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Motivation
Markov chains are a popular tool for stochastic analysis

§ PageRank and other centrality measures
§ Epidemiological models 
§ Chemistry
§ Systems biology
§ Queuing systems
§ (Probabilistic) programming languages
§ (Probabilistic) population protocols
§ ...

“Indeed, the whole of the mathematical study of random 
processes can be regarded as a generalization in one way 
or another of the theory of Markov chains.” 

J.R. Norris, Markov chains, 1998
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Markov Population Process

§ A collection of N interacting agents evolving over m local states
§ Typically, N is very large and m is small

S + I �! I + I, ↵SI

I �! R, �I
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Reaction Network 

Agent states
(m = 3)

Reaction rates



2X �! 3X, k1X(X � 1)/2

3X �! 2X, k2X(X � 1)(X � 2)/6
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Markov chain

Stochastic Simulation
§ Holding time at each state is 

exponentially distributed with the sum 
of outgoing rates

§ Probability of a choosing a given 
transition after holding time equals its 
transition rate divided by the rate of the 
residence time

Dynamics of a Markov Population Process
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(R1) 2X
k1�� 3X

(R2) 3X
k2�� 2X

(R3)
k3�� X

(R4) X
k4��
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(R1.1) �n� f1(n)���� �n� + X, n = OX

(R1.2) �n� f1(n)���� �n + 1�, 0 � n < OX

f1(n) = �n�k1(X + n)(X + n � 1)/2

(R2.1) �n� f2(n)���� �n � 1�, 3 � n � OX

(R2.2) �n� f2(n)���� �n � 1�, 0 < n < 3

(R2.3) X + �0� f2(n)���� �0�, n = 0

f2(n) = �n�k2(X + n)(X + n � 1)(X + n � 2)/6

(R3.1) �n� f3(n)���� �n� + X, n = OX

(R3.2) �n� f3(n)���� �n + 1�, 0 � n < OX

f3(n) = �n�k3

(R4.1) �n� f4(n)���� �n � 1�, 0 < n � OX

(R4.2) X + �n� f4(n)���� �n�, n = 0

f4(n) = �n�k4(X + n)
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DRAFT

where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by

�S = max(0, �S � oS)
�S = max(0,max(0, oS � �S) + �S �OS)
o�S = min(OS ,max(0, oS � �S) + �S).

Intuitively, for each original reaction, Eq. (1) considers118

its behavior with respect to each observed configuration JoK.119

Any expanded reaction maintains the same overall counts of120

educts and products as the originating reaction, with a target121

observed configuration Jo�K that results from the addition of122

products and removal of educts within the upper bound O.123

The multisets of original population classes � and � act as124

bu�er pools for configurations that are not explicitly observed.125

An example of such a construction is discussed in detail in126

Fig. 1. Finally, the propensity function fo is derived from that127

of the original reaction f as128

fo : RS
O � R+

0 , with fo(x) = x�o� · f(o+ x|S ), [2]129

where, for a given x � RS
O , x|S denotes its projection onto130

the original set of population classes S . This modification131

accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135

lumpability of Markov chains (26) (see SI Appendix, SI Text).136

Denoting by P̂ the probability distribution in the expanded137

RN, ordinary lumpability implies that138

P�(t) =
�

o+�=�

P̂�o�+�(t), for all t and � � NS . [3]139

That is, the ME solution for a state � in the original RN will140

exactly correspond to the sum of the ME solutions for all states141

in the expanded RN that track the same overall population142

levels. Furthermore, when the RN is fully expanded, i.e., when143

O = NS , we recover the original ME.144

Although the stochastic behavior of the source RN and any145

expansion are equivalent in this specific sense, their respective146

DREs are not. The target RN has |O| + |S | variables: its147

solution can be interpreted as a corrected estimate of the148

solution of the |S |-variable source DRE.149

Applications150

Schlögl’s model. The Schögl model is an extensively studied
tri-molecular scheme (29), given by the RN

A+ 2X k1�� 3X +A 3X k2�� 2X [4]

B
k3�� X +B X

k4�� � [5]

Here, the parameters k1, k2, k3, k4 are mass-action kinetic151

parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
�

S�S

�
�S
�S

�
.156

The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.

the number of molecules of X, while the initial populations 161

of molecules A and B are taken as further model parameters. 162

The discrepancy between the stochastic kinetics and the DRE 163

approximation has been observed for a long time (30). Under 164

an appropriate choice of kinetic parameters, the DRE features 165

two equilibrium points owing to the strong (cubic) nonlinearity 166

in the ODEs (31). Analogously, the underlying infinite-state 167

stochastic process is well-known for the bimodality of the 168

steady-state probability distribution of species X. In this case, 169

the DRE may provide inaccurate estimates of the average 170

population of species X because the DRE will deterministically 171

converge only to one steady state (32). Finite state expansion 172

can correct the mean estimates by expanding increasingly 173

larger populations of species X, paying a linear cost in the 174

resulting ODE system size (Figure 2). 175

Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
Models of toggle-switch networks are mathematically challeng-
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approximation has been observed for a long time (30). Under 164

an appropriate choice of kinetic parameters, the DRE features 165

two equilibrium points owing to the strong (cubic) nonlinearity 166

in the ODEs (31). Analogously, the underlying infinite-state 167

stochastic process is well-known for the bimodality of the 168

steady-state probability distribution of species X. In this case, 169

the DRE may provide inaccurate estimates of the average 170

population of species X because the DRE will deterministically 171

converge only to one steady state (32). Finite state expansion 172

can correct the mean estimates by expanding increasingly 173

larger populations of species X, paying a linear cost in the 174

resulting ODE system size (Figure 2). 175

Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
Models of toggle-switch networks are mathematically challeng-
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Stochastic simulations

Deterministic Rate Equations
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� In>0{f2(n) + f4(n)}
+ I1�n�OX

f1(n � 1)

+ I0�n�OX�1f2(n + 1)

+ I1�n�OX
f3(n � 1)

+ I0�n�OX�1f4(n + 1)

dX

dt
= f1(OX) + f3(OX) � f2(0) � f4(0)
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).
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Markov chain

Master/Forward/Kolmogorov Equations

Dynamics of a Markov Population Process

§ Analytical computation of the transient 
probability distribution

§ A system of coupled linear ordinary 
differential equations, each giving the 
time course of the Markov chain in any 
discrete state

d⇡0

dt
= �k3⇡0 + k4⇡1

d⇡1

dt
= �(k3 + k4)⇡1 + k3⇡0 + 2k4⇡2

d⇡2

dt
= �(k1 + k3 + 2k4)⇡2 + k3⇡1 + (k2 + 3k4)⇡3

. . .
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Mean-field Approximation

§ Stochastic analysis is often expensive
§ Many simulations required for complex systems to obtain tight 

confidence intervals
§ Analytical solution of the Markov chain possible when the number of 

states is small enough (and approximations are usually needed for infinite 
state Markov chains)

§ ”Full” stochastic analysis is often too informative
§ In many applications the modeller is interested on average behaviour 

(and perhaps a few higher order moments)

Mean-field approximation (aka deterministic rate equations)
Analytical technique to approximate the average dynamics of a Markov 
population process using a (smaller) system of ordinary differential equations 



Mean-field Approximation: Example

2X �! 3X, k1X(X � 1)/2

3X �! 2X, k2X(X � 1)(X � 2)/6

�! X, k3

X �! , k4X
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Schlögl’s system

(expectation of a function vs. 
function of the expectations)

(large-scale approximation)

dE[X]

dt
=

k1
2
E[X(X � 1)]� k2

6
E[X(X � 1)(X � 2)]+

+ k3 � k4E[X]

⇡ k1
2
E[X2]� k2

6
E[X3] + k3 � k4E[X]

⇡ k1
2
E[X]2 � k2

6
E[X]3 + k3 � k4E[X]
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Derivation

Dynkin’s Formula

§ Self-consistent, compact system of 
equations (one per type of agent)

§ Correct in the limit when the population 
levels go to infinity (Kurtz’s theorem)

§ Derivation can be generalized to obtain 
equations for higher-order moments 
(moment-closure approximation)

Properties



Mean-field Approximation: Results

2X �! 3X, k1X(X � 1)/2

3X �! 2X, k2X(X � 1)(X � 2)/6

�! X, k3

X �! , k4X
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Schlögl’s system

§ Quality of the approximation can be 
model- and parameter-dependent 

§ Always correct for linear systems and for 
a limited class of nonlinear systems

§ Exact corrections available for special 
cases

Properties

k1 = 0.03

k2 = 0.0001

k3 = 200

k4 = 3.5
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k1 = 0.03

k2 = 0.0004

k3 = 200

k4 = 4.5
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Finite State Expansion

§ Markov population process gives a 
discrete description of the system

§ Mean-field approximation gives a 
continuous one

§ These can be seen are two 
extremes of a lattice of 
approximations where a subset of 
the whole states is kept discrete, 
and the rest is approximated 
continuously

§ Finite state expansion is such a 
hybrid analytical method

Intuition
§ Fix an observation bound for each 

agent type: it gives how many 
entities of that class to observe 
discretely

§ Create a new reaction network 
adding new agents types, one for 
each discrete configuration

§ Rewrite each original reaction to 
track discrete changes as far as 
possible, using the original agent 
types when behaviour goes beyond 
the chosen observation bounds

Method



Finite State Expansion: Worked Example
2X �! 3X, k1X(X � 1)/2

3X �! 2X, k2X(X � 1)(X � 2)/6

�! X, k3

X �! , k4X
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(R1.1) �n� f1(n)���� �n� + X, n = OX

(R1.2) �n� f1(n)���� �n + 1�, 0 � n < OX

f1(n) = �n�k1(X + n)(X + n � 1)/2

(R2.1) �n� f2(n)���� �n � 1�, 3 � n � OX

(R2.2) �n� f2(n)���� �n � 1�, 0 < n < 3

(R2.3) X + �0� f2(n)���� �0�, n = 0

f2(n) = �n�k2(X + n)(X + n � 1)(X + n � 2)/6

(R3.1) �n� f3(n)���� �n� + X, n = OX

(R3.2) �n� f3(n)���� �n + 1�, 0 � n < OX

f3(n) = �n�k3

(R4.1) �n� f4(n)���� �n � 1�, 0 < n � OX

(R4.2) X + �n� f4(n)���� �n�, n = 0

f4(n) = �n�k4(X + n)
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DRAFT

where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by

�S = max(0, �S � oS)
�S = max(0,max(0, oS � �S) + �S �OS)
o�S = min(OS ,max(0, oS � �S) + �S).

Intuitively, for each original reaction, Eq. (1) considers118

its behavior with respect to each observed configuration JoK.119

Any expanded reaction maintains the same overall counts of120

educts and products as the originating reaction, with a target121

observed configuration Jo�K that results from the addition of122

products and removal of educts within the upper bound O.123

The multisets of original population classes � and � act as124

bu�er pools for configurations that are not explicitly observed.125

An example of such a construction is discussed in detail in126

Fig. 1. Finally, the propensity function fo is derived from that127

of the original reaction f as128

fo : RS
O � R+

0 , with fo(x) = x�o� · f(o+ x|S ), [2]129

where, for a given x � RS
O , x|S denotes its projection onto130

the original set of population classes S . This modification131

accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135

lumpability of Markov chains (26) (see SI Appendix, SI Text).136

Denoting by P̂ the probability distribution in the expanded137

RN, ordinary lumpability implies that138

P�(t) =
�

o+�=�

P̂�o�+�(t), for all t and � � NS . [3]139

That is, the ME solution for a state � in the original RN will140

exactly correspond to the sum of the ME solutions for all states141

in the expanded RN that track the same overall population142

levels. Furthermore, when the RN is fully expanded, i.e., when143

O = NS , we recover the original ME.144

Although the stochastic behavior of the source RN and any145

expansion are equivalent in this specific sense, their respective146

DREs are not. The target RN has |O| + |S | variables: its147

solution can be interpreted as a corrected estimate of the148

solution of the |S |-variable source DRE.149

Applications150

Schlögl’s model. The Schögl model is an extensively studied
tri-molecular scheme (29), given by the RN

A+ 2X k1�� 3X +A 3X k2�� 2X [4]

B
k3�� X +B X

k4�� � [5]

Here, the parameters k1, k2, k3, k4 are mass-action kinetic151

parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
�

S�S

�
�S
�S

�
.156

The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.

the number of molecules of X, while the initial populations 161

of molecules A and B are taken as further model parameters. 162

The discrepancy between the stochastic kinetics and the DRE 163

approximation has been observed for a long time (30). Under 164

an appropriate choice of kinetic parameters, the DRE features 165

two equilibrium points owing to the strong (cubic) nonlinearity 166

in the ODEs (31). Analogously, the underlying infinite-state 167

stochastic process is well-known for the bimodality of the 168

steady-state probability distribution of species X. In this case, 169

the DRE may provide inaccurate estimates of the average 170

population of species X because the DRE will deterministically 171

converge only to one steady state (32). Finite state expansion 172

can correct the mean estimates by expanding increasingly 173

larger populations of species X, paying a linear cost in the 174

resulting ODE system size (Figure 2). 175

Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
Models of toggle-switch networks are mathematically challeng-
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eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).
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(R1.1) �n� f1(n)���� �n� + X, n = OX

(R1.2) �n� f1(n)���� �n + 1�, 0 � n < OX

f1(n) = �n�k1(X + n)(X + n � 1)/2

(R2.1) �n� f2(n)���� �n � 1�, 3 � n � OX

(R2.2) �n� f2(n)���� �n � 1�, 0 < n < 3

(R2.3) X + �0� f2(n)���� �0�, n = 0

f2(n) = �n�k2(X + n)(X + n � 1)(X + n � 2)/6

(R3.1) �n� f3(n)���� �n� + X, n = OX

(R3.2) �n� f3(n)���� �n + 1�, 0 � n < OX

f3(n) = �n�k3

(R4.1) �n� f4(n)���� �n � 1�, 0 < n � OX

(R4.2) X + �n� f4(n)���� �n�, n = 0

f4(n) = �n�k4(X + n)
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
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where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by
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where, for a given x � RS
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accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135
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Applications150
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parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
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The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).
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Finite State Expansion: Worked Example
2X �! 3X, k1X(X � 1)/2

3X �! 2X, k2X(X � 1)(X � 2)/6

�! X, k3

X �! , k4X
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(R1.1) �n� f1(n)���� �n� + X, n = OX

(R1.2) �n� f1(n)���� �n + 1�, 0 � n < OX

f1(n) = �n�k1(X + n)(X + n � 1)/2

(R2.1) �n� f2(n)���� �n � 1�, 3 � n � OX

(R2.2) �n� f2(n)���� �n � 1�, 0 < n < 3

(R2.3) X + �0� f2(n)���� �0�, n = 0

f2(n) = �n�k2(X + n)(X + n � 1)(X + n � 2)/6

(R3.1) �n� f3(n)���� �n� + X, n = OX

(R3.2) �n� f3(n)���� �n + 1�, 0 � n < OX

f3(n) = �n�k3

(R4.1) �n� f4(n)���� �n � 1�, 0 < n � OX

(R4.2) X + �n� f4(n)���� �n�, n = 0

f4(n) = �n�k4(X + n)
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DRAFT

where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by

�S = max(0, �S � oS)
�S = max(0,max(0, oS � �S) + �S �OS)
o�S = min(OS ,max(0, oS � �S) + �S).

Intuitively, for each original reaction, Eq. (1) considers118

its behavior with respect to each observed configuration JoK.119

Any expanded reaction maintains the same overall counts of120

educts and products as the originating reaction, with a target121

observed configuration Jo�K that results from the addition of122

products and removal of educts within the upper bound O.123

The multisets of original population classes � and � act as124

bu�er pools for configurations that are not explicitly observed.125

An example of such a construction is discussed in detail in126

Fig. 1. Finally, the propensity function fo is derived from that127

of the original reaction f as128

fo : RS
O � R+

0 , with fo(x) = x�o� · f(o+ x|S ), [2]129

where, for a given x � RS
O , x|S denotes its projection onto130

the original set of population classes S . This modification131

accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135

lumpability of Markov chains (26) (see SI Appendix, SI Text).136

Denoting by P̂ the probability distribution in the expanded137

RN, ordinary lumpability implies that138

P�(t) =
�

o+�=�

P̂�o�+�(t), for all t and � � NS . [3]139

That is, the ME solution for a state � in the original RN will140

exactly correspond to the sum of the ME solutions for all states141

in the expanded RN that track the same overall population142

levels. Furthermore, when the RN is fully expanded, i.e., when143

O = NS , we recover the original ME.144

Although the stochastic behavior of the source RN and any145

expansion are equivalent in this specific sense, their respective146

DREs are not. The target RN has |O| + |S | variables: its147

solution can be interpreted as a corrected estimate of the148

solution of the |S |-variable source DRE.149

Applications150

Schlögl’s model. The Schögl model is an extensively studied
tri-molecular scheme (29), given by the RN

A+ 2X k1�� 3X +A 3X k2�� 2X [4]

B
k3�� X +B X

k4�� � [5]

Here, the parameters k1, k2, k3, k4 are mass-action kinetic151

parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
�

S�S

�
�S
�S

�
.156

The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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mental regulatory system of two mutually repressing genes (33).
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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mental regulatory system of two mutually repressing genes (33).
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).



Finite State Expansion: Worked Example
2X �! 3X, k1X(X � 1)/2

3X �! 2X, k2X(X � 1)(X � 2)/6

�! X, k3
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(R1.1) �n� f1(n)���� �n� + X, n = OX

(R1.2) �n� f1(n)���� �n + 1�, 0 � n < OX

f1(n) = �n�k1(X + n)(X + n � 1)/2

(R2.1) �n� f2(n)���� �n � 1�, 3 � n � OX

(R2.2) �n� f2(n)���� �n � 1�, 0 < n < 3

(R2.3) X + �0� f2(n)���� �0�, n = 0

f2(n) = �n�k2(X + n)(X + n � 1)(X + n � 2)/6

(R3.1) �n� f3(n)���� �n� + X, n = OX

(R3.2) �n� f3(n)���� �n + 1�, 0 � n < OX

f3(n) = �n�k3

(R4.1) �n� f4(n)���� �n � 1�, 0 < n � OX

(R4.2) X + �n� f4(n)���� �n�, n = 0

f4(n) = �n�k4(X + n)
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DRAFT

where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by

�S = max(0, �S � oS)
�S = max(0,max(0, oS � �S) + �S �OS)
o�S = min(OS ,max(0, oS � �S) + �S).

Intuitively, for each original reaction, Eq. (1) considers118

its behavior with respect to each observed configuration JoK.119

Any expanded reaction maintains the same overall counts of120

educts and products as the originating reaction, with a target121

observed configuration Jo�K that results from the addition of122

products and removal of educts within the upper bound O.123

The multisets of original population classes � and � act as124

bu�er pools for configurations that are not explicitly observed.125

An example of such a construction is discussed in detail in126

Fig. 1. Finally, the propensity function fo is derived from that127

of the original reaction f as128
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O � R+

0 , with fo(x) = x�o� · f(o+ x|S ), [2]129

where, for a given x � RS
O , x|S denotes its projection onto130

the original set of population classes S . This modification131

accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135

lumpability of Markov chains (26) (see SI Appendix, SI Text).136
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That is, the ME solution for a state � in the original RN will140

exactly correspond to the sum of the ME solutions for all states141

in the expanded RN that track the same overall population142

levels. Furthermore, when the RN is fully expanded, i.e., when143

O = NS , we recover the original ME.144

Although the stochastic behavior of the source RN and any145

expansion are equivalent in this specific sense, their respective146

DREs are not. The target RN has |O| + |S | variables: its147

solution can be interpreted as a corrected estimate of the148

solution of the |S |-variable source DRE.149

Applications150

Schlögl’s model. The Schögl model is an extensively studied
tri-molecular scheme (29), given by the RN
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Here, the parameters k1, k2, k3, k4 are mass-action kinetic151

parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
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The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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of molecules A and B are taken as further model parameters. 162

The discrepancy between the stochastic kinetics and the DRE 163

approximation has been observed for a long time (30). Under 164

an appropriate choice of kinetic parameters, the DRE features 165

two equilibrium points owing to the strong (cubic) nonlinearity 166
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can correct the mean estimates by expanding increasingly 173
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resulting ODE system size (Figure 2). 175
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).



“Consistency” of Finite State Expansion
1. Finite state expansion always 

preserves the stochastic 
dynamics of the reaction 
network: the original and the 
expanded Markov chains are 
related by ordinary lumpability
(aka probabilistic bisimulation)

2. When the observation bound is 
zero, the MFA corresponds to 
the original one

3. When the observation bound is 
infinity, the MFA corresponds 
to the original forward 
equations
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f1(n) = �n�k1(X + n)(X + n � 1)/2

(R2.1) �n� f2(n)���� �n � 1�, 3 � n � OX

(R2.2) �n� f2(n)���� �n � 1�, 0 < n < 3

(R2.3) X + �0� f2(n)���� �0�, n = 0

f2(n) = �n�k2(X + n)(X + n � 1)(X + n � 2)/6

(R3.1) �n� f3(n)���� �n� + X, n = OX
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DRAFT

where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by

�S = max(0, �S � oS)
�S = max(0,max(0, oS � �S) + �S �OS)
o�S = min(OS ,max(0, oS � �S) + �S).

Intuitively, for each original reaction, Eq. (1) considers118

its behavior with respect to each observed configuration JoK.119

Any expanded reaction maintains the same overall counts of120

educts and products as the originating reaction, with a target121

observed configuration Jo�K that results from the addition of122

products and removal of educts within the upper bound O.123

The multisets of original population classes � and � act as124

bu�er pools for configurations that are not explicitly observed.125

An example of such a construction is discussed in detail in126

Fig. 1. Finally, the propensity function fo is derived from that127

of the original reaction f as128

fo : RS
O � R+

0 , with fo(x) = x�o� · f(o+ x|S ), [2]129

where, for a given x � RS
O , x|S denotes its projection onto130

the original set of population classes S . This modification131

accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135

lumpability of Markov chains (26) (see SI Appendix, SI Text).136

Denoting by P̂ the probability distribution in the expanded137

RN, ordinary lumpability implies that138

P�(t) =
�

o+�=�

P̂�o�+�(t), for all t and � � NS . [3]139

That is, the ME solution for a state � in the original RN will140

exactly correspond to the sum of the ME solutions for all states141

in the expanded RN that track the same overall population142

levels. Furthermore, when the RN is fully expanded, i.e., when143

O = NS , we recover the original ME.144

Although the stochastic behavior of the source RN and any145

expansion are equivalent in this specific sense, their respective146

DREs are not. The target RN has |O| + |S | variables: its147

solution can be interpreted as a corrected estimate of the148

solution of the |S |-variable source DRE.149

Applications150

Schlögl’s model. The Schögl model is an extensively studied
tri-molecular scheme (29), given by the RN

A+ 2X k1�� 3X +A 3X k2�� 2X [4]

B
k3�� X +B X

k4�� � [5]

Here, the parameters k1, k2, k3, k4 are mass-action kinetic151

parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
�

S�S

�
�S
�S

�
.156

The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.

0 100 200 300 400

Time

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
M

A
/M

B

SIM DRE 1-5 2-10 2-15

0 100 200 300 400

Time

0

50

100

150

200

250

P
A

/P
B

Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.

the number of molecules of X, while the initial populations 161

of molecules A and B are taken as further model parameters. 162

The discrepancy between the stochastic kinetics and the DRE 163

approximation has been observed for a long time (30). Under 164

an appropriate choice of kinetic parameters, the DRE features 165

two equilibrium points owing to the strong (cubic) nonlinearity 166

in the ODEs (31). Analogously, the underlying infinite-state 167

stochastic process is well-known for the bimodality of the 168

steady-state probability distribution of species X. In this case, 169

the DRE may provide inaccurate estimates of the average 170

population of species X because the DRE will deterministically 171

converge only to one steady state (32). Finite state expansion 172

can correct the mean estimates by expanding increasingly 173

larger populations of species X, paying a linear cost in the 174

resulting ODE system size (Figure 2). 175

Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
Models of toggle-switch networks are mathematically challeng-
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where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by
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solution can be interpreted as a corrected estimate of the148
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).
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where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by

�S = max(0, �S � oS)
�S = max(0,max(0, oS � �S) + �S �OS)
o�S = min(OS ,max(0, oS � �S) + �S).

Intuitively, for each original reaction, Eq. (1) considers118

its behavior with respect to each observed configuration JoK.119

Any expanded reaction maintains the same overall counts of120

educts and products as the originating reaction, with a target121

observed configuration Jo�K that results from the addition of122

products and removal of educts within the upper bound O.123

The multisets of original population classes � and � act as124

bu�er pools for configurations that are not explicitly observed.125

An example of such a construction is discussed in detail in126

Fig. 1. Finally, the propensity function fo is derived from that127

of the original reaction f as128

fo : RS
O � R+

0 , with fo(x) = x�o� · f(o+ x|S ), [2]129

where, for a given x � RS
O , x|S denotes its projection onto130

the original set of population classes S . This modification131

accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135

lumpability of Markov chains (26) (see SI Appendix, SI Text).136

Denoting by P̂ the probability distribution in the expanded137

RN, ordinary lumpability implies that138

P�(t) =
�

o+�=�

P̂�o�+�(t), for all t and � � NS . [3]139

That is, the ME solution for a state � in the original RN will140

exactly correspond to the sum of the ME solutions for all states141

in the expanded RN that track the same overall population142

levels. Furthermore, when the RN is fully expanded, i.e., when143

O = NS , we recover the original ME.144

Although the stochastic behavior of the source RN and any145

expansion are equivalent in this specific sense, their respective146

DREs are not. The target RN has |O| + |S | variables: its147

solution can be interpreted as a corrected estimate of the148

solution of the |S |-variable source DRE.149

Applications150

Schlögl’s model. The Schögl model is an extensively studied
tri-molecular scheme (29), given by the RN

A+ 2X k1�� 3X +A 3X k2�� 2X [4]

B
k3�� X +B X

k4�� � [5]

Here, the parameters k1, k2, k3, k4 are mass-action kinetic151

parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
�

S�S

�
�S
�S

�
.156

The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.

the number of molecules of X, while the initial populations 161

of molecules A and B are taken as further model parameters. 162

The discrepancy between the stochastic kinetics and the DRE 163

approximation has been observed for a long time (30). Under 164

an appropriate choice of kinetic parameters, the DRE features 165

two equilibrium points owing to the strong (cubic) nonlinearity 166

in the ODEs (31). Analogously, the underlying infinite-state 167

stochastic process is well-known for the bimodality of the 168

steady-state probability distribution of species X. In this case, 169

the DRE may provide inaccurate estimates of the average 170

population of species X because the DRE will deterministically 171

converge only to one steady state (32). Finite state expansion 172

can correct the mean estimates by expanding increasingly 173

larger populations of species X, paying a linear cost in the 174

resulting ODE system size (Figure 2). 175

Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
Models of toggle-switch networks are mathematically challeng-
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.
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converge only to one steady state (32). Finite state expansion 172

can correct the mean estimates by expanding increasingly 173

larger populations of species X, paying a linear cost in the 174

resulting ODE system size (Figure 2). 175

Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
Models of toggle-switch networks are mathematically challeng-
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· · ·

i

· · ·

Reaction network with finite state expansion

Observation bound

DRAFT

where the ‘+’ symbol in the reaction denotes multiset union,
and multisets �, � and o� � NS are given componentwise by

�S = max(0, �S � oS)
�S = max(0,max(0, oS � �S) + �S �OS)
o�S = min(OS ,max(0, oS � �S) + �S).

Intuitively, for each original reaction, Eq. (1) considers118

its behavior with respect to each observed configuration JoK.119

Any expanded reaction maintains the same overall counts of120

educts and products as the originating reaction, with a target121

observed configuration Jo�K that results from the addition of122

products and removal of educts within the upper bound O.123

The multisets of original population classes � and � act as124

bu�er pools for configurations that are not explicitly observed.125

An example of such a construction is discussed in detail in126

Fig. 1. Finally, the propensity function fo is derived from that127

of the original reaction f as128

fo : RS
O � R+

0 , with fo(x) = x�o� · f(o+ x|S ), [2]129

where, for a given x � RS
O , x|S denotes its projection onto130

the original set of population classes S . This modification131

accounts for the fact that the observed state JoK encodes132

additional population counts, as given by the multiset o.133

Importantly, we prove that such a translation preserves134

the stochastic properties of the RN in the sense of ordinary135

lumpability of Markov chains (26) (see SI Appendix, SI Text).136

Denoting by P̂ the probability distribution in the expanded137

RN, ordinary lumpability implies that138

P�(t) =
�

o+�=�

P̂�o�+�(t), for all t and � � NS . [3]139

That is, the ME solution for a state � in the original RN will140

exactly correspond to the sum of the ME solutions for all states141

in the expanded RN that track the same overall population142

levels. Furthermore, when the RN is fully expanded, i.e., when143

O = NS , we recover the original ME.144

Although the stochastic behavior of the source RN and any145

expansion are equivalent in this specific sense, their respective146

DREs are not. The target RN has |O| + |S | variables: its147

solution can be interpreted as a corrected estimate of the148

solution of the |S |-variable source DRE.149

Applications150

Schlögl’s model. The Schögl model is an extensively studied
tri-molecular scheme (29), given by the RN

A+ 2X k1�� 3X +A 3X k2�� 2X [4]

B
k3�� X +B X

k4�� � [5]

Here, the parameters k1, k2, k3, k4 are mass-action kinetic151

parameters. The associated propensity function is defined152

in the usual way, by counting the total distinct individual153

reactions that can occur in every state: for a reaction with154

reagents � and kinetic parameter k, the propensity function155

for state � is thus given by fk(�) = k
�

S�S

�
�S
�S

�
.156

The Schlögl model describes an autocatalytic process for157

species X in the presence of reservoirs for chemical species158

A and B which we assume not to vary with time. Overall,159

the scheme results in a one-dimensional RN which only tracks160
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Fig. 2. Evaluation of the Schlögl model with scheme in Eqs. 4-5 using kinetic param-
eters k1 = 3 · 10�7, k2 = 10�4, k3 = 10�3, k4 = 3.5, taken from ref. (28).
A) Representative realizations of the stochastic process demonstrate bimodality, with
steady state populations approaching ca. 600 and ca. 100, respectively, when starting
from an initial condition with 200 molecules of species X, 106 molecules of species
A, and 2 ·106 molecules of speciesB. B) The DRE converges to a single equilibrium
(ca. 85.50, blue line), causing a noticeable discrepancy with respect to the true mean
(dotted line, computed as the average of 104 simulations). Finite state expansion
achieves excellent agreement with an upper bound OX = 650.
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Fig. 3. Numerical simulations of the genetic toggle switch in scheme (6) comparing
stochastic simulation, DRE and finite state expansions fixing OPA = OPB = 0
while using different upper bounds OM–OS for the number of copies of MA/MB
and SA/SB (as indicated in the legend), respectively. Initial condition was the zero
state. The ODE system size for the tested choices of upper bounds is equal to
(OM + 1)2 · (OS + 1)2 + 6 (corresponding to 150, 1095 and 2310 equations for
OM–OS = 1–5, OM–OS = 2–10, and OM–OS = 2–15, respectively). Kinetic
parameters were chosen as follows: k1 = 0.05, k2 = 0.1, k3 = 1.0, k4 = 10.0,
k5 = 0.01, k6 = 0.1, k7 = 20.0. Protein production (right plot) is controlled by a
low population of precursor mRNA (left plot), which causes significant underestimation
errors with DRE. Increasing the upper bounds of finite state expansion consistently
improves the accuracy of the mean estimate. The corrections for species SA and
SB , not reported here (see SI Fig. S5), are similar.

the number of molecules of X, while the initial populations 161

of molecules A and B are taken as further model parameters. 162

The discrepancy between the stochastic kinetics and the DRE 163

approximation has been observed for a long time (30). Under 164

an appropriate choice of kinetic parameters, the DRE features 165

two equilibrium points owing to the strong (cubic) nonlinearity 166

in the ODEs (31). Analogously, the underlying infinite-state 167

stochastic process is well-known for the bimodality of the 168

steady-state probability distribution of species X. In this case, 169

the DRE may provide inaccurate estimates of the average 170

population of species X because the DRE will deterministically 171

converge only to one steady state (32). Finite state expansion 172

can correct the mean estimates by expanding increasingly 173

larger populations of species X, paying a linear cost in the 174

resulting ODE system size (Figure 2). 175

Genetic Toggle Switch. The toggle switch network is a funda-
mental regulatory system of two mutually repressing genes (33).
Models of toggle-switch networks are mathematically challeng-
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+ I1�n�OX
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+ I0�n�OX�1f2(n + 1)

+ I1�n�OX
f3(n � 1)

+ I0�n�OX�1f4(n + 1)

dX
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= f1(OX) + f3(OX) � f2(0) � f4(0)
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Figure 1: The FSE method applied to the Schlögl system [28]. (A) Mass-action reactions with
kinetic parameters taken from ref. [29]: k1 = 0.03, k2 = 0.0001, k3 = 200, k4 = 3.5. (B) Stochastic
simulations show the well-known bimodality of the steady-state probability distribution of
species X . (C) For a given upper bound OX on the population of species X to be tracked
explicitly, FSE yields the auxiliary species denoted by J0K, J1K, . . . , JOXK. The original species
X acts as buffer that collects untracked populations levels. For example, reaction R1.1 derives
from reaction R1 when the autocatalytic formation of a new molecule occurs when the system
tracks the discrete state JOXK, thus requiring to increase the buffer species X by one element.
Even when the system tracks a discrete state that does not require buffering (R1.2), the propensity
function f1(n) of the reaction effectively considers an overall kinetics of mass-action type, since
the factor k1(X + n)(X + n � 1)/2 models the total rate due to number of possible collisions
between pairs of X + n indistinguishable molecules. Intuitively, the factor JnK conditions these
events to the system tracking n discrete molecules. (D) The original state space counts the number
of copies of X . The state space in the expanded network consists of the pair tracked discrete
state/population level of the buffer species. By Theorem 3.1, the sum of the probabilities across all
pairs that have the same overall population matches the corresponding probability in the original
Markov chain (as exemplified by matching colors of the states). (E) The single-dimensional DRE
of the original Schlögl model is expanded into a DRE with OX + 1 variables (where I denotes
the indicator function); an estimate of the total mean population at time t can be computed as
X(t) +

P
n

n · JnK(t). F) Starting from a population of 200 elements of X , the original bi-stable
DRE converges to one equilibrium at 85.50 (blue line). FSE achieves excellent agreement with
an upper bound OX = 650 (with respect to the average computed by stochastic simulation with
100 000 runs).

FSE Schlögl
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Figure 2: Heterodimerization model (Eq. 4.1). Numerical simulations comparing stochastic
simulation (300 000 runs), DRE and FSE for different upper bounds OX1/X2

at burst sizes m = 5

(left) and m = 8 (right). The DRE approximation is unaffected by the variation of m while the true
population averages are increased at higher burst sizes. Corrections for species X3 are similar
with a generally smaller error (cf. Fig.12c). Kinetic parameters were set as follows: k1 = 2500/m,
k2 = 40, k3 = 50. For a burst size of m = 5, the parameters are as in Ref. [14]. Initial condition was
the zero state.

4. Results
With a number of case studies from the literature, here we show that FSE can refine the accuracy
of mean estimates of species populations, even with modest expansions. Ground-truth mean
trajectories were computed by stochastic simulation via Gillespie’s algorithm [2]. The numerical
experiments herein reported were performed with an implementation of FSE within the tool
ERODE [30], publicly available at https://www.erode.eu.

(a) Schlögl system
The well-known Schlögl system is an autocatalytic process for a single species X [28]. The DRE
of the original Schlögl model has two equilibrium points, owing to its strong (cubic) nonlinearity
[31], deterministically converging only to one [32]. Its discrepancy with respect to the average
mean trajectory computed by stochastic simulation has been observed for a long time [33]. Fig. 1
provides a fully worked application of our FSE as a function of the upper bound for X . The
solutions to the DRE of the expanded networks show that larger values of such upper bound
increasingly improve the accuracy of the mean estimates.

(b) Heterodimerization model
We now consider a model from Ref. [14], where the main source of noise is the variance caused
by the production of the two species X1 and X2 undergoing heterodimerization occurs in bursts
of size m:

k1��! mX1
k1��! mX2 X1 + X2

k2��! X3 (4.1)

X1
k3��! X2

k3��! X3
k3��!

We study two cases with m = 5 and m = 8; for a better comparison the influx rates were kept
constant by setting k1 = 2500/m. Because of the symmetries between X1 and X2 we consider
equal observation bounds for them. The observation bound on X3 was set to zero. In this model,
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Figure 2: Heterodimerization model (Eq. 4.1). Numerical simulations comparing stochastic
simulation (300 000 runs), DRE and FSE for different upper bounds OX1/X2

at burst sizes m = 5

(left) and m = 8 (right). The DRE approximation is unaffected by the variation of m while the true
population averages are increased at higher burst sizes. Corrections for species X3 are similar
with a generally smaller error (cf. Fig.12c). Kinetic parameters were set as follows: k1 = 2500/m,
k2 = 40, k3 = 50. For a burst size of m = 5, the parameters are as in Ref. [14]. Initial condition was
the zero state.

4. Results
With a number of case studies from the literature, here we show that FSE can refine the accuracy
of mean estimates of species populations, even with modest expansions. Ground-truth mean
trajectories were computed by stochastic simulation via Gillespie’s algorithm [2]. The numerical
experiments herein reported were performed with an implementation of FSE within the tool
ERODE [30], publicly available at https://www.erode.eu.

(a) Schlögl system
The well-known Schlögl system is an autocatalytic process for a single species X [28]. The DRE
of the original Schlögl model has two equilibrium points, owing to its strong (cubic) nonlinearity
[31], deterministically converging only to one [32]. Its discrepancy with respect to the average
mean trajectory computed by stochastic simulation has been observed for a long time [33]. Fig. 1
provides a fully worked application of our FSE as a function of the upper bound for X . The
solutions to the DRE of the expanded networks show that larger values of such upper bound
increasingly improve the accuracy of the mean estimates.

(b) Heterodimerization model
We now consider a model from Ref. [14], where the main source of noise is the variance caused
by the production of the two species X1 and X2 undergoing heterodimerization occurs in bursts
of size m:

k1��! mX1
k1��! mX2 X1 + X2

k2��! X3 (4.1)

X1
k3��! X2

k3��! X3
k3��!

We study two cases with m = 5 and m = 8; for a better comparison the influx rates were kept
constant by setting k1 = 2500/m. Because of the symmetries between X1 and X2 we consider
equal observation bounds for them. The observation bound on X3 was set to zero. In this model,
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Figure 3: Protein degradation model (Eq. 4.2). Numerical simulations comparing stochastic
simulation (200 000 runs), DRE and FSE for different upper bounds OP at enzyme saturation
levels ↵ = 0.6 (left) and ↵ = 0.8 (right). Enzyme observation bounds have been fixed at OE =

OC = 60 to encompass the total population ET . Kinetic parameters were set as follows: k2 = 4,
k3 = 3, k4 = 37, k5 = 10, k1 = ↵k4ET /m = 74↵. The initial state is (P, E, C, Pd) = (0, 60, 0, 0).

the DRE is insensitive to the choice of m while the stochastic trajectories do depend on the burst
size. Since a larger m introduces more noise, larger observation bounds are needed to increase the
accuracy of the approximation (Fig. 2).

(c) Protein degradation model
The model of enzyme-catalysed protein degradation from [14] allows us to study the behavior of
FSE when more species are to be tracked with nonzero population bounds than in the previous
two case studies. Here, protein P is generated in bursts of size m and can bind to catalyst enzyme
E, forming the enzyme-substrate complex C. When the protein unbinds from the enzyme, it can
be degraded, forming Pd. The total amount ET of catalyst enzyme in the system always remains
constant:

k1��! mP Pd

k5��!

P + E
k2��! C C

k3��! P + E C
k4��! Pd + E (4.2)

By varying the burst production rate k1, different saturation levels of the catalyst enzyme are
reached. The closer the ratio ↵ = mk1/k4ET is to 1, the more saturated the enzyme becomes with
substrate.

The parameters given in [14] for this model assume a burst size of m = 30 and a total enzyme
population of ET = 60. For an accurate approximation, FSE requires nonzero observation bounds
for E, C, and P (Fig. 3); similarly to the previous case, no observation bound is required for
species Pd. The size of the tracked state space grows proportionally to the product OE · OC · OP .
Additionally, in contrast to the previous model, burst production rates are not adjusted when
increasing the burst size here. The overall higher production rate increases the population
additionally to the effect caused by higher variances. This exacerbates the need for higher
observation bounds at higher burst sizes. For a fixed choice of the observation bounds, larger
values of ↵ tend to worsen the accuracy of the FSE approximation.
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Figure 3: Protein degradation model (Eq. 4.2). Numerical simulations comparing stochastic
simulation (200 000 runs), DRE and FSE for different upper bounds OP at enzyme saturation
levels ↵ = 0.6 (left) and ↵ = 0.8 (right). Enzyme observation bounds have been fixed at OE =

OC = 60 to encompass the total population ET . Kinetic parameters were set as follows: k2 = 4,
k3 = 3, k4 = 37, k5 = 10, k1 = ↵k4ET /m = 74↵. The initial state is (P, E, C, Pd) = (0, 60, 0, 0).

the DRE is insensitive to the choice of m while the stochastic trajectories do depend on the burst
size. Since a larger m introduces more noise, larger observation bounds are needed to increase the
accuracy of the approximation (Fig. 2).

(c) Protein degradation model
The model of enzyme-catalysed protein degradation from [14] allows us to study the behavior of
FSE when more species are to be tracked with nonzero population bounds than in the previous
two case studies. Here, protein P is generated in bursts of size m and can bind to catalyst enzyme
E, forming the enzyme-substrate complex C. When the protein unbinds from the enzyme, it can
be degraded, forming Pd. The total amount ET of catalyst enzyme in the system always remains
constant:

k1��! mP Pd

k5��!

P + E
k2��! C C

k3��! P + E C
k4��! Pd + E (4.2)

By varying the burst production rate k1, different saturation levels of the catalyst enzyme are
reached. The closer the ratio ↵ = mk1/k4ET is to 1, the more saturated the enzyme becomes with
substrate.

The parameters given in [14] for this model assume a burst size of m = 30 and a total enzyme
population of ET = 60. For an accurate approximation, FSE requires nonzero observation bounds
for E, C, and P (Fig. 3); similarly to the previous case, no observation bound is required for
species Pd. The size of the tracked state space grows proportionally to the product OE · OC · OP .
Additionally, in contrast to the previous model, burst production rates are not adjusted when
increasing the burst size here. The overall higher production rate increases the population
additionally to the effect caused by higher variances. This exacerbates the need for higher
observation bounds at higher burst sizes. For a fixed choice of the observation bounds, larger
values of ↵ tend to worsen the accuracy of the FSE approximation.



Case Studies
Gene feedback switch

9

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0 5 10 15 20

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

te
in

 P

0 5 10 15 20

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
e

n
e

 b
o

u
n

d
 D

b

Figure 4: Genetic feedback switch in Eq. 4.3. Numerical simulations comparing stochastic
simulation (1 000 000 runs), DRE and FSE for fixed ODu

= ODb
= 1 and different upper bounds

OP . The resulting DRE from FSE has 2 · OP + 2 equations. Kinetic parameters were set as follows:
ru = 1.0, rb = 0.5, kf = 0.1, kb = 1.0, sb = 10.0, su = 0.5. The initial state is (P, Du, Db) = (0, 1, 0).

(d) Feedback switch
Let us now consider a model of a genetic feedback switch taken from [34] and [35]:

Du

ru��! Du + P Db

su��! Du + P

Db

rb�! Db + P Du + P
sb�! Db (4.3)

Db

kb�! Du P
kf��!

Species Du and Db represent the state of a single gene when its promoter region is unbound
(respectively, bound) to a protein P . The reaction propensities obey mass-action dynamics
through the kinetic parameters on the arrows. This is a basic model for negative autoregulation, a
well-known motif appearing in more than 40% of the known transcription factors in E.coli [36]. A
natural choice of upper bounds for the gene species is ODu

= ODb
= 1, by which the DRE of the

expanded network can be interpreted as the solution of the conditional expectation of the protein
population based on the gene state. Small values of OP yield a significant correction of the protein
levels as well as of the marginal probability distribution of the gene state (Fig. 4).

(e) Toggle switch
The toggle switch network is a fundamental regulatory system of two mutually repressing
genes [37]. Its mathematical modeling is challenging because of multimodality [24,38], as well
as stochastic noise due to the species such as mRNA present in low molecular abundances [39].
Here we study the reaction scheme analyzed in [40], consisting of a mass-action variant from [37]:

k1��! Mi Mi

k2��! Mi

k3��! Si

Si

k4��! Si + Pi Si

k5��! Pi

k6��! ;, (4.4)

Si + Mj

k7��! Si, i, j 2 {A, B}, i 6= j,

where Mi and Si denote the precursor mRNA and the mRNA for target protein Pi. The last two
reactions model mutual inhibition by means of a precursor of one protein repressing the mRNA
of the other.
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Figure 4: Genetic feedback switch in Eq. 4.3. Numerical simulations comparing stochastic
simulation (1 000 000 runs), DRE and FSE for fixed ODu

= ODb
= 1 and different upper bounds

OP . The resulting DRE from FSE has 2 · OP + 2 equations. Kinetic parameters were set as follows:
ru = 1.0, rb = 0.5, kf = 0.1, kb = 1.0, sb = 10.0, su = 0.5. The initial state is (P, Du, Db) = (0, 1, 0).

(d) Feedback switch
Let us now consider a model of a genetic feedback switch taken from [34] and [35]:

Du

ru��! Du + P Db

su��! Du + P

Db

rb�! Db + P Du + P
sb�! Db (4.3)

Db

kb�! Du P
kf��!

Species Du and Db represent the state of a single gene when its promoter region is unbound
(respectively, bound) to a protein P . The reaction propensities obey mass-action dynamics
through the kinetic parameters on the arrows. This is a basic model for negative autoregulation, a
well-known motif appearing in more than 40% of the known transcription factors in E.coli [36]. A
natural choice of upper bounds for the gene species is ODu

= ODb
= 1, by which the DRE of the

expanded network can be interpreted as the solution of the conditional expectation of the protein
population based on the gene state. Small values of OP yield a significant correction of the protein
levels as well as of the marginal probability distribution of the gene state (Fig. 4).

(e) Toggle switch
The toggle switch network is a fundamental regulatory system of two mutually repressing
genes [37]. Its mathematical modeling is challenging because of multimodality [24,38], as well
as stochastic noise due to the species such as mRNA present in low molecular abundances [39].
Here we study the reaction scheme analyzed in [40], consisting of a mass-action variant from [37]:

k1��! Mi Mi

k2��! Mi

k3��! Si

Si

k4��! Si + Pi Si

k5��! Pi

k6��! ;, (4.4)

Si + Mj

k7��! Si, i, j 2 {A, B}, i 6= j,

where Mi and Si denote the precursor mRNA and the mRNA for target protein Pi. The last two
reactions model mutual inhibition by means of a precursor of one protein repressing the mRNA
of the other.



Queuing System

§ Textbook model with Poisson 
arrivals and Coxian-distributed 
service times with same mean 
and increasing variance V

§ N servers can simultaneously 
process client’s requests

§ Mean-field approximation is 
insensitive to variance

§ Finite state expansion can track 
increasing variances
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Figure 6: Comparison with related techniques on the Schlögl model. The average population of
X computed by stochastic simulation (100000 runs) is compared against DRE, MCA, EMRE and
FSE with OX = 650.
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Figure 7: Comparison with related techniques on the toggle switch model. Stochastic simulation
to compute the average populations of species PA/PB (500 000 runs) is compared against DRE,
MCA, EMRE, and FSE. FSE is run with upper bounds OP = 0, OM = 2 and OS = 10. MCA
estimates population levels approaching 75 000 (out of scale in this plot to improve readability)
before dropping to zero.

• Finite state projection (FSP), a well-known method to obtain a finite-dimensional master
equation through a truncation of the state space by redirecting transitions toward
unobserved states into an absorbing state with provable bounds [43].

For this study, we used an implementation of these techniques as available on the software tool
CERENA [41].

The Schlögl system is known to stress MCA because of their reported difficulties with
multimodal distributions [44,45]. Fig. 6 shows that MCA behaves similarly to DRE in this case,
while EMRE tends to overestimate the mean population of species X at longer time horizons.
Similar results were obtained on the toggle switch network (Fig. 7). Here we confirm physically
meaningless moment-closure estimates due to the presence of low-abundance species, as already
reported in [22]. Furthermore, MCM could not be tested on this model since its implementation
returned with an error.

Both MCA and EMRE provide accurate estimates in the heterodimerization model from
Eq. 4.1 (Fig. 8). This model also allows examining the effects of burst size variation without
also changing the total production rate. We used this model for a closer comparison to EMRE
in this regard. Figure 9 shows that, similarly to FSE (with fixed observation bounds) and the DRE
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Figure 6: Comparison with related techniques on the Schlögl model. The average population of
X computed by stochastic simulation (100000 runs) is compared against DRE, MCA, EMRE and
FSE with OX = 650.
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Figure 7: Comparison with related techniques on the toggle switch model. Stochastic simulation
to compute the average populations of species PA/PB (500 000 runs) is compared against DRE,
MCA, EMRE, and FSE. FSE is run with upper bounds OP = 0, OM = 2 and OS = 10. MCA
estimates population levels approaching 75 000 (out of scale in this plot to improve readability)
before dropping to zero.

• Finite state projection (FSP), a well-known method to obtain a finite-dimensional master
equation through a truncation of the state space by redirecting transitions toward
unobserved states into an absorbing state with provable bounds [43].

For this study, we used an implementation of these techniques as available on the software tool
CERENA [41].

The Schlögl system is known to stress MCA because of their reported difficulties with
multimodal distributions [44,45]. Fig. 6 shows that MCA behaves similarly to DRE in this case,
while EMRE tends to overestimate the mean population of species X at longer time horizons.
Similar results were obtained on the toggle switch network (Fig. 7). Here we confirm physically
meaningless moment-closure estimates due to the presence of low-abundance species, as already
reported in [22]. Furthermore, MCM could not be tested on this model since its implementation
returned with an error.

Both MCA and EMRE provide accurate estimates in the heterodimerization model from
Eq. 4.1 (Fig. 8). This model also allows examining the effects of burst size variation without
also changing the total production rate. We used this model for a closer comparison to EMRE
in this regard. Figure 9 shows that, similarly to FSE (with fixed observation bounds) and the DRE

Schlögl

Toggle switch

§ EMRE  (effective mesoscopic 
rate equations) and MEC 
(moment closure 
approximation) provide 
equations for first- and second-
order moment

§ In some cases (e.g. toggle 
switch) MCA gives unphysical 
results

§ FSE improves on the accuracy 
of both; but it does so requiring 
possibly many more equations

§ EMRE cannot be used if rates 
are not differentiable
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Figure 8: Comparison with related techniques on the heterodimerization model with burst size

m = 5. Stochastic simulation to compute the average populations of species X1/X2 (300 000 runs)
is compared against DRE, MCA, EMRE, FSE using upper bounds OX1 = OX2

= 50 and OX3
= 0.

1 3 5 6 8 10 16

Burst size

0

10

20

30

40

50

R
e

la
tiv

e
 e

rr
o

r 
in

 %

15

20

25

30

F
S

E
 b

o
u

n
d

 m
a

tc
h

in
g

 E
M

R
E

X1/X2 EMRE X1/X2 DRE X3 EMRE X3 DRE FSE bound

Figure 9: Direct comparison against EMRE on the heterodimerization model across different

burst sizes. Although it is consistently better than the DRE (broken line, shown for reference) for
all tested values, the relative error of EMRE to the stochastic simulation rises on all species with
increasing burst size. In green, the graph shows for each burst size the FSE bound OX1/X2

that is
necessary to match the accuracy of EMRE.

approximation, the approximation error of EMRE increases with the burst size m. For each tested
burst size, Figure 9 also marks (secondary y-axis) the minimum FSE observation bound OX1/X2

for which the accuracy of EMRE can be matched. In this study, the highest observation bound
OX1/X2

= 27 is enough to match EMRE’s accuracy in the range 5  m  8. For burst sizes larger
than 8, the loss of accuracy in EMRE outpaces the analogous effect in FSE, to the degree that the
bound to match EMRE becomes small. The accuracy of FSE can be increased further by raising
the bound above the marked values (Fig. 12c).

The main challenge of the protein degradation model in Eq. 4.2 for FSE is the rapid growth of
the state space as a function of the observation bounds. Using the observation bounds as in Fig. 3,
FSE is outperformed by both EMRE and MCA for ↵ = 0.8. For ↵ = 0.6, FSE is more accurate than
EMRE; however, it uses a significantly more complex system with 9214 differential equations.

In the genetic feedback switch model, species Du and Db describe the distinct binary states
of a single gene. Hence they represent the natural candidates of the low-abundance class when
applying MCM. On this model, however, the method could not return valid results as early as
time point 0.36. We further tested a gene regulatory model with an inhibition feedback loop
taken from [46], where it was studied using a hybrid stochastic/deterministic method based on
piecewise deterministic Markov processes. Here, MCM showed similar difficulties that confirm



Comparison Against 1/N and 1/N2 Expansions

§ 1/N expansion by Gast & Van Houdt, SIGMETRICS 2017
§ 1/N2 expansion by Gast et al., PERFORMANCE 2019 
§ Both require differentiability of the vector field

Malware progagation model
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Conclusion
§ Starting point: lumping of mean-field 

equations – when reaction networks are huge 
to start with

Cardelli et al., PNAS 2017

§ How about the opposite, i.e. expanding 
reaction networks? FSE as a specific 
expansion algorithm...

Waizmann et al., PRSA 2021

§ ...but is actually an instance of a family of 
algorithms related to finite state projection

Randone et al., SIGMETRICS 2021
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Stochastic reaction networks are a fundamental
model to describe interactions between species where
random fluctuations are relevant. The master equation
provides the evolution of the probability distribution
across the discrete state space consisting of vectors
of population counts for each species. However,
since its exact solution is often elusive, several
analytical approximations have been proposed. The
deterministic rate equation (DRE) gives a macroscopic
approximation as a compact system of differential
equations that estimate the average populations
for each species, but it may be inaccurate in the
case of nonlinear interaction dynamics. Here we
propose finite state expansion (FSE), an analytical
method mediating between the microscopic and the
macroscopic interpretations of a stochastic reaction
network by coupling the master equation dynamics
of a chosen subset of the discrete state space with
the mean population dynamics of the DRE. An
algorithm translates a network into an expanded one
where each discrete state is represented as a further
distinct species. This translation exactly preserves the
stochastic dynamics, but the DRE of the expanded
network can be interpreted as a correction to the
original one. The effectiveness of FSE is demonstrated
in models that challenge state-of-the-art techniques
due to intrinsic noise, multi-scale populations, and
multi-stability.
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Perspectives

§ Can we lump the discrete part while controlling overall accuracy? 
(Exact lumping is not possible in general)      YES, QEST 2022

§ How to effectively choose observation bounds?
§ Monotonicity results? (Does not hold in general)
§ Would other expansions improve the approximation with the 

same computational budget
§ Can we approximate higher-order moments?
§ ...

THANKS!
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