Relating Reversible Petri Nets
and Reversible Event Structures

Hernan C. Melgratti, Claudio Antares Mezzina, and G. Michele Pinna

NiRvAna annual meeting @Ca’ Foscari

Background 1/3

Two well-known models to describe concurrent systems:
* Event structures
* Event occurrences and constraints on events
* Denotational view of a system
e Petri nets
 Consumption / production of data from repositories
 Places, tokens, transitions

* Operational view of a system

Background 2/3

* A seminal work of Winskel showed a relation between Occurrence Nets (ON)
and Prime Event Structure (PES)

A PES describes describes a computational process as
* a set of events whose occurrence is constrained by two relations

e causality < and

e (symmetric) # conflicts.

a<b bi#c

a<b bi#c

b NNN\ C

flict
are in con

dc

b an _,

S1
Q
S3 a
S92
C
b
S5
S4

bic
b
a<

b and ¢ are in conflict

S1
a

S9 S3
b C

S4 S5

b causally depends on a
a<b bi#c

b and ¢ are in conflict

0 > {a} > 10,0}

b causally depends on a
a<b bi#c

b and ¢ are in conflict

S1
0 > {a} > {a, b}
a
S2 53
h 2 h 2
et > {a, c}
b C
Since b and c are in conflict there
IS no configuration containing both
S4 S5

If b is present in a configuration then

also a is present
b causally depends on a

a<b bi#c

Background 3/3

 PESs have been extended to account for reversible computing

 accomodate the undoing of executed actions by removing events from
configurations

» accounts for different kinds of reversibility: backtracking, causal-respecting
(transactions / checkpoint rollback) and out-of-order (biochemical reactions)

 Reversible PESs (rPESs) add two more relations to PESs
e reverse causation (<) and
e prevention (D)

* A recent work shows that the operational model of (reversible) PES can be
recovered by reversible Causal Nets (runs),

Causal Nets

» Causal nets are occurrence nets where causality is expressed via inhibitor
arcs a not derived by the usual flow relation

e Occurrence nets are Petri nets in which

* the net seen as a graph has no cycles;

* every place (circle) has at most one incoming transition (e.g., no backward
conflict)

e no nhode is In self-conflict

 Every PT net can be unfolded into an occurrence net (Winskel81)

Causal Nets

a < b and b#c

In causal nets causality is recovered from inhibitor arcs instead of the usual overlap
between post and presets of transitions (e.g., flow relation)

Inhibitor arcs prevents the firing of a transition if a token is present in some place of the net

Causal Nets - example

2 B
\’6.@ 31

5 3

A
'hoo.hm

1 <
1

2 <
24

Causal Nets - example

v |
Q\@(,
;¥
°c ¥

Causal Nets - example

v |
K@L
;¥
°c ¥

Reverse causal nets

Inhibitor arcs can be also used to model
» Reverse causality (a cannot reversed until b occurs)

* Prevention (a can be undone if b has not happened)

What about asynchrony?

 Asymmetric ESs relax the notion of conflict by considering weak causality

e Intuitively, an event e weakly causes the event e’ (writtene ./ ') if " can
happen after e but e cannot happen after e’

* This can be considered as an asymmetric conflict because e forbids e to
take place, but not the other way round

o Symmetric conflicts can be recovered by making a pair of conflicting events
to weakly cause each other

e e#fe’==(e /" e)and (e’ / e)

cC NN\N\\ b

cC NN\N\\, b

a<b bi#c

cC NN\N\\, b

a<b bi#c

C NN\, b c

a<b bi#c

a<b bi#c a<b b/ cc/b

) —— (e} —> {4, b}

a<b bi#c a<b b/ cc/b

IRAVAVAVAVEN/ c b o b
D I
\ %
a a a
a<b bi#c a<b b/ cc/b a<b b./c

C/\/\/\/\/‘b C‘(b C b
\‘___,’ ,__ f‘\'
a a/ a
a<b bic a<b b/ c c/b a<b b./c
) —> {a} —> {a, b} 0 » {a} > {a, b}
~- ~N- h 2 h 2 2

a<b bi#c

Reverse Asynchronous Causal Net

af b o ﬂ’
a < b and b#c a<b,b "candc b

Asynchronous conflicts?

pthread_mutex_t m = //initialization a<b
int *xx=malloc(sizeof(int)) ; g eventa
void thread (void =xarg) \ a<c
{ pthread_mutex_lock (&m) ;
if (x !'= NULL) C can happen after

doSomething () 44— eventb o
pthread_mutex_ unlock(&m)

} b cannot happen
int main () after c
{ pthread_t t;

pthread_create(&t, NULL, thread, b ./ C

NULL) ;

pthread_mutex_lock (&m) ;

free (x) ; 44— eventc
pthread_mutex_unlock (&m) ;

return O0;}

Reversing

pthread_mutex_t m = //initialization C IS reversed before
int *xx=malloc(sizeof (int)) ; ¢-— eventa b IS reversed
void thread (void xarg)
{ pthread_mutex_lock (&m) ; n
if (x != NULL) =
doSomething (x); & eventb
pthread_-mutex_— unlock(&m)

p C

}

int main ()

{ pthread_t ¢t ;
pthread_create(&t, NULL, thread,
NULL) ;

pthread-mutex_-lock (&m) ;

free (x) ; € eventc
pthread_mutex_unlock (&m) ;
return O0;}

From rCNs to rAESs

s S
W] b] el e s
< ={(ab), (b,0)}
(O C @ 7 ={(@a,.), (b,c), (b,a)}
h) " <= {@b), b,b)
> = {(b,c)}

From rCNs to rAESs

E = {a,b,c}
U = {b}
< ={(a,b), (b,c)}
¥ 7 ={(a,c), (b,c), (b,a)}

From rCNs to rAESs

E = {a,b,c}
U = {b}
< ={(a,b), (b,c)}
¥ 7 ={(a,c), (b,c), (b,a)}

From rCNs to rAESs

E ={a,b,c}

U = {b}

< ={(a,b), (b,c)}
¥/ ={@a,c), (b,c), (b,a)}

Results (correspondence)

Theorem 1. Let VL be an rACN. Then E,.(V) is an TAES.

Theorem 2. Let H= (E,U, <, 7, <,<) be an rAES. Then N,.(H) is an rACN.

Also, we can show a correspondence in terms of configurations

Let H an rAES. Then X € Conf(H) iff X € Conf(N,.(H))
Let VL an rACN. Then X € Conf(V4) iff X € Conf(&,.(V))

Results (categories)

Proposition 1. &, : RACN — RAES s a well-defined functor.

Proposition 3. N, : RAES — RACN is a well-defined functor.

Theorem 3. The functor N, : RAES — RACN is the left adjoint of the
functor £, : RACN — RAES.

Theorem 4. The functor N : AES — ACN s the left adjoint of the functor
£: ACN — AES.

Conclusions

 \We have established a correspondence between two different models
* (Reversible) CNs and (reversible) AESs

* On the net side, all the relations are homogeneously modelled via inhibitor
arcs

* |nhibitor arcs are powerful enough

The picture

CN

Winskel

PES 4

OoC

The picture

| Winskel

OoC

The picture

rCN

- Winskel

The picture

rCN

rPES

- Winskel

The picture

- Winskel

The picture

AES

Winskel

The picture

ACN

AES

Winskel

The picture

rACN

ACN

AES

Winskel

The picture

rACN

ACN

AES

Winskel
" ey OC

rAES

The picture

rACN

ACN 4—

AES

Winskel
" ey OC

rAES

The picture

ACN €

AES

Winskel

Future work

* The tight correspondence between rCNs and rAESs can be exploited in
debugging

* rAES can be used to give “constraints” to the system (e.g., express the
desired behaviour)

 rCNs can be used as the “operational” counterpart to be executed /
reflected in the debugger

* |Investigate which token philosophy obeys or rACN

 Individual or collective?

