

Reconciling discrete and continuous modelling for the analysis of large-scale Markov chains

Mirco Tribastone

IMT Lucca

PRIN 2020 - Nirvana

Ca' Foscari – 8 July 2022

Motivation

Markov chains are a popular tool for stochastic analysis

- PageRank and other centrality measures
- Epidemiological models
- Chemistry
- Systems biology
- Queuing systems
- (Probabilistic) programming languages
- (Probabilistic) population protocols

• ...

"Indeed, the whole of the mathematical study of random processes can be regarded as a generalization in one way or another of the theory of Markov chains."

J.R. Norris, Markov chains, 1998

Motivation

Markov chains are a popular tool for stochastic analysis

- PageRank and other centrality measures
- Epidemiological models <</p>
- Chemistry
- Systems biology <</p>
- Queuing systems <</p>
- (Probabilistic) programming languages
- (Probabilistic) population protocols

• ..

"Indeed, the whole of the mathematical study of random processes can be regarded as a generalization in one way or another of the theory of Markov chains."

J.R. Norris, Markov chains, 1998

Markov Population

Processes

Markov Population Process

- A collection of N interacting agents evolving over m local states
- Typically, N is very large and m is small

Dynamics of a Markov Population Process

Schlögl's system

$$\begin{array}{rcl} 2X \longrightarrow 3X, & k_1 X (X-1)/2 \\ 3X \longrightarrow 2X, & k_2 X (X-1) (X-2)/6 \\ & \longrightarrow & X, & k_3 \\ X \longrightarrow & , & k_4 X \end{array}$$

Stochastic Simulation

- Holding time at each state is exponentially distributed with the sum of outgoing rates
- Probability of a choosing a given transition after holding time equals its transition rate divided by the rate of the residence time

Dynamics of a Markov Population Process

Schlögl's system

 $\begin{array}{rcl} 2X \longrightarrow 3X, & k_1 X (X-1)/2 \\ 3X \longrightarrow 2X, & k_2 X (X-1) (X-2)/6 \\ & \longrightarrow & X, & k_3 \\ X \longrightarrow & , & k_4 X \end{array}$

Master/Forward/Kolmogorov Equations

- Analytical computation of the transient probability distribution
- A system of coupled linear ordinary differential equations, each giving the time course of the Markov chain in any discrete state

$$\begin{aligned} \frac{d\pi_0}{dt} &= -k_3\pi_0 + k_4\pi_1 \\ \frac{d\pi_1}{dt} &= -(k_3 + k_4)\pi_1 + k_3\pi_0 + 2k_4\pi_2 \\ \frac{d\pi_2}{dt} &= -(k_1 + k_3 + 2k_4)\pi_2 + k_3\pi_1 + (k_2 + 3k_4)\pi_3 \end{aligned}$$

. .

Mean-field Approximation

Stochastic analysis is often expensive

- Many simulations required for complex systems to obtain tight confidence intervals
- Analytical solution of the Markov chain possible when the number of states is small enough (and approximations are usually needed for infinite state Markov chains)
- "Full" stochastic analysis is often too informative
 - In many applications the modeller is interested on average behaviour (and perhaps a few higher order moments)

Mean-field approximation (aka deterministic rate equations)

Analytical technique to approximate the **average dynamics of a Markov population process** using a (smaller) system of ordinary differential equations

Mean-field Approximation: Example

Schlögl's system

$$\begin{array}{rcl} 2X \longrightarrow 3X, & k_1 X (X-1)/2 \\ 3X \longrightarrow 2X, & k_2 X (X-1) (X-2)/6 \\ & \longrightarrow & X, & k_3 \\ X \longrightarrow & , & k_4 X \end{array}$$

Properties

- Self-consistent, compact system of equations (one per type of agent)
- Correct in the limit when the population levels go to infinity (Kurtz's theorem)
- Derivation can be generalized to obtain equations for higher-order moments (moment-closure approximation)

•

Derivation

$$\approx \frac{k_1}{2}\mathbb{E}[X^2] - \frac{k_2}{6}\mathbb{E}[X^3] + k_3 - k_4\mathbb{E}[X]$$

(expectation of a function vs. function of the expectations)

$$\approx \frac{k_1}{2} \mathbb{E}[X]^2 - \frac{k_2}{6} \mathbb{E}[X]^3 + k_3 - k_4 \mathbb{E}[X]^3$$

F.....

Mean-field Approximation: Results

Finite State Expansion

Intuition

- Markov population process gives a discrete description of the system
- Mean-field approximation gives a continuous one
- These can be seen are two extremes of a lattice of approximations where a subset of the whole states is kept discrete, and the rest is approximated continuously
- Finite state expansion is such a *hybrid* analytical method

Method

- Fix an observation bound for each agent type: it gives how many entities of that class to observe discretely
- Create a new reaction network adding **new agents types**, one for each discrete configuration
- Rewrite each original reaction to track discrete changes as far as possible, using the original agent types when behaviour goes beyond the chosen observation bounds

$$2X \longrightarrow 3X, \quad k_1 X (X-1)/2$$

$$3X \longrightarrow 2X, \quad k_2 X (X-1) (X-2)/6$$

$$\longrightarrow X, \quad k_3$$

$$X \longrightarrow , \quad k_4 X$$

$\begin{aligned} & \llbracket n \rrbracket \xrightarrow{f_1(n)} \llbracket n \rrbracket + X, & n = \overline{O}_X \\ & \llbracket n \rrbracket \xrightarrow{f_1(n)} \llbracket n + 1 \rrbracket, & 0 \le n < \overline{O}_X \\ & f_1(n) = \llbracket n \rrbracket k_1(X+n)(X+n-1)/2 \end{aligned}$

$$2X \longrightarrow 3X, \quad k_1 X (X - 1)/2$$
$$3X \longrightarrow 2X, \quad k_2 X (X - 1) (X - 2)/6$$
$$\longrightarrow X, \quad k_3$$
$$X \longrightarrow , \quad k_4 X$$

$$2X \longrightarrow 3X, \quad k_1 X (X-1)/2$$

$$3X \longrightarrow 2X, \quad k_2 X (X-1) (X-2)/6$$

$$\longrightarrow X, \quad k_3$$

$$X \longrightarrow , \quad k_4 X$$

(b) Deterministic estimates

Case Studies

Case Studies

Case Studies

- Textbook model with Poisson arrivals and Coxian-distributed service times with same mean and increasing variance V
- N servers can simultaneously process client's requests
- Mean-field approximation is insensitive to variance
- Finite state expansion can track increasing variances

of the Art

- EMRE (effective mesoscopic rate equations) and MEC (moment closure approximation) provide equations for first- and secondorder moment
- In some cases (e.g. toggle switch) MCA gives unphysical results
- FSE improves on the accuracy of both; but it does so requiring possibly many more equations
- EMRE cannot be used if rates are not differentiable

Finite State Expansion on a Budget

Comparison Against 1/N and 1/N² Expansions

Malware progagation model

- 1/N expansion by Gast & Van Houdt, SIGMETRICS 2017
- 1/N² expansion by Gast et al., PERFORMANCE 2019
- Both require differentiability of the vector field

Comparison Against 1/N and 1/N² Expansions

Egalitarian Processor Sharing Queueing System

- 1/N expansion by Gast & Van Houdt, SIGMETRICS 2017
- 1/N² expansion by Gast et al., PERFORMANCE 2019
- Both require differentiability of the vector field

ERODE - 2018_Finite_State_Expansion/schloegl/schloegl.ode - ERODE

www.erode.eu

Conclusion

Starting point: lumping of mean-field equations - when reaction networks are huge to start with

Cardelli et al., PNAS 2017

How about the opposite, i.e. expanding reaction networks? FSE as a specific expansion algorithm...

Waizmann et al., PRSA 2021

...but is actually an instance of a family of algorithms related to finite state projection

Randone et al., SIGMETRICS 2021

Subject Areas: systems theory, computational Italy

biology

University of Trieste, 34127, Italy, and ³Sant'Anna School of Advanced Studies, Pisa, 56127

Refining Mean-field Approximations by Dynamic State Truncation

FRANCESCA RANDONE, IMT School For Advanced Studies Lucca, Italy LUCA BORTOLUSSI, Università degli Studi di Trieste, Italy MIRCO TRIBASTONE, IMT School For Advanced Studies Lucca, Italy

Perspectives

- Can we lump the discrete part while controlling overall accuracy? (Exact lumping is not possible in general) YES, QEST 2022
- How to effectively choose observation bounds?
- Monotonicity results? (Does not hold in general)
- Would other expansions improve the approximation with the same computational budget
- Can we approximate higher-order moments?

•

Advert

WE ARE HIRING!

Expression of interest for researchers working in:

- dynamical systems/stochastic processes
- software verification
- software engineering
- (cyber-)security

POSITIONS AVAILABLE AT POST-DOC AND ASSISTANT-PROFESSOR (TENURE- TRACK)

mirco.tribastone@imtlucca.it

