
Smart Contracts Environments:
similarities and differences

Lorenzo Benetollo

Introduction

Ethereum

Ethereum Smart Contracts

● Code that can be executed by the EVM
● Written in Solidity or other Languages (Vyper,

Yul, Fe,)

● Account type with Code and Storage
● Uniquely identified by an address

Transactions

A transaction is a message that is sent from one account to
another account, it can include binary data, which is called
“payload”, and Ether.

Transactions contains information organized in fields.
Depending on what fields are specified, there can be three
types:

● Regular transactions
● Contract deployment transactions (to Zero address

and Data)
● Execution of a contract (data as input)

{
 from: "0xEA674fdDe714fd979de3EdF0F56AA9716B898ec8",
 to: "0xac03bb73b6a9e108530aff4df5077c2b3d481e5a",
 gasLimit: "21000",
 maxFeePerGas: "300",
 maxPriorityFeePerGas: "10",
 nonce: "0",
 value: "10000000000"
}

● from – the address of the sender, that will be signing
the transaction

● recipient – the receiving address
● signature – the identifier of the sender generated by

the sender's private key
● nonce - a sequentially incrementing counter which

indicates the transaction number from the account
● value – amount of ETH to transfer
● data – optional field to include arbitrary data
● gasLimit – the maximum amount of gas that can be

consumed by the transaction
● maxPriorityFeePerGas - the maximum price of the

consumed gas as a tip to the validator
● maxFeePerGas - the maximum fee per unit of gas

willing to be paid

Ethereum Virtual Machine

● Executes as stack stack machine

● Runs machine code obtained by source code

compilation

● Alters Ethereum state by performing state

transition as described in yellow paper

● Instructions are called OPCODES

Solidity

● Most used programming language for Smart

Contract Development

● Object-oriented, high-level language for

implementing smart contracts

● Solidity is statically typed, supports inheritance,

libraries and complex user-defined types.

pragma solidity >=0.4.16 <0.9.0;

contract SimpleStorage {
 uint storedData;

 constructor () {
 storedData = 0;
 }

 function set(uint x) public {
 storedData = x;
 }

 function get() public view returns (uint) {
 return storedData;
 }
}

Ether and ERC20 Tokens

● Ether is the native currency of Ethereum
Blockchain

● ERC20 is a standard for Fungible Tokens
● ERC20 Tokens are implemented through

Smart Contract
● Both Ether and ERC20 represents money in

Ethereum blockchain
● Both Ether and ERC20 can be transferred

from one account to another
● Developers can implement differently

ERC20 functions

function name() public view returns (string)
function symbol() public view returns (string)
function decimals() public view returns (uint8)
function totalSupply() public view returns (uint256)
function balanceOf(address _owner) public view returns (uint256 balance)
function transfer(address _to, uint256 _value) public returns (bool success)
function transferFrom(address _from, address _to, uint256 _value) public
returns (bool success)

function approve(address _spender, uint256 _value) public returns (bool
success)

function allowance(address _owner, address _spender) public view returns
(uint256 remaining)

Transfer Ether

● Simple transactions form and account to

another

● From inside a smart contract:
○ send (2300 gas, returns bool)

○ transfer (2300 gas, throw error)

○ call (forward gas, returns bool)

● Smart contracts must implement receive or

fallback

pragma solidity 0.8.17;

contract SimpleSender {

 function sendViaSend(address payable bob) public payable {
 bool sent = bob.send(msg.value);
 require(sent, "Failed to send Ether");
 }

 function sendViaTransfer(address payable _bob) public payable {
 _bob.transfer(msg.value);
 }

 function sendViaCall(address payable bob) public payable {
 (bool sent, bytes memory d) = bob.call{value: msg.value}("");
 require(sent, "Failed to send Ether");
 }
}

Transfer ERC20

● ERC20 tokens can be transferred only

through smart contract interaction

● Transfer vs TransferFrom

contract CaFoscariCoin is ERC20 {

...

 mapping(address => uint256) private _balances;

...
 function _transfer(address from,address to,uint256 amt) internal{

 require(from != address(0), "transfer from zero address");
 require(to != address(0), "transfer to zero address");

 uint256 fromBalance = _balances[from];

 require(fromBalance >= amt, "ERC20: amount exceeds balance");
 unchecked {
 _balances[from] = fromBalance - amt;
 }
 _balances[to] += amt;

 emit Transfer(from, to, amt);
 }
...

Execution Cost

● When EVM executes transactions and smart
contracts it consumes gas

● Gas refers to the unit that measures the
amount of computational effort required to
execute specific operations on the EVM.

● Each OPCODE is assigned a cost.
● Cost is calculated as units of gas used *

(base fee + priority fee) where base fee is
a value set by the protocol, priority fee is a
value set by the user as a tip to the validator

Algorand

Algorand Smart Contracts

● Code executed by the AVM
● Written in Teal/PyTeal or Reach

● Account type with AppParams
● Uniquely identified by AppId or Address

Transactions

In Algorand there are 7 types of transactions:

● Payment

● Key Registration (consensus participation)

● Asset Configuration

● Asset Freeze

● Asset Transfer

● Application Call (both creation and interaction)

● State Proof (consensus tx)

Algorand Virtual Machine

● Contains a stack engine that evaluates smart

contracts and smart signatures

● Interprets bytecode created from the

compilation of an assembler-like language

called TEAL.

● TEAL programs are comprised of a set of

operation codes (OPCODES)

Teal/PyTeal

● TEAL (Transaction Execution Approval

Language) is assembly-like language

● PyTEAL is a Python language binding for

Algorand Virtual Machine

● Developers can write the contract in Python

and then use PyTeal to compile it and

produce the TEAL code

from pyteal import *

storedData = Bytes("Stored_data")

handle_creation = Seq(
 App.globalPut(storedData, Int(0)),
 Approve()
)

router = Router(
 "Simple_storage",
 BareCallActions(
 no_op=OnCompleteAction.create_only(handle_creation),
 update_application=OnCompleteAction.always(Reject()),
 delete_application=OnCompleteAction.always(Reject()),
 close_out=OnCompleteAction.never(),
 opt_in=OnCompleteAction.never(),
),
)

@router.method
def set(x: abi.Uint64):
 return App.globalPut(storedData, x.get())

@router.method
def get(output: abi.Uint64):
 return output.set(App.globalGet(storedData))

approval_program, clear_program, contract =
router.compile_program(version=6)

Algo and ASA

● Algo is the native currency of Algorand blockchain

● Algorand Standard Asset (ASA) is native (Layer-1) asset for Fungible (and non-Fungible) tokens

● Both Algo and ASA can be transferred from one account to another

● Both Algo and ASA can represent money in Algorand Blockchain

Transfer ALGO

● Simple payment transaction

● From inside a Smart Contract

@router.method
def send_algo(receiver: abi.Account, amount: abi.Uint64):
 payment_cond = And(
 Gtxn[0].type_enum() == TxnType.Payment,
 Gtxn[0].amount() == amount.get(),
 Gtxn[0].receiver() == Global.current_application_address()
)
 Assert(payment_cond),
 return InnerTxnBuilder.Execute(
 {
 TxnField.fee: Int(0),
 TxnField.type_enum: TxnType.Payment,
 TxnField.receiver: receiver.address(),
 TxnField.amount: amount.get(),
 }
)
)

Transfer ASA

● Simple Asset-transfer transaction

● From inside a Smart Contract

● Remember to opt-in

@router.method
def send_asa(
 asa_id: abi.Uint64,
 asset_amount: abi.Uint64,
 asset_sender: abi.Account,
 asset_receiver: abi.Account,
):
 return InnerTxnBuilder.Execute(
 {
 TxnField.fee: Int(0),
 TxnField.type_enum: TxnType.AssetTransfer,
 TxnField.xfer_asset: asa_id,
 TxnField.asset_amount: asset_amount,
 TxnField.asset_sender: asset_sender,
 TxnField.asset_receiver: asset_receiver,
 }
)

Execution Cost

● Fees for transactions on Algorand are set as a function of network congestion and based on the

size in bytes of the transaction. Every transaction must at least cover the minimum fee (1000µA or

0.001A).

● fee = max(current_fee_per_byte*len(txn_in_bytes), min_fee)

Other works

● Smart signatures

● Smart ASA

Aptos

Aptos Smart Contracts

● Code executed by the MoveVM

● Written in Move Language

● Stored as a Module inside an Account

● Uniquely identified by Account address +

Module name

Transactions

Aptos transactions contain information such as the

sender’s account address, authentication from the sender,

the desired operation to be performed on the Aptos

blockchain, and the amount of gas the sender is willing to

pay to execute the transaction.

● Entry point

● Script

● Signature: a digital signature to verify the transaction.
● Sender address: The sender's account address.
● Sender public key: The public authentication key..
● Program: which comprises:

● A Move module and function name or a move
bytecode transaction script.

● An optional list of inputs to the script.
● An optional list of Move bytecode modules to

publish.
● Gas price (in specified gas units): This is the amount the

sender is willing to pay per unit of gas to execute the
transaction.

● Maximum gas amount: The maximum gas amount is the
maximum gas units the transaction is allowed to consume.

● Sequence number: an unsigned integer.
● Expiration time: A timestamp after which the transaction

ceases to be valid (i.e., expires).

https://aptos.dev/concepts/accounts#account-address
https://aptos.dev/concepts/gas-txn-fee
https://aptos.dev/concepts/gas-txn-fee#gas-and-transaction-fee-on-the-aptos-blockchain

Move Language

● Language for secure, sandboxed, and formally
verified programming

● Originally developed for Libra Blockchain, later
renamed as Diem Blockchain (Facebook)

● Takes its cue from Rust by using resource
types with move semantics

module deploy_address::set_val {

 use std::signer;

 struct Test has key {
 test_val: u64
 }

 public entry fun set_val(acc: &signer, n: u64)acquires Test {
 let account_addr = signer::address_of(acc);

 if (!exists<Test>(account_addr)) {
 move_to(acc, Test { test_val: n });
 }

 else {
 let test = borrow_global_mut<Test>(account_addr);
 test.test_val = n;
 }
 }
}

Move Resources

● Used for defining assets inside the blockchain, such as Coins or Tokens

● Stored within individual accounts

● Defined as Structs with Key ability

● The Move type system provides special safety guarantees for resources.
● Move resources can never be duplicated, reused, or discarded.
● A resource type can only be created or destroyed by the module that defines

the type.
● These guarantees are enforced statically by the Move virtual machine via

bytecode verification. The Move virtual machine will refuse to run code that
has not passed through the bytecode verifier

module M {

 struct T has key, store {

 field: u8

 }

}

Future works

Thank you for your attention

References

● https://ethereum.org/en/developers/docs/evm/
● https://ethereum.github.io/yellowpaper/paper.pdf
● https://docs.soliditylang.org/en/latest/

● https://www.sciencedirect.com/science/article/pii/S030439751930091X
● https://developer.algorand.org/docs/
● https://github.com/algorand/go-algorand/blob/master/data/basics/userBalance.go

● https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf
● https://arxiv.org/abs/2004.05106
● https://move-language.github.io/move/introduction.html
● https://move-book.com/index.html
● https://aptos.dev/

https://ethereum.org/en/developers/docs/evm/
https://ethereum.github.io/yellowpaper/paper.pdf
https://docs.soliditylang.org/en/latest/
https://www.sciencedirect.com/science/article/pii/S030439751930091X
https://developer.algorand.org/docs/
https://github.com/algorand/go-algorand/blob/master/data/basics/userBalance.go
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf
https://arxiv.org/abs/2004.05106
https://move-language.github.io/move/introduction.html
https://move-book.com/index.html
https://aptos.dev/

