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Università Ca’ Foscari Venezia
DAIS

February 8, 2022



Reversibility ρ-Reversibility Lumpability Lumpability and Reversibility λρ-Reversibility Reversible computing Reversible Stochastic Automata Reversible Stochastic Automata

Section 1

Reversibility on CTMC
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Background on Continuous time Markov chains

▶ We consider Markov chains in continuous time (CTMCs) X (t)

▶ State space S with i , j ∈ S

▶ Q is the infinitesimal generator, and

▶ qij transition rate from state i to j , i ̸= j
▶ qii = −

∑
j ̸=i qij

▶ qi = −qii total flow out of state i

▶ The steady-state distribution π is the unique vector of positive
numbers πi with i ∈ S , summing to unit and satisfying the
system of global balance equations (GBEs)

πQ = 0
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Background on time-reversible Markov chains

▶ Let X (t) be a stationary Markov chain

▶ X (τ − t) is still a stationary Markov chain

▶ If X (t) and X (τ − t) are probabilistically indistinguishable for
any τ and t in the time domain, then we say that X (t) is
reversible

▶ We denote by XR(t) is the CTMC associated with X (t) at
reversed time, QR is its infinitesimal generator
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How to derive XR(t) for stationary Markov processes?

▶ Assume ergodicity and let πi be the stationary probability of
state i

▶ Let qij for i ̸= j be the transition rate in a CTMC from state i
to state j

▶ In XR(t) there exists a transition from j to i whose rate is:

qRji =
πi
πj
qij
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Detailed balance equations for reversibility

▶ X (t) is reversible iff the following system of detailed balance
equations is satisfied:

πi qij = πj qji

for all i , j ∈ S with i ̸= j .
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Kolmogorov’s criterion for reversibility

▶ X (t) is reversible iff for every finite sequence of states
i1, i2, . . . in ∈ S ,

qi1i2qi2i3 · · · qin−1inqini1 = qi1inqinin−1 · · · qi3i2qi2i1
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Example: reversibility
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Section 2

ρ-Reversibility on CTMC
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Dynamic reversibility

▶ Let ξ be an involution on the state space of a CTMC

▶ ξ is bijective
▶ ξ(ξ(i)) = i

▶ A CTMC is dynamically reversible if X (t) and XR(t) are
identical modulo the renaming of states ξ

▶ It has been used to study the properties of crystal growth and
other physical systems
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Example: dynamic reversibility
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ρ-reversibility

▶ Let ρ be a general bijection between the state space and itself

▶ We say that X (t) is ρ-reversible if X (t) and XR(t) are
stochastically indistinguishable modulo the renaming ρ

▶ Notice that ξ and ρ may not be unique!
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Example of ρ-reversibility

On the relations between reversibility and lumpability Università Ca’ Foscari VeneziaDAIS
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ρ-Detailed balance equations for ρ-reversibility

▶ Let qi =
∑

j ̸=i qij

▶ X (t) is ρ-reversible iff

▶ qi = qρ(i) for all i ∈ S , and

▶ the following system of detailed balance equations is satisfied:

πi qij = πj qρ(j)ρ(i)

On the relations between reversibility and lumpability Università Ca’ Foscari VeneziaDAIS
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ρ-Kolmogorov’s criterion for ρ-reversibility

▶ X (t) is ρ-eversible iff

▶ qi = qρ(i) for all i ∈ S , and

▶ for every finite sequence of states i1, i2, . . . in ∈ S

qi1i2 · · · qin−1inqin i1 = qρ(i1)ρ(in)qρ(in)ρ(in−1) · · · qρ(i2)ρ(i1)
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ρ-reversibility example

Permutation consisting of two cycles: (i1, i2, i3, i4)(j1, j2, j3, j4)
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Verify ρ-reversibility with a guessed π: ρ-detailed balance
equations

▶ Assume you have a collection πi of positive real numbers
summing to unity associated with each state i

▶ If for all the states it holds that:

▶ qi = qρ(i) and

▶ πiqij = πjqρ(j)ρ(i)
then
▶ The CTMC is ρ-reversible

▶ πi is the stationary probability of state i
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Structurally verify ρ-reversibility: ρ-Kolmogorov’s criteria

▶ A chain is ρ-reversible if and only if for every finite sequence
of state i1, i2, . . . , in it holds:

qi1i2qi2i3 · · · qin−1inqini1 = qρ(i1)ρ(in)qρ(in)ρ(in−1) · · · qρ(i2)ρ(i1)

▶ For every cycle the product of its transition probabilities and
those of the renamed inverse cycle must be the same

▶ No need to derive the reversed process

▶ Only minimal cycles must be checked
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Example

▶ i1 → j2 → i2 → i1:
1

2
1
1

2
=

1

4

▶ i2 → i3 → j3 → i2:
1

2

1

2
1 =

1

4
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Computing the steady-state probability

▶ Fix a reference state i0

▶ You want to determine πi
▶ Find a path from i to i0 and determine the inverse from ρ(i0)

to ρ(i):

i = in → in−1 → in−2 → in−3 → · · · → i0

▶ Compute πi as:

πi = πi0

n∏
k=1

qρ(ik−1)ρ(ik )

qik ik−1
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Example

Involution: (i1, i2)(i3, i4)(j1, j3)(j2)(j4)
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Counter-example

▶ ρ : (1, 2, 3, 4)(5, 6, 7, 8)(9)(10)

▶ No possible involution

▶ The class of ρ-reversible chains
strictly includes dynamically
reversible chains
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Section 3

Lumpability on CTMC
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Lumpability

The notion of lumpability is used for generating an aggregated
Markov process that is smaller than the original one

• • •
original • • •

• • •

aggregated • • • • •

▶ It can be formalized in terms of equivalence relations
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Strong lumpability

Definition

X (t) is strongly lumpable w.r.t. equivalence relation ∼ on S if for
any [k] ̸= [l ] and i , j ∈ [l ],

qi [k] = qj[k]

where qi [k] =
∑

j∈[k] qij .
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Exact lumpability

Definition

X (t) is exactly lumpable with respect to ∼ if for any [k], [l ] and
i , j ∈ [l ],

q[k]i = q[k]j

where q[k]i =
∑

j∈[k] qji .
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Strict lumpability

Definition

X (t) is strictly lumpable w.r.t. equivalence relation ∼ on S if it is
both strong and exact w.r.t. ∼

Notes:

▶ If ∼ is a strong lumping then X̃ (t) is a CTMC (and vice versa)

▶ If ∼ is an exact lumping then all the states in the same
equivalence class are equiprobable in steady-state
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Section 4

Relations between lumpability and reversibility
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Exact lumpability and reversed processes

Theorem

If X (t) is exactly lumpable w.r.t. ∼ then ∼ is a strong lumping for
XR(t)

Proof sketch:

▶ Exact lumpability checks incoming rates to the states which
become outgoing rates when reversing the process

▶ States belonging to the same class have the same stationary
distributions
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Strict lumpability and reversed processes

Theorem

X (t) is strictly lumpable w.r.t. ∼ if and only if ∼ is a strict
lumping also for XR(t)

Theorem

If X (t) is strictly lumpable w.r.t. ∼ then the processes (X̃ )R(t)

and X̃R(t) are stochastically identical.
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Section 5

λρ-Reversibility
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λ-reversibility and ρ-reversibility

Definition

X (t) λ-reversible w.r.t. to strict lumping ∼ such that X̃ (t), X̃R(t)
are stochastically identical

Definition

X (t) is ρ-reversible w.r.t. a renaming ρ on S on S such that X (t)
and ρ(XR)(t) are stochastically identical
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λρ-reversibility and detailed balance equations

Definition

X (t) is λρ-reversible w.r.t. an equivalence relation ∼ and a

renaming ρ on S/ ∼ if X̃ (t) and ρ(X̃R)(r) are stochastically
identical

Theorem

X (t) is λρ-reversible w.r.t. ∼ and ρ if and only if there exists a
collection of positive number π[i ] [i ] ∈ S/ ∼ such that for all states
i it holds that:

▶ |[j ]|πiqi [j] = |[i ]|πjqj ′ρ[i ], j ′ ∈ ρ[j ]

▶ q[i ] = qρ[i ]

In this case π is also the statioanry distribution of X (t).
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Deciding λρ-reversibility by Kolmogorov’s criterion

Theorem

X (t) is λρ-reversible w.r.t. ∼ and ρ on S/ ∼ if and only if:

▶ q[i ] = qρ[i ]
▶ For each finite cycle of states i1, i2, . . . , in, i1 we have:

qi1,[i2]qi2,[i3] · · · qin,[i1] = qi ′1,ρ[in], qi ′n,ρ[in−1
qi ′2,ρ[i1]
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Expression of stationary distribution

How do we compute the stationary distribution?

▶ Fix a reference state i

▶ Consider a state j and choose an arbitrary path Ψ from j to i

▶ Let Ψ′ be the path from the renaming of i to the renaming of
j

▶ π[j]/π[i ] is equal to the product of the rates in Ψ′ over the
product of the rates in Ψ
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Example

▶ Reference state A, compute
πF

▶ Path from F to A:

F
c/2−−→ G

b−→ A

▶ Path from A to D/E :

A
2a−→ B

b−→ D

πF =
2ab

bc/2
=

4a

c
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Section 6

Reversible computing
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Reversible Computing

▶ Reversible computing is a paradigm of computation that
extends the standard forward-only programming to reversible
programming

▶ Reversible executions may restore a past state by undoing, one
by one, all the previously performed operations

On the relations between reversibility and lumpability Università Ca’ Foscari VeneziaDAIS
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Reversible Computing: Implementation

▶ Reversible computing can be implemented in essentially two
ways:

▶ by recording a set of checkpoints that store the state of the
processor at some epochs of the computation

▶ by implementing fully reversible programs where each step of
the computation may be inverted
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Contribution

▶ We define quantitative stochastic models for concurrent and
cooperating reversible computations that are
▶ stochastic automata with underlying CTMCs

▶ We introduce the class of reversible stochastic automata that
▶ is closed under synchronization

▶ have a product-form solution, i.e., the equilibrium distribution
of the composition of reversible automata can be derived as
the product of the equilibrium distributions of each automaton
in isolation
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Stochastic Automata

▶ We consider concurrent stochastic automata with underlying
continuous time Markov chains

▶ Complex automaton can be constructed from simpler
components by a synchronization operator

▶ We distinguish between active and passive action types

▶ Only active/passive synchronisations are permitted, like, e.g.,
in SAN, PEPA, ....
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Stochastic Automata (SA)

Definition

A stochastic automaton P is a tuple

(SP ,AP ,PP ,→P)

▶ SP : state space of P

▶ AP : set of active types PP : set of passive types

▶ τ : unknown type
▶ →P transition relation where

▶ s1
(a,r)−−−→P s2: r ∈ R+ is a rate and a ∈ AP ∪ {τ}

▶ s1
(a,p)−−−→P s2: p ∈ (0, 1] is a probability and a ∈ PP
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Reversibility ρ-Reversibility Lumpability Lumpability and Reversibility λρ-Reversibility Reversible computing Reversible Stochastic Automata Reversible Stochastic Automata

SA synchronisation

sp1
(a,r)−−−→P sp2 sq1

(a,p)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−→P⊗Q (sp2 , sq2)

a ∈ AP = PQ

sp1
(τ,r)−−−→P sp2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp2 , sq1)
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CTMC underlying a closed SA

▶ P is closed if PP = ∅

Definition

The CTMC XP(t) underlying a closed automaton P has state
space SP and infinitesimal generator matrix Q such that for all
s1 ̸= s2 ∈ SP ,

q(s1, s2) =
∑

s1
(a,r)−−−→P s2

r

▶ πP : equilibrium distribution of the CTMC underlying P
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Reversible Stochastic Automata

▶ We assume that for each forward action type a there is a
corresponding backward type

←
a with

←
τ = τ

▶ Formally
←· is a bijection (renaming)

▶ We say that
←· respects the active/passive types:

▶ ←
τ = τ

▶ a ∈ AP ⇔ ←
a ∈ AP

▶ a ∈ PP ⇔ ←
a ∈ PP

▶ We consider a bijection ρ : SP → SP
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Reversibility ρ-Reversibility Lumpability Lumpability and Reversibility λρ-Reversibility Reversible computing Reversible Stochastic Automata Reversible Stochastic Automata

Reversible Stochastic Automata

Definition

P is reversible if

▶ q(s, a) = q(ρ(s), a) ∀s ∈ SP ;

▶ for all

Ψ = s1
(a1,r1)−−−−→ s2

(a2,r2)−−−−→ . . . sn
(an,rn)−−−−→ s1

there exists an inverse cycle

←
Ψ = ρ(s1)

(
←
a n,tn)−−−−→ ρ(sn) . . .

(
←
a 2,t2)−−−−→ ρ(s2)

(
←
a 1,t1)−−−−→ ρ(s1)

such that: n∏
i=1

ri =
n∏

i=1

ti
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Examples

Infinite state model: ρ = id ,
←
a i = bi ,

←
b i = ai

s1 s2 s3 · · ·

a1,rf

b1,rb

a2,rf a3,rf

b2,rb b3,rb

Finite state model: ρ = id ,
←
a i = bi ,

←
b i = ai , rf = rb

s1

· · · s2

s3

a1,rf

bn,rb

b3,rb

an,rf

b1,rb

a2,rf

b2,rb

a3,rf
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Example: Reversible computations with checkpoints

ρ(CKi ) = CKi , ρ(si ) = s ′i , ρ(s
′
i ) = ρ(si ) and

←
a i = bi ,

←
b i = ai

s′1 s′2 · · · s′n

· · · CK1 CK2 · · ·

s1 s2 · · · sn

τ,r1

τ,r2 τ,rn−2 τ,rn

ai,rai

bi,rbi

τ,r0

τ,rn+1

ai+1,rai+1

bi+1,rbi+1

τ,r1 τ,r2 τ,rn−1

τ,rn
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Detailed balance equations

▶ We prove a necessary condition for reversibility expressed in
terms of the equilibrium distribution and the transition rates

Theorem (Detailed balance equations)

If P is reversible then ∀s, s ′ ∈ SP , and ∀ action type a

πP(s)q(s, s
′, a) = πP(s

′)q(ρ(s ′), ρ(s),
←
a )
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Equilibrium probability of the renaming of a state

▶ The states of an ergodic reversible automaton have the same
equilibrium probability of the corresponding image under ρ

Theorem

Let P be reversible automaton. Then for all s ∈ SP ,

πP(s) = πP(ρ(s))
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Scaled automaton

▶ Any reversible automaton can be rescaled allowing one to
close the automaton by assigning the same rate to each
passive action with a certain label weighted on its probability,
while maintaining the equilibrium distribution
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Scaled automaton

Let a be an action type and k ∈ R+.

Definition

S = P{a · k} is defined by

▶ SS=SP

▶ AS=AP and PS=PP if a ∈ AP ∪ {τ}
▶ AS= AP ∪ {a} and PS=PP \ {a} if a ∈ PP

▶ −→S = −→P except for s1
(a,pk)−−−→S s2 if s1

(a,p)−−−→P s2
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Reversible scaled automaton

▶ Let [a] such that a ∈ [a],
←
a ∈ [a],

←
←
a ∈ [a]

▶ [τ ] = {τ}.

Theorem

If P is reversible, then for all action type a, then

P ′ = P{[a] · k , } is reversible

Moreover, πP(s) = πP′(s) ∀s ∈ SP .
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Reversible scaled automaton

▶ The ergodicity and the equilibrium distribution of a reversible
automaton does not depend on the rescaling of all the types
belonging to an orbit of

←·
▶ If the automaton is open and we close it by rescaling, its

equilibrium distribution and ergodicity does not change with
the rescaling factor

▶ Henceforth, we will talk about equilibrium distribution and
ergodicity of open automata in the sense that they are the
same for any closure obtained by rescaling
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Closure of reversibility under synchronization

The synchronisation of reversible automata is still ρ-reversible

Theorem

Let P be ρ-reversible and Q be σ-reversible. Then

▶ P ⊗ Q is ξ-reversible where

ξ(sp, sq) = (ρ(sp), σ(sq)) .
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Product-form solution

The composition of two reversible automata has an equilibrium
distribution that can be derived by the analysis of the isolated
synchronizing automata

Theorem

▶ Let P be ρ-reversible and Q be σ-reversible

▶ Let πP and πQ be the equilibrium distributions of P and Q

If S = P ⊗ Q is ergodic then

πS(sp, sq) = πP(sp)πQ(sq)

i.e., the composed automaton S exhibits a product-form solution.
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Reversible scaled automaton

▶ Notice that this product-form solution does not require a
re-parameterisation of the cooperating automata

▶ the expressions of the equilibrium distributions of the isolated
automata are as if their behaviours are stochastically
independent although they are clearly not
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Conclusion: Main result

Main result:
▶ The equilibrium distribution of any reversible stochastic

automaton is insensitive to any reversible context
▶ our theory allows for the definition of system components

whose equilibrium performance indices are independent of their
context
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