Relating Reversible Petri Nets and Reversible Event Structures Categorically

Hernan C. Melgratti, Claudio Antares Mezzina, and G. Michele Pinna

NiRvAna annual meeting @Ca' Foscari

Background 1/3

Two well-known models to describe concurrent systems:

- Event structures
 - Event occurrences and constraints on events
 - Denotational view of a system
- Petri nets
 - Consumption / production of data from repositories
 - Places, tokens, transitions
 - Operational view of a system

Background 2/3

- A seminal work of Winskel showed a relation between Occurrence Nets (ON) and Prime Event Structure (PES)
- A PES describes describes a computational process as
 - a set of events whose occurrence is constrained by two relations
 - causality < and
 - (symmetric) # conflicts.

a < b b#c

a < b b#c

a < b b#c

 s_1

a

b causally depends on a

 s_1

a

b causally depends on a

 s_1

 \boldsymbol{a}

b causally depends on a

Since b and c are in conflict there is no configuration containing both

If b is present in a configuration then also a is present

Background 3/3

- PESs have been extended to account for reversible computing
 - accomodate the undoing of executed actions by removing events from configurations
 - accounts for different kinds of reversibility: backtracking, causal-respecting (transactions / checkpoint rollback) and out-of-order (biochemical reactions)
 - Reversible PESs (rPESs) add two more relations to PESs
 - reverse causation (<) and
 - prevention (>)
- A recent work shows that the operational model of (reversible) PES can be recovered by reversible Causal Nets (runs),

Causal Nets

- Causal nets are occurrence nets where causality is expressed via inhibitor arcs a not derived by the usual flow relation
- Occurrence nets are Petri nets in which
 - the net seen as a graph has no cycles;
 - every place (circle) has at most one incoming transition (e.g., no backward conflict)
 - no node is in self-conflict
- Every PT net can be unfolded into an occurrence net (Winskel81)

Causal Nets

In causal nets causality is recovered from inhibitor arcs instead of the usual overlap between post and presets of transitions (e.g., flow relation)

Inhibitor arcs prevents the firing of a transition if a token is present in some place of the net

Causal Nets - example

Causal Nets - example

Causal Nets - example

Reverse causal nets

Inhibitor arcs can be also used to model

- Reverse causality (a cannot reversed until b occurs)
- Prevention (a can be undone if b has not happened)

What about asynchrony?

- Asymmetric ESs relax the notion of conflict by considering weak causality
- Intuitively, an event e weakly causes the event e' (written e ↗ e') if e' can happen after e but e cannot happen after e'
- This can be considered as an asymmetric conflict because e' forbids e to take place, but not the other way round
- Symmetric conflicts can be recovered by making a pair of conflicting events to weakly cause each other
 - e # e' == (e < P' e') and (e' < P' e)

 $c \sim c \sim b$

a < b b#c

a < b b ↗ c c ↗ b

a < b b ∕ c c ∕ b

a < b b ∕ c

a < b b ↗ c c ↗ b

a < b b ∕ c

Reverse Asynchronous Causal Net

a < b and b # c

Asynchronous conflicts?

 $pthread_mutex_t m = //initialization$ int *x=malloc(sizeof(int)); eventa void thread(void *arg) $pthread_mutex_lock(\&m);$ if(x != NULL)doSomething(x); <--- eventb $pthread_mutex_unlock(\&m);$ main() int $pthread_t$ t; pthread_create(&t, NULL, thread, NULL); $pthread_mutex_lock(\&m);$ free(x); event c $pthread_mutex_unlock(\&m);$ $return 0; \}$

a < b

- a < c
- c can happen after b
- b cannot happen after c

b ∕ c

Reversing

 $pthread_mutex_t m = //initialization$ int *x = malloc(sizeof(int)); eventa void thread(void *arg) $pthread_mutex_lock(\&m);$ if(x != NULL)doSomething(x); <--- eventb $pthread_mutex_unlock(\&m);$ main() int $pthread_t$ t; pthread_create(&t, NULL, thread, NULL); $pthread_mutex_lock(\&m);$ free(x); event c $pthread_mutex_unlock(\&m);$ $return 0; \}$

c is reversed before b is reversed

b ▷ c

 $E = \{a,b,c\}$ $U = \{\underline{b}\}$ $< = \{(a,b), (b,c)\}$ $\nearrow = \{(a,c), (b,c), (b,a)\}$ $< = \{(a,\underline{b}), (\underline{b},\underline{b})\}$ $\triangleright = \{(\underline{b},c)\}$

 $E = \{a, b, c\}$ $U = \{\underline{b}\}$ $< = \{(a, b), (b, c)\}$ $\checkmark \land = \{(a, c), (b, c), (b, a)\}$ $\land = \{(a, \underline{b}), (\underline{b}, \underline{b})\}$ $\triangleright = \{(\underline{b}, c)\}$

Results (correspondence)

Theorem 1. Let $V^{\underline{T}}$ be an rACN. Then $\mathcal{E}_r(V)$ is an rAES.

Also, we can show a correspondence in terms of configurations

Let H an rAES. Then $X \in \text{Conf}(H)$ iff $X \in \text{Conf}(\mathcal{N}_r(H))$ Let $V^{\underline{T}}$ an rACN. Then $X \in \operatorname{Conf}(V^{\underline{T}})$ iff $X \in \operatorname{Conf}(\mathcal{E}_r(V))$

Theorem 2. Let $H = (E, U, <, \nearrow, \prec, \lhd)$ be an rAES. Then $\mathcal{N}_r(H)$ is an rACN.

Results (categories)

Proposition 1. $\mathcal{E}_r : \mathbf{RACN} \to \mathbf{RAES}$ is a well-defined functor.

Proposition 3. $\mathcal{N}_r : \mathbf{RAES} \to \mathbf{RACN}$ is a well-defined functor.

Theorem 3. The functor \mathcal{N}_r : **RAES** \rightarrow **RACN** is the left adjoint of the functor $\mathcal{E}_r : \mathbf{RACN} \to \mathbf{RAES}$.

Theorem 4. The functor $\mathcal{N}: AES \to ACN$ is the left adjoint of the functor $\mathcal{E}: \mathbf{ACN} \to \mathbf{AES}.$

Conclusions

- We have established a correspondence between two different models
 - (Reversible) CNs and (reversible) AESs
- arcs
 - Inhibitor arcs are powerful enough

• On the net side, all the relations are homogeneously modelled via inhibitor

CN

Future work

- The tight correspondence between rCNs and rAESs can be exploited in debugging
 - rAES can be used to give "constraints" to the system (e.g., express the desired behaviour)
 - rCNs can be used as the "operational" counterpart to be executed / reflected in the debugger
- Investigate which token philosophy obeys or rACN
 - Individual or collective?