Reconciling discrete and continuous modelling for the analysis of large-scale Markov chains

Mirco Tribastone

IMT Lucca
PRIN 2020 - Nirvana
Ca' Foscari - 8 July 2022

Motivation

Markov chains are a popular tool for stochastic analysis

- PageRank and other centrality measures
- Epidemiological models
- Chemistry
- Systems biology
- Queuing systems
- (Probabilistic) programming languages
- (Probabilistic) population protocols
-

"Indeed, the whole of the mathematical study of random processes can be regarded as a generalization in one way or another of the theory of Markov chains."

Motivation

Markov chains are a popular tool for stochastic analysis

- PageRank and other centrality measures
- Epidemiological models

- Chemistry

Markov Population

- Systems biology Processes
- Oueuing systems
- (Probabilistic) programming languages
- (Probabilistic) population protocols
$■$
"Indeed, the whole of the mathematical study of random processes can be regarded as a generalization in one way or another of the theory of Markov chains."

Markov Population Process

- A collection of N interacting agents evolving over m local states
- Typically, N is very large and m is small

Reaction Network

Dynamics of a Markov Population Process

Schlögl's system

$$
\begin{aligned}
2 X \longrightarrow 3 X, & k_{1} X(X-1) / 2 \\
3 X \longrightarrow 2 X, & k_{2} X(X-1)(X-2) / 6 \\
\longrightarrow X, & k_{3} \\
X \longrightarrow & ,
\end{aligned}
$$

Markov chain

Stochastic Simulation

- Holding time at each state is exponentially distributed with the sum of outgoing rates
- Probability of a choosing a given transition after holding time equals its transition rate divided by the rate of the residence time

Dynamics of a Markov Population Process

Schlögl's system

$$
\begin{aligned}
2 X \longrightarrow 3 X, & k_{1} X(X-1) / 2 \\
3 X \longrightarrow 2 X, & k_{2} X(X-1)(X-2) / 6 \\
\longrightarrow X, & k_{3} \\
X \longrightarrow & k_{4} X
\end{aligned}
$$

Markov chain

Master/Forward/Kolmogorov Equations

- Analytical computation of the transient probability distribution
- A system of coupled linear ordinary differential equations, each giving the time course of the Markov chain in any discrete state

$$
\begin{aligned}
\frac{d \pi_{0}}{d t} & =-k_{3} \pi_{0}+k_{4} \pi_{1} \\
\frac{d \pi_{1}}{d t} & =-\left(k_{3}+k_{4}\right) \pi_{1}+k_{3} \pi_{0}+2 k_{4} \pi_{2} \\
\frac{d \pi_{2}}{d t} & =-\left(k 1+k_{3}+2 k_{4}\right) \pi_{2}+k_{3} \pi_{1}+\left(k_{2}+3 k_{4}\right) \pi_{3}
\end{aligned}
$$

Mean-field Approximation

- Stochastic analysis is often expensive
- Many simulations required for complex systems to obtain tight confidence intervals
- Analytical solution of the Markov chain possible when the number of states is small enough (and approximations are usually needed for infinite state Markov chains)
- "Full" stochastic analysis is often too informative
- In many applications the modeller is interested on average behaviour (and perhaps a few higher order moments)

Mean-field approximation (aka deterministic rate equations)

Analytical technique to approximate the average dynamics of a Markov population process using a (smaller) system of ordinary differential equations

Mean-field Approximation: Example

$$
\begin{aligned}
& \text { Schlögl's system } \\
& \begin{aligned}
2 X & \longrightarrow 3 X, \\
3 X & k_{1} X(X-1) / 2 \\
& \longrightarrow X, \quad k_{2} X(X-1)(X-2) / 6 \\
X & k_{3} \\
& , \quad k_{4} X
\end{aligned}
\end{aligned}
$$

Properties

- Self-consistent, compact system of equations (one per type of agent)
- Correct in the limit when the population levels go to infinity (Kurtz's theorem)
- Derivation can be generalized to obtain equations for higher-order moments (moment-closure approximation)

Derivation

Dynkin's Formula

$$
\begin{aligned}
\frac{d \mathbb{E}[X]}{d t}= & \frac{k_{1}}{2} \mathbb{E}[X(X-1)]-\frac{k_{2}}{6} \mathbb{E}[X(X-1)(X-2)]+ \\
& +k_{3}-k_{4} \mathbb{E}[X]
\end{aligned}
$$

(large-scale approximation)

$$
\approx \frac{k_{1}}{2} \mathbb{E}\left[X^{2}\right]-\frac{k_{2}}{6} \mathbb{E}\left[X^{3}\right]+k_{3}-k_{4} \mathbb{E}[X]
$$

(expectation of a function vs. function of the expectations)

$$
\approx \frac{k_{1}}{2} \mathbb{E}[X]^{2}-\frac{k_{2}}{6} \mathbb{E}[X]^{3}+k_{3}-k_{4} \mathbb{E}[X]
$$

Mean-field Approximation: Results

$$
\begin{aligned}
& \text { Schlögl's system } \\
& \begin{aligned}
& 2 X \longrightarrow 3 X, \\
& 3 X k_{1} X(X-1) / 2 \\
& \longrightarrow X, \\
& k_{2} X(X-1)(X-2) / 6 \\
& X k_{3} \\
&, \\
& k_{4} X
\end{aligned}
\end{aligned}
$$

Properties

- Quality of the approximation can be model- and parameter-dependent
- Always correct for linear systems and for a limited class of nonlinear systems
- Exact corrections available for special cases

Finite State Expansion

Intuition

- Markov population process gives a discrete description of the system
- Mean-field approximation gives a continuous one
- These can be seen are two extremes of a lattice of approximations where a subset of the whole states is kept discrete, and the rest is approximated continuously
- Finite state expansion is such a hybrid analytical method

Method

- Fix an observation bound for each agent type: it gives how many entities of that class to observe discretely
- Create a new reaction network adding new agents types, one for each discrete configuration
- Rewrite each original reaction to track discrete changes as far as possible, using the original agent types when behaviour goes beyond the chosen observation bounds

Finite State Expansion: Worked Example

$$
\begin{array}{rlr}
2 X \longrightarrow 3 X, & k_{1} X(X-1) / 2 \\
3 X \longrightarrow 2 X, & k_{2} X(X-1)(X-2) / 6 \\
\longrightarrow X, & k_{3} \\
X \longrightarrow & , & k_{4} X
\end{array}
$$

Reaction expansion

$$
\begin{array}{lr}
\llbracket n \rrbracket \xrightarrow{f_{1}(n)} \llbracket n \rrbracket+X, & n=\bar{O}_{X} \\
\llbracket n \rrbracket \xrightarrow{f_{1}(n)} \llbracket n+1 \rrbracket, & 0 \leq n<\bar{O}_{X} \\
\quad f_{1}(n)=\llbracket n \rrbracket k_{1}(X+n)(X+n-1) / 2 &
\end{array}
$$

Finite State Expansion: Worked Example

$$
\begin{aligned}
& 2 X \longrightarrow 3 X, \\
& 3 X k_{1} X(X-1) / 2 \\
& \longrightarrow X X, \\
& \hline X, k_{2} X(X-1)(X-2) / 6 \\
& X \longrightarrow \quad, \\
& k_{4} X
\end{aligned}
$$

Reaction expansion

$$
\llbracket n \rrbracket \xrightarrow{f_{2}(n)} \llbracket n-1 \rrbracket, \quad 0<n \leq \bar{O}_{X}
$$

$$
X+\llbracket 0 \rrbracket \xrightarrow{f_{2}(n)} \llbracket 0 \rrbracket,
$$

$$
n=0
$$

$$
f_{2}(n)=\llbracket n \rrbracket k_{2}(\underbrace{X+n)(X+n-1)(X+n-2) / 6}_{\text {coupled mass-action propensity }}
$$

Finite State Expansion: Worked Example

$$
\begin{aligned}
2 X \longrightarrow 3 X, & k_{1} X(X-1) / 2 \\
3 X \longrightarrow 2 X, & k_{2} X(X-1)(X-2) / 6 \\
\longrightarrow X, & k_{3} \\
X \longrightarrow & , k_{4} X
\end{aligned}
$$

Reaction expansion

$$
\begin{gathered}
\llbracket n \rrbracket \xrightarrow{f_{3}(n)} \llbracket n \rrbracket+X, \\
\llbracket n \rrbracket \xrightarrow{f_{3}(n)} \llbracket n+1 \rrbracket, \\
f_{3}(n)=\llbracket n \rrbracket k_{3}
\end{gathered}
$$

$$
n=\bar{O}_{X}
$$

$$
0 \leq n<\bar{O}_{X}
$$

Finite State Expansion: Worked Example

$$
\begin{aligned}
2 X \longrightarrow 3 X, & k_{1} X(X-1) / 2 \\
3 X & \longrightarrow 2 X, \\
\longrightarrow X, & k_{2} X(X-1)(X-2) / 6 \\
\longrightarrow & k_{3} \\
X \longrightarrow & k_{4} X
\end{aligned}
$$

Reaction expansion

$$
\begin{array}{rlr}
\llbracket n \rrbracket \xrightarrow{f_{4}(n)} \llbracket n-1 \rrbracket, & 0<n \leq \bar{O}_{X} \\
X+\llbracket n \rrbracket \xrightarrow{f_{4}(n)} \llbracket n \rrbracket, & n=0 \\
f_{4}(n)=\llbracket n \rrbracket k_{4}(X+n) &
\end{array}
$$

"Consistency" of Finite State Expansion

1. Finite state expansion always preserves the stochastic dynamics of the reaction network: the original and the expanded Markov chains are related by ordinary lumpability (aka probabilistic bisimulation)
2. When the observation bound is zero, the MFA corresponds to the original one
3. When the observation bound is infinity, the MFA corresponds to the original forward equations

Orig. MC

Mean-field Approximation: Comparison

Original Schlögl

$$
\frac{d X}{d t}=k_{1} X^{2} / 2-k_{2} X^{3} / 6+k_{3}-k_{4} X
$$

FSE Schlögl

$$
\begin{aligned}
\frac{d \llbracket n \rrbracket}{d t}= & -\mathbf{I}_{n<\bar{O}_{X}}\left\{f_{1}(n)+f_{3}(n)\right\} \\
& -\mathbf{I}_{n>0}\left\{f_{2}(n)+f_{4}(n)\right\} \\
& +\mathbf{I}_{1 \leq n \leq \bar{O}_{X}} f_{1}(n-1) \\
& +\mathbf{I}_{0 \leq n \leq \bar{O}_{X}-1} f_{2}(n+1) \\
& +\mathbf{I}_{1 \leq n \leq \bar{O}_{X}} f_{3}(n-1) \\
& +\mathbf{I}_{0 \leq n \leq \bar{O}_{X-1}} f_{4}(n+1) \\
\frac{d X}{d t}= & f_{1}\left(\bar{O}_{X}\right)+f_{3}\left(\bar{O}_{X}\right)-f_{2}(0)-f_{4}(0)
\end{aligned}
$$

Case Studies

Heterodimerization

$$
\xrightarrow{k_{1}} m X_{1} \quad \xrightarrow{k_{1}} m X_{2} \quad X_{1}+X_{2} \xrightarrow{k_{2}} X_{3}
$$

$X_{1} \xrightarrow{k_{3}}$
$X_{2} \xrightarrow{k_{3}}$

$$
X_{3} \xrightarrow{k_{3}}
$$

Case Studies

Protein degradation

$$
\xrightarrow{k_{1}} m P \quad P_{d} \xrightarrow{k_{5}}
$$

$$
P+E \xrightarrow{k_{2}} C \quad C \xrightarrow{k_{3}} P+E \quad C \xrightarrow{k_{4}} P_{d}+E
$$

Case Studies

Gene feedback switch $\quad D_{u} \xrightarrow{r_{u}} D_{u}+P$

$$
D_{b} \xrightarrow{r_{b}} D_{b}+P
$$

$$
D_{b} \xrightarrow{k_{b}} D_{u}
$$

$$
\begin{gathered}
D_{b} \xrightarrow{s_{u}} D_{u}+P \\
D_{u}+P \xrightarrow{s_{b}} D_{b} \\
P \xrightarrow{k_{f}}
\end{gathered}
$$

$N=1, V=5$

Queuing System

$$
\xrightarrow{\lambda} Q_{1}
$$

$Q_{1}+S_{1} \xrightarrow{(1-p) \mu_{1} \min \left(Q_{1}, S_{1}\right)} S_{1}$
$Q_{1}+S_{1} \xrightarrow{p \mu_{1} \min \left(Q_{1}, S_{1}\right)} Q_{2}+S_{2}$
$Q_{2}+S_{2} \xrightarrow{\mu_{2} \min \left(Q_{2}, S_{2}\right)} S_{1}$

- Textbook model with Poisson arrivals and Coxian-distributed service times with same mean and increasing variance V
- $\quad N$ servers can simultaneously process client's requests
- Mean-field approximation is insensitive to variance
- Finite state expansion can track increasing variances

$N=1, V=10$

$N=1, V=20$

Comparison against State of the Art

Schlögl

Toggle switch

- EMRE (effective mesoscopic rate equations) and MEC (moment closure approximation) provide equations for first- and secondorder moment
- In some cases (e.g. toggle switch) MCA gives unphysical results
- FSE improves on the accuracy of both; but it does so requiring possibly many more equations
- EMRE cannot be used if rates are not differentiable

Finite State Expansion on a Budget

Comparison Against $1 / \mathrm{N}$ and $1 / \mathrm{N}^{2}$ Expansions

Malware progagation model

—— DBP - $\mathrm{n}=(24,24)$

Active

1/N expansion

- 1/N expansion by Gast \& Van Houdt, SIGMETRICS 2017
- 1/N² expansion by Gast et al., PERFORMANCE 2019
- Both require differentiability of the vector field

Comparison Against 1/N and 1/N N^{2} Expansions

Egalitarian Processor Sharing Queueing System

- $1 / \mathrm{N}$ expansion by Gast \& Van Houdt, SIGMETRICS 2017
- $1 / \mathrm{N}^{2}$ expansion by Gast et al., PERFORMANCE 2019
- Both require differentiability of the vector field

ERODE - 2018_Finite_State_Expansion/schloegl/schloegl.ode - ERODE

begin model schloegl
begin parameters
$\mathrm{k} 1=0.03$
$\mathrm{k} 2=0.0001$
$\mathrm{k} 3=200$
$\mathrm{k} 4=3.5$
end parameters
Θ begin init
$X=200$
$B=1$
SINK $=0$
end init
Θ begin reactions

2*X \rightarrow 3*X, k1
$3 * X \rightarrow 2 * X, k 2$
$B \rightarrow x+B, k 3$
X -> SINK, k4
end reactions
\ominus begin views
$\mathrm{vX}=\mathrm{X}$
end views
${ }^{\ominus}$ simulateCTMC (tEnd $=20$, repeats $=3000$,
viewPlot=vIEWS, CSVFile="schloegl_ssa") fse(fileOut="schloegl_650.ode", limits=[X:650]) fse(fileOut="schloegl_450.ode",1imits=[X:650]) ${ }^{\ominus}$ simulateODE (tEnd=20, steps=100, viewPlot=VIEWS,
library=SUNDIALS, CSvFile="schloegl_ode") lend model

Conclusion

- Starting point: lumping of mean-field equations - when reaction networks are huge to start with

Cardelli et al., PNAS 2017

- How about the opposite, i.e. expanding reaction networks? FSE as a specific expansion algorithm...

Waizmann et al., PRSA 2021

- ...but is actually an instance of a family of algorithms related to finite state projection

Randone et al., SIGMETRICS 2021

PROCEEDINGS A
rspa.royalsocietypublishing.org

Research © CrossMark
Article submitted to journal
Subject Areas systems theory, computational biology
Research

Improved estimations of stochastic chemical kinetics by finite state expansion Tabea Waizmann ${ }^{1}$, Luca Bortolussi ${ }^{2}$ Andrea Vandin ${ }^{3}$, and Mirco Tribastone ${ }^{1}$ ${ }^{1}$ IMT School for Advanced Studies, Lucca, 55100, Italy, ${ }^{2}$ Department of Mathematics and Geosciences, University of Trieste, 34127, Italy, and ${ }^{3}$ Sant'Anna School of Advanced Studies, Pisa, 56127,

Perspectives

- Can we lump the discrete part while controlling overall accuracy? (Exact lumping is not possible in general) YES, OEST 2022
- How to effectively choose observation bounds?
- Monotonicity results? (Does not hold in general)
- Would other expansions improve the approximation with the same computational budget
- Can we approximate higher-order moments?
- ...

Advert

WE ARE HIRING!

Expression of interest for researchers working in:

- dynamical systems/stochastic processes
- software verification
- software engineering
- (cyber-)security

POSITIONS AVAILABLE AT POST-DOC AND ASSISTANT-PROFESSOR (TENURE- TRACK)

mirco.tribastone@imtlucca.it

