkCKOctDXVjPQSSVAcMNINxje5330gUlHB7/UkIX6MhpxGFCNtpIF9VPOE8fN45jGTC9G0NrCrTt2ZAS4TtyBVUKA1sL+8UOA0JlxjhpTqu06i/QxJTTEj04qXKpIgPEZD0jeUo5goP5tdP4WnRglhJKR5XMOZ+juRoVipSRyYyRjpkVr0cvE/r5/q6NLPKE9STTieL4pSBrWAeRUwpJJgzSaGICypuRXiEZIIa1NYxZTgLn55mXQadfe8fnXXqDavizrK4BicgDPgggvQBLegBdoAg0fwDF7Bm/VkvVjv1sd8tGQVmUPwB9bnD28flTo=</latexit>

Towards Bridging Time and Causal Reversibility 7

about +S is preserved. Furthermore, since S is a standard process because of the
premise std(S), it will never execute even if it is present in the process R0 + S.
Hence, the +S can be seen as a decoration, or a dead context, of process R.
Note that, in order to apply rule Cho, at least one of the two processes has to
be standard, meaning that it is impossible for two non-standard processes to
execute if they are composed by a choice operator. Rule Cho• has precisely the
same structure as rule Cho, but uses the backward transition relation. For both
rules, we omit their symmetric variants in which it is S to move.

The semantics of cooperation is inspired by [11]. Rule Par allows process R
within R kL S to individually perform an action (a,�)[i], provided that a /2 L.
Rule Coo allows R and S to cooperate through any action in the set L, provided
that the communication key is the same on both sides. For the sake of simplicity,
the rate of the cooperation action is assumed to be the product of the rates of
the two involved actions [9]. Rules Par• and Coo• respectively have the same
structure as Par andCoo; the symmetric variants of Par and Par• are omitted.

Not all the processes generated by the grammar in Table 1 are meaningful as,
e.g., there might be several action prefixes sharing the same key in a sequential
process, i.e., a process without occurrences of the cooperation operator. We only
consider processes that are initial or reachable in the following sense:

Definition 3 (initial and reachable process). Process R 2 P is initial i↵
std(R) holds. Process R 2 P is reachable i↵ it is initial or can be derived from
an initial one via finitely many applications of the rules for �! in Table 2.

4.2 Properties Preliminary to Reversibility

A basic property to satisfy in order for RMPC to be reversible is the so called
loop lemma [5,28], which will be exploited to establish both causal consistent
reversibility and time reversibility. This property states that each transition of
a reachable process can be undone. Formally:

Lemma 1 (loop lemma). Let R 2 P be a reachable process. Then R
(a,�)[i]����! S

i↵ S
(a,�)[i]

R.

Proof. We proceed by induction on the depth of the derivation of R
(a,�)[i]����! S

(resp., S
(a,�)[i]

R), by noticing that for each forward (resp., backward) rule
there exists a corresponding backward (resp., forward) one.

The lemma generalizes as follows. For any sequence � of n 2 N>0 labels
`1, . . . , `n, let R

��! S be the corresponding forward sequence of transitions

R
`1�! R1

`2�! · · · `n�! S and � be the corresponding backward sequence such

that, for each `i occurring in �, it holds that Ri�1
`i�! Ri i↵ Ri

`i
Ri�1.

A direct consequence of the loop lemma is the following:

Corollary 1. Let R 2 P be a reachable process. Then R
�7�! S i↵ S

�7�! R.

10 M. Bernardo, C.A. Mezzina

Equivalence ⇣ states that if we have two concurrent transitions, then the two
computations obtained by swapping the order of their execution are the same,
and that any computation composed by a transition followed by its inverse is
equivalent to the empty computation. The proof of causal consistency relying on
⇣ follows that of [5], although the arguments are di↵erent due to the fact that
the notion of concurrent transitions is formalized di↵erently.

The following lemma says that, up to causal equivalence, one can always
reach for the maximum freedom of choice among transitions, meaning that it is
possible to undo all the executed actions and then restart.

Lemma 3 (rearranging lemma). For any computation ! there exist two for-
ward computations !1 and !2 such that ! ⇣ !1;!2.

Proof. By induction on the length of ! and on the distance (intended as number
of transitions) between the beginning of ! and the earliest pair of consecutive
transitions in ! such that the former is forward while the latter is backward.
The analysis uses both the loop lemma (Lemma 1) and the diamond lemma
(Lemma 2).

The following lemma says that if two computations !1 and !2 are coinitial
and cofinal and !2 is made of forward transitions only, then in !1 there are some
transitions that are later undone. This computation is thus causally equivalent
to a forward one in which the undone transitions do not take place at all.

Lemma 4 (shortening lemma). Let !1 and !2 be coinitial and cofinal com-
putations, with !2 forward. Then there exists a forward computation !0

1 of length
at most that of !1 such that !0

1 ⇣ !1.

Proof. The proof is by induction on the length of !1, using the diamond lemma
(Lemma 2) and the rearranging lemma (Lemma 3). In the proof, the forward
computation !2 is the main guideline for shortening !1 into a forward computa-
tion. Indeed, the proof relies crucially on the fact that !1 and !2 share the same
source and the same target and that !2 is a forward computation.

Theorem 1 (causal consistency). Let !1 and !2 be coinitial computations.
Then !1 ⇣ !2 i↵ !1 and !2 are cofinal too.

Proof. The ‘if’ direction follows by definition of causal equivalence and computa-
tion composition. The ‘only if’ direction exploits the diamond lemma (Lemma 2),
the rearranging lemma (Lemma 3), and the shortening lemma (Lemma 4).

With Theorem 1 we have proved that the notion of causal equivalence char-
acterises a space for admissible rollbacks that are (i) consistent in the sense that
they do not lead to previously unreachable states and (ii) flexible enough to allow
undo operations to be rearranged. This implies that the states reached by a back-
ward computation could be reached by performing forward computations only.
We can therefore conclude that RMPC is causal consistent reversible.

Explanation of causal consistency on traces

2

1

3

1

3

10 M. Bernardo, C.A. Mezzina

Equivalence ⇣ states that if we have two concurrent transitions, then the two
computations obtained by swapping the order of their execution are the same,
and that any computation composed by a transition followed by its inverse is
equivalent to the empty computation. The proof of causal consistency relying on
⇣ follows that of [5], although the arguments are di↵erent due to the fact that
the notion of concurrent transitions is formalized di↵erently.

The following lemma says that, up to causal equivalence, one can always
reach for the maximum freedom of choice among transitions, meaning that it is
possible to undo all the executed actions and then restart.

Lemma 3 (rearranging lemma). For any computation ! there exist two for-
ward computations !1 and !2 such that ! ⇣ !1;!2.

Proof. By induction on the length of ! and on the distance (intended as number
of transitions) between the beginning of ! and the earliest pair of consecutive
transitions in ! such that the former is forward while the latter is backward.
The analysis uses both the loop lemma (Lemma 1) and the diamond lemma
(Lemma 2).

The following lemma says that if two computations !1 and !2 are coinitial
and cofinal and !2 is made of forward transitions only, then in !1 there are some
transitions that are later undone. This computation is thus causally equivalent
to a forward one in which the undone transitions do not take place at all.

Lemma 4 (shortening lemma). Let !1 and !2 be coinitial and cofinal com-
putations, with !2 forward. Then there exists a forward computation !0

1 of length
at most that of !1 such that !0

1 ⇣ !1.

Proof. The proof is by induction on the length of !1, using the diamond lemma
(Lemma 2) and the rearranging lemma (Lemma 3). In the proof, the forward
computation !2 is the main guideline for shortening !1 into a forward computa-
tion. Indeed, the proof relies crucially on the fact that !1 and !2 share the same
source and the same target and that !2 is a forward computation.

Theorem 1 (causal consistency). Let !1 and !2 be coinitial computations.
Then !1 ⇣ !2 i↵ !1 and !2 are cofinal too.

Proof. The ‘if’ direction follows by definition of causal equivalence and computa-
tion composition. The ‘only if’ direction exploits the diamond lemma (Lemma 2),
the rearranging lemma (Lemma 3), and the shortening lemma (Lemma 4).

With Theorem 1 we have proved that the notion of causal equivalence char-
acterises a space for admissible rollbacks that are (i) consistent in the sense that
they do not lead to previously unreachable states and (ii) flexible enough to allow
undo operations to be rearranged. This implies that the states reached by a back-
ward computation could be reached by performing forward computations only.
We can therefore conclude that RMPC is causal consistent reversible.

2

RMPC results 2/2

12 M. Bernardo, C.A. Mezzina

We exploit once more the loop lemma to derive that, in the case that � = �,
the steady-state probability distribution of MJRK is the uniform distribution,
from which time reversibility will immediately follow.

Lemma 6. Let R 2 P be an initial process, S be the set of states of MJRK,
and n = |S|. If every backward rate is equal to the corresponding forward rate,
then the steady-state probability distribution ⇡ of MJRK satisfies ⇡(s) = 1/n
for all s 2 S.

Proof. If n = 1, i.e., R is equal to 0 or to the cooperation of several processes
whose initial actions have to synchronize but are di↵erent from each other, then
trivially ⇡(s) = 1/n = 1 for the only state s 2 S.
Suppose now that n � 2. From Lemma 5, it follows that MJRK has a unique
steady-state probability distribution ⇡. Due to Lemma 1, the global balance equa-
tion for an arbitrary s 2 S is as follows:

⇡(s) ·
P

s
(a,�)7���!Ks0

� =
P

s0
(a,�)7���!Ks

⇡(s0) · �

Since every backward rate is equal to the corresponding forward rate, the global
balance equation for s boils down to:

⇡(s) ·
P

s
(a,�)7���!Ks0

� =
P

s0
(a,�)7���!Ks

⇡(s0) · �

Since the two summations have the same number of summands, the equation
above is satified when ⇡(s) = ⇡(s0) for all s0 2 S reached by a transition from s.
All global balance equations are thus satisfied when ⇡(s) = 1/n for all s 2 S.

Theorem 2 (time reversibility). Let R 2 P be an initial process. If every
backward rate is equal to the corresponding forward rate, then MJRK is time
reversible.

Proof. Let S be the set of states of MJRK and n = |S|. From Lemma 5, it follows
that MJRK has a unique steady-state probability distribution ⇡. To avoid trivial
cases, suppose n � 2 and consider s, s0 2 S with s 6= s0 connected by a transition.
Due to Lemma 1, the partial balance equation for s and s0 is as follows:

⇡(s) ·
P

s
(a,�)7���!Ks0

� = ⇡(s0) ·
P

s0
(a,�)7���!Ks

�

Since every backward rate is equal to the corresponding forward rate, the partial
balance equation for s and s0 boils down to:

⇡(s) ·
P

s
(a,�)7���!Ks0

� = ⇡(s0) ·
P

s0
(a,�)7���!Ks

�

Since the two summations have the same number of summands and ⇡(s) =
⇡(s0) = 1/n due to Lemma 6, the equation above is satified. The result then
follows from the fact that s and s0 are two arbitrary distinct states connected by
a transition.

The main di↵erence between our approach to time reversibility and the ones
of [8,25] is twofold. Firstly, our approach is part of a more general framework
in which also causal consistent reversibility is addressed. Secondly, our approach

14 M. Bernardo, C.A. Mezzina

Corollary 3 (product form). Let R,S 2 P be initial processes and L ✓ A.
If every backward rate is equal to the corresponding forward rate and the set of
states S of MJR kL SK is equal to SR ⇥ SS where SR is the set of states of
MJRK and SS is the set of states of MJSK, then ⇡(r, s) = ⇡R(r) · ⇡S(s) for all
(r, s) 2 SR ⇥ SS.

The product form result above avoids the calculation of the global balance
equations over MJR kL SK, as ⇡(r, s) can simply be obtained by multiplying
⇡R(r) with ⇡S(s). However, the condition S = SR ⇥ SS requires to check that
every state in the full Cartesian product is reachable from R kL S. This means
that no compound state is such that its constituent states enable some action, but
none of the enabled actions can be executed due to the constraints imposed by
the synchronization set L. The condition S = SR ⇥ SS implies that MJR kL SK
is ergodic over the full Cartesian product of the two original state spaces, which
is the condition used in [25]. Although implicit in the statement of the corollary,
the time reversibility of MJR kL SK is essential for the product form result.

5 Conclusions

Di↵erent interpretations of reversibility are present in the literature. In this
paper, we have started our research quest towards bridging causal consistent
reversibility [5] – developed in concurrency theory – and time reversibility [13]
– originated in the field of stochastic processes. We have accomplished this by
introducing the stochastic process calculus RMPC, whose syntax and semantics
follow the approach of [28], thus paving the way to concurrent system models
that are both causal consistent reversible and time reversible by construction.
Based on time reversibility, we have also adapted from [25] a product form result
that enables the e�cient calculation of performance measures.

There are several lines of research that we plan to undergo, ranging from
the application of our results to examples and case studies modeled with RMPC
to the development of further theoretical results. For instance, we would like
to investigate other conditions under which time reversibility is achieved, in
addition to the one relying on the equality of forward and backward rates.

Moreover, we observe that the syntax of RMPC does not include recursion.
From the point of view of the ergodicity of the underlying CTMC, this is not
a problem because every forward transition has the corresponding backward
transition by construction. However, there might be situations in which recursion
is necessary to appropriately describe the behavior of a system. Because of the
use of communication keys, a simple process of the form P , (a,�).P , whose
standard labeled transition system features a single state with a self-looping
transition, produces a sequence of infinitely many distinct states even if we resort
to transition bundles. Our claim is that the specific cooperation operator that
we have considered may require a mechanism lighter than communications keys
to keep track of past actions, which may avoid the generation of an infinite state
space in the presence of recursion.

Markov Chain associated to process R

RMPC results sum up

• Reversibility induced by RMPC is causal consistent (whatever the negative
rate is)

• Reversibility induced by RMPC is time reversible if we set

• Hence when reversibility in RMPC is both time and causal consistent

� = �

<latexit sha1_base64="Zkb58OAndTtlSWQGLPb0JIEfvew=">AAACB3icbVDNS8MwHE39nPOr6lGQ4CZ4Gu1Q9CIMvXic4D5gLSNN0y0sTUqSCqPs5sV/xYsHRbz6L3jzvzHdetDNB4HHe++X5PeChFGlHefbWlpeWV1bL22UN7e2d3btvf22EqnEpIUFE7IbIEUY5aSlqWakm0iC4oCRTjC6yf3OA5GKCn6vxwnxYzTgNKIYaSP17aOqx0w6RPAKesIk84uyQptU+3bFqTlTwEXiFqQCCjT79pcXCpzGhGvMkFI910m0nyGpKWZkUvZSRRKER2hAeoZyFBPlZ9M9JvDEKCGMhDSHazhVf09kKFZqHAcmGSM9VPNeLv7n9VIdXfoZ5UmqCcezh6KUQS1gXgoMqSRYs7EhCEtq/grxEEmEtamubEpw51deJO16zT2rnd/VK43roo4SOATH4BS44AI0wC1oghbA4BE8g1fwZj1ZL9a79TGLLlnFzAH4A+vzBxW9mNQ=</latexit>

� = �

<latexit sha1_base64="Zkb58OAndTtlSWQGLPb0JIEfvew=">AAACB3icbVDNS8MwHE39nPOr6lGQ4CZ4Gu1Q9CIMvXic4D5gLSNN0y0sTUqSCqPs5sV/xYsHRbz6L3jzvzHdetDNB4HHe++X5PeChFGlHefbWlpeWV1bL22UN7e2d3btvf22EqnEpIUFE7IbIEUY5aSlqWakm0iC4oCRTjC6yf3OA5GKCn6vxwnxYzTgNKIYaSP17aOqx0w6RPAKesIk84uyQptU+3bFqTlTwEXiFqQCCjT79pcXCpzGhGvMkFI910m0nyGpKWZkUvZSRRKER2hAeoZyFBPlZ9M9JvDEKCGMhDSHazhVf09kKFZqHAcmGSM9VPNeLv7n9VIdXfoZ5UmqCcezh6KUQS1gXgoMqSRYs7EhCEtq/grxEEmEtamubEpw51deJO16zT2rnd/VK43roo4SOATH4BS44AI0wC1oghbA4BE8g1fwZj1ZL9a79TGLLlnFzAH4A+vzBxW9mNQ=</latexit>

Future work

• The cooperation operator may not require communication keys

• No communication keys = no state explosion with recursion

• Find new condition (e.g., different from rate equality) under which time and
causal reversibility holds

P = (a,�).P

<latexit sha1_base64="LseL/cYxSGtkmH7EmUBa4Kf5thU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBluhgoSkKLoRim5cRrAPaEOZTCbt0MkkzEyEEOqvuHGhiFs/xJ1/47TNQqsHBg7n3MO9c/yEUals+8sorayurW+UNytb2zu7e+b+QUfGqcCkjWMWi56PJGGUk7aiipFeIgiKfEa6/uRm5ncfiJA05vcqS4gXoRGnIcVIaWloVusuvIINdDpgOhSgE8utD82abdlzwL/EKUgNFHCH5ucgiHEaEa4wQ1L2HTtRXo6EopiRaWWQSpIgPEEj0teUo4hIL58fP4XHWglgGAv9uIJz9WciR5GUWeTryQipsVz2ZuJ/Xj9V4aWXU56kinC8WBSmDKoYzpqAARUEK5ZpgrCg+laIx0ggrHRfFV2Cs/zlv6TTtJwz6/yuWWtdF3WUwSE4Ag3ggAvQArfABW2AQQaewAt4NR6NZ+PNeF+MlowiUwW/YHx8A0oOkp0=</latexit>

Easter egg
Probabilistic bisimulation

• back and forth bisimulation coincides with strong bisimulation
[DNMVaandrager90]

• Following this result we have shown that back and forth markovian
bisimulation coincides with markovian bisimulation (e.g., the extortion of
normal bisimulation with rates)

• Open question: what about Sproston&Donatelli’s Backward Bisimulation

Ester egg 2
Process Algebras and Markovian Chains [Brinksma&Hermanns]

