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Motivation

Markov chains are a popular tool for stochastic analysis

= PageRank and other centrality measures

Epidemiological models

Chemistry

Systems biology

Queuing systems

= (Probabilistic) programming languages
e AT = (Probabilistic) population protocols
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Motivation

Markov chains are a popular tool for stochastic analysis

= PageRank and other centrality measures

Epidemiological models —

Chemistry Markov Population

Systems biology <« Processes

Queuing systems /

(Probabilistic) programming languages

= (Probabilistic) population protocols

‘Indeed, the whole of the mathematical study of random
. processes can be regarded as a generalization in one way
® o - oranother of the theory of Markov chains.” :




Markov Population Process

* A collection of N interacting agents evolving over m local states
= Typically, Nis verylarge and mis small

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

. Reaction Network

S+ T —T+1 aSI
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Agent states Reaction rates
(m=3)



Dynamics of a Markov Population Process

- Schlégl's system . Markov chain
92X 53X, kX (X —1)/2 ks ks ki+ks 3k + ks

3X 52X, BX(X-D(X-2)/6 o
: — X, ks E

X — , k4X ka4 2k,

E 700 —— .
. Stochastic Simulation 600 | w M “’
= Holding time at each state is so0 T
. exponentially distributed with the sum ooy
. of outgoing rates 300 | _,p‘
. = Probability of a choosing a given 500 'w'{
' transition after holding time equals its J\ﬂ* ,, m_ ¢ ,M, .,.w“ o

transition rate divided by the rate of the 100 R
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Dynamics of a Markov Population Process

Schldgl's system ~ Markov chain
92X —5 83X, RX(X —1))2 ks ks kiths 3Ktk
33X 52X, keX(X-1)(X-2)/6
: — X, k3 |
X — . ky X

Master/Forward/Kolmogorov Equations

= Analytical computation of the transient @ = —ksmo + kymy
. probability distribution dt
. = Asystem of coupled linear ordinary dm _ — (ks + ka)m1 + ksmo + 2kamo
: differential equations, each giving the dt
time course of the Markov chain in any dy

discrete state

E — —(kl + k3 + 2:1{74)7'('2 + /@37‘(‘1 + (kg + 3]4?4)71'3;



Mean-field Approximation

» Stochastic analysis is often expensive

= Many simulations required for complex systems to obtain tight
confidence intervals

= Analytical solution of the Markov chain possible when the number of
states is small enough (and approximations are usually needed for infinite
state Markov chains)

= "Full” stochastic analysis is often too informative

* |[n many applications the modeller is interested on average behaviour
(and perhaps a few higher order moments)

Mean-field approximation (aka deterministic rate equations)

Analytical technique to approximate the average dynamics of a Markov :
- population process using a(smaller) system of ordinary differential equations



Mean-field Approximation: Example

Schlégl's system . Derivation
2X — 3X, kX(X—1)/2 P
3X — 2X, ko X(X —1)(X —2)/6 Dynkin’s Formula .
. dE[X] Kk k
— X, ks - d[t | _ SEIX(X —1)] - ZEX(X —1)(X = 2]+
X — , kX + ks — kaB[X] '
pmpert,es ...................................................................... (large-scale approximation)
- = Self-consistent, compact system of ~ ﬁ]E‘,[XQ] - @E[X?’] + k3 — k4E[X]
: P 5 6 3 — Ka
. equations(one per type of agent) P _ .
. = Correctinthelimit when the population : (expectation of a function vs.
: levels go to infinity (Kurtz's theorem) function of the expectations)
. = Derivation can be generalized to obtain kq 5 ko 5
. equations for higher-order moments ~ ?E[X] N EE[X] + ks — kaB[X]

(moment-closure approximation)



Mean-field Approximation: Results

Schlégl's system

2X —3X, ki X(X —1)/2
33X —2X, kXX -1)(X-2)/6
: — X, ]Cg :

. Properties

» (uality of the approximation can be

. model- and parameter-dependent

. = Always correct for linear systems and for
. alimited class of nonlinear systems

. = Exact corrections available for special

. cases
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Finite State Expansmn

Intuition

= Markov population process gives a * Fix an observation bound for each

discrete description of the system
Mean-field approximation gives a
continuous one

These can be seen are two
extremes of a lattice of
approximations where a subset of
the whole states is kept discrete,
and the rest is approximated
continuously

Finite state expansion is such a
hybrid analytical method

agent type: it gives how many
entities of that class to observe
discretely

Create a new reaction network
adding new agents types, one for
each discrete configuration
Rewrite each original reaction to
track discrete changes as far as
possible, using the original agent
types when behaviour goes beyond
the chosen observation bounds



Finite State Expansion: Worked Example

3X — 2X, kX (X —1)(X —2)/6
— X, k3
X — kX
Hoaction oxmgion T

o Ji(n) -

[n] —— [n] + X, n—0x
7] B [ + 1], 0<n<Ox

Jin) = [n]ki (X +n)(X +n—1)/2



Finite State Expansion: Worked Example

0X — 3X, ki X(X —1)/2

— X, ]{‘3
X — . kg X

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

. Reaction expansion
5 f2(n) _

[n] —— [n — 1], 0<n<Ox
§X+[[OHM[[O1], n =0
fam) = [Jka(X +m)(X +n = DX +n - 2)/0

conditional probability coupled mass-action propensity



Finite State Expansion: Worked Example

2X — 3X, kX(X —1)/2
3X — 2X, kX (X —1)(X —2)/6

X — . kg X

_Reaction expansion

- Ja(n) =

n] —— [n] + X, n=0x
In] 2% [n + 1], 0<n<Ox

fs(n) = [n]ks



Finite State Expansion: Worked Example

0X —53X, ki X(X —1)/2
3X — 2X, ko X(X — 1)(X —2)/6
— X, ]{‘3

_Reaction expansion

Tn] 22 1 — 1], 0<n<Ox
X+ [n] 2 [, n—0

fa(n) = [nlka(X + n)



“Consistency” of Finite State Expansion

1. Finite state expansion always 0
preserves the stochastic
dynamics of the reaction (
network: the original and the
expanded Markov chains are (
related by ordinary lumpability

| ()
(aka probabilistic bisimulation) < > ( ,) ( ; C;
) | ()

2. When the observation bound is
zero, the MFA corresponds to ; [Ox —1],0 [Ox —1],1
the original one ( ) ( )

3. When the observation bound is :
infinity, the MFA corresponds o [0x],0 —— [Ox],1 —— -
to the original forward |
equations



Mean-field Approximation: Comparison

-----------------------------------------------------------------------------------------------------------------------

. Original Schlagl

X
= F1X?/2 — kX7 )6 + kg — ky X
........................................................................................................................................................................................................................................... 200 - v
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Case Studies

Heterodimerization
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Case Studies

Protein degradation

k—1>mP
k'2 k‘g
P+F—=C C —P+FE

P with aa = 0.6
P with aa = 0.8

0 0.5 1 1.5 2




Case Studies

Gene feedback switch p, ™, | p Dy 2% Dy + P
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N=1, V=5 N=1, V=10 N=1, V=20

N é 8 g;; 81 g 81
— > ¥ ¥
(1—p)u1 min(Q1,S51) 2 2 = 21 = 2]
Q1+ St > S1 o o o
pp1 min(Q1,S1)
Q1+ 51 » Q2 + 52 ) )
p2 min(Qz2,S2) %12’ %12— %12—
Q2 + S2 > S1 30 30 31
o ‘ 3
= Textbook model with Poisson R g, g,
arrivals and Coxian-distributed <, <, 3,
SerVICe tlmes Wlth Same mean o 0 50 100 150 200 o 0 50 100 150 200 o 0 50 100 150 200
and increasing variance V R NS R
= Nservers can simultaneously 5] £ £
process client's requests g e | 820 g
- Mean_field apprOXimation iS é | é | é |
insensitive to variance 2. 2. 2.
= Finite state expansion cantrack <: <o < o
InCreaSing Va rlanCeS o 100 150 200 o 0 50 100 150 200 o 0 50 100 150 200

FSE-n, =10 FSE - n; =30 —— FSE-n;=50 —— FSE-n; =100 —— sim  ---e- mean-field



Comparison against State of the Art

Schlogl
200 ¢ T T T . .
\ E—-ry EMRE (effective mesoscopic
180 [\}

DRE |

VEC rate equations)and MEC

roe | (moment closure

| approximation) provide

equations for first- and second-

order moment

0 5 10 15 » " Insome cases(e.qg.toggle

Toggle switch switch) MCA gives unphysical

— | | results

200 VoA ......———1 ® FSEimprovesonthe accuracy

PN (— e . of both; but it does so requiring

ook ] possibly many more equations
= EMRE cannot be used if rates

are not differentiable
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Finite State Expansion on a Budget

Relative error in %
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Comparison Against 1/N and 1/N?

Malware progagation model

- Xpansions
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Both require differentiability of the vector field




Comparison Against 1/N and 1/NZ Expansions

Egalitarian Processor Sharing Queueing System
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[ ) ERODE - 2018_Finite_State_Expansion/schloegl/schloegl.ode - ERODE

v CH - AR AR AR E AR CE R #: 4

@ schloegl.ode 3 "S schloegl_450... 9 schloegl_650... 9

» =

lafi ero... |afi ero.. % |afi ¢

-~ begin model schloegl
-~ begin parameters

kl = 0.03
k2 = 0.0001
k3 = 200
k4 = 3.5

end parameters
- begin init

X = 200

B=1

SINK = 0

end init
- begin reactions

2*X -> 3*X, kl
3*X -> 2*X, k2

B -> X + B, k3
X -> SINK, k4
end reactions

- begin views
vX = X
end views

“simulateCTMC(tEnd=20, repeats=3000,
viewPlot=VIEWS, csvFile="schloegl ssa")
fse(fileOut="schloegl 650.ode",limits=[X:650])
fse(fileOut="schloegl 450.ode",limits=[X:650])
“simulateODE(tEnd=20, steps=100, viewPlot=VIEWS,

library=SUNDIALS, csvFile="schloegl ode")
knd model

|adi ero...

:=VIEWS, library=SUNDIALS, csvFile=/Use

e

x‘ u‘

| &[] m

Pl I

schloegl - ODE solutions
204.10245 -

200 =

190 §

Views
[
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o
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170 4

160 o
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Writable Insert

] console ‘
ERODE-schloegl_650-[13/09/2021
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onclusion

» Starting point: lumping of mean-field
equations - when reaction networks are huge
to start with

Cardelli et al., PNAS 2017

= How about the opposite, i.e. expanding
reaction networks? FSE as a specific
expansion algorithm...

Waizmann et al., PRSA 2021
= _..butisactually aninstance of a family of
algorithms related to finite state projection

Randone et al., SIGMETRICS 2021

<
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Maximal aggregation of polynomial dynamical systems

Luca Cardelli*>!, Mirco Tribastone“'?, Max Tschaikowski“', and Andrea Vandin®'

*Microsoft Research, Cambridge CB1 2F8, United Kingdom; ®Department of Computing, University of Oxford, Oxford OX1 3QD, United Kingdom;

and “Scuola IMT Alti Studi Lucca, 55100 Lucca, Italy

Edited by Moshe Y. Vardi, Rice University, Houston, TX, and approved July 28, 2017 (received for review February 16, 2017)

ordi !
area tool for i ynamics of systems
across many branches of science, but our ability to gain mecha-
nistic insight and effectively conduct numerical evaluations is crit-
ically hindered when dealing with large models. Here we propose
an aggregation technique that rests on two notions of equiva-
lence relating ODE variables whenever they have the same solu-
tion (backward criterion) or if a self-consistent system can be writ-
ten for describing the evolution of sums of variables in the same
equivalence class (forward criterion). A key feature of our proposal
is to encode a polynomial ODE system into a finitary structure akin
to a formal chemical reaction network. This enables the develop-
ment of a discrete algorithm to efficiently compute the largest
equivalence, building on approaches rooted in computer science
to minimize basic models of computation through iterative parti-
tion refi The physical i il i

is shown on polynomial ODE systems for biochemical reaction net-
works, gene regulatory networks, and evolutionary game theory.

polynomial dynamical systems | aggregation | partition refinement

rspa.royalsocietypublishing.org

ResearCh " E l CrossMark
Article submitted to journal

Subject Areas:

variables in a single block. Furthermore, the freedom in choosing
an arbitrary initial partition is instrumental to producing reduc-
tions that preserve the dynamics of desired original variables,
which are then not aggregated.

Mathematically, our approach is a generalization of well-
known equivalence relations for Markov chains named lumpa-
bility (14). Ordinary lumpability relates states that have the same
aggregate transition rate toward every cquivalence class (thus, it
is a forward criterion); in exact lumpability, two equivalent states
have the same aggregate rate from every equivalence class (thus,
it is a backward criterion). In a conceptually similar spirit, we
define forward equivalence as a relation whereby each equiv-
alence class describes the evolution of the sum of ODE vari-
ables in the original model. Backward cquivalence identifics vari-
ables that have the same solutions at all time points (hence, they
must start from the same initial conditions). Indeed, forward and
backward equivalence collapse to ordinary and exact lumpabil-
ity, respectively, when the (linear) ODE system is the equation
of motion for the transient probability distribution of a continu-
ous time Markov chain (15).

Improved estimations of
stochastic chemical kinetics

by finite state expansion

. .92
Tabea Waizmann !, Luca Bortolussi 2,

Andrea Vandin ®, and Mirco Tribastone !

2Department of Mathematics and Geosciences,
University of Trieste, 34127, ltaly, and

systems theory, computational

biology

Italy.

Refining Mean-field Approximations by Dynamic State

Truncation

FRANCESCA RANDONE, IMT School For Advanced Studies Lucca, Italy
LUCA BORTOLUSSI, Universita degli Studi di Trieste, Italy
MIRCO TRIBASTONE, IMT School For Advanced Studies Lucca, Italy

LIMT School for Advanced Studies, Lucca, 55100, Italy,

3Sant'Anna School of Advanced Studies, Pisa, 56127,
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Perspectives

* Can we lump the discrete part while controlling overall accuracy?
(Exact lumping is not possible in general) YES, QEST 2022

» How to effectively choose observation bounds?
= Monotonicity results? (Does not hold in general)

* Would other expansions improve the approximation with the
same computational budget

» Can we approximate higher-order moments?

THANKS!
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