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Background 1/3

Two well-known models to describe concurrent systems:


• Event structures


• Event occurrences and constraints on events


• Denotational view of a system


• Petri nets


• Consumption / production of data from repositories 


• Places, tokens, transitions


• Operational view of a system



Background 2/3

• A seminal work of Winskel showed a relation between Occurrence Nets (ON) 
and Prime Event Structure (PES)


• A PES describes  describes a computational process as 


• a set of events whose occurrence is constrained by two relations 


• causality < and 


• (symmetric) # conflicts.
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Abstract—Reversible prime event structures extend the well-

known model of prime event structures to represent reversible
computational processes. Essentially, they give abstract descrip-

tions of processes capable of undoing computation steps. Since

their introduction, event structures have played a pivotal role

in connecting operational models (traditionally, Petri nets and

process calculi) with denotational ones (algebraic domains).

For this reason, there has been a lot of interest in linking

different classes of operational models with different kinds

of event structures. Hence, it is natural to ask which is the

operational counterpart of reversible prime event structures.

Such question has been previously addressed for a subclass of

reversible prime event structures in which the interplay between

causality and reversibility is restricted to the so-called cause-
respecting reversible structures. In this paper, we present an

operational characterisation of the full-fledged model and show

that reversible prime event structures correspond to a subclass of

contextual Petri nets, called reversible causal nets. The distinctive

feature of reversible causal nets is that causality is recovered

from inhibitor arcs instead of the usual overlap between post and

presets of transitions. In this way, we are able to operationally

explain also out-of-causal order reversibility.

I. INTRODUCTION

Event structures are a well-established model of concur-
rency. They were originally proposed by Nielsen, Plotkin and
Winskel [18] as an intermediate abstraction in between Scott
domains (i.e., a denotational model) and Petri nets (i.e., an
operational model). While Petri nets describe the behaviour of
a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
of five places s1, s2, s3, s4 and s5, three transitions a, b and
c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there
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Fig. 1: A simple Petri net and its associated Event Structure

is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely978-1-6654-4895-6/21/$31.00 ©2021 IEEE
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rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
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if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely978-1-6654-4895-6/21/$31.00 ©2021 IEEE
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a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
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c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there

Partially supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement 778233, by the French ANR project
DCore ANR-18-CE25-0007 and by the Italian INdAM – GNCS 2020 project
Sistemi Reversibili Concorrenti: dai Modelli ai Linguaggi, and by the UBA-
CyT projects 20020170100544BA and 20020170100086BA.

s1

s3s2

s4 s5

a

b c

(a) N

b

a

c

(b) P

{a, b}

{a, c}

{a}

{c}

;

(c) Transition system

Fig. 1: A simple Petri net and its associated Event Structure
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that b and c are in conflict. An abstract description of the
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represents a firing of a transition). A graphical representation is
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are represented by curly lines. In this case, b causally depends
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is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
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is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
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are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).
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rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.
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is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).
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rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.
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is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
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token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
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domains (i.e., a denotational model) and Petri nets (i.e., an
operational model). While Petri nets describe the behaviour of
a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
of five places s1, s2, s3, s4 and s5, three transitions a, b and
c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there
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is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ; ! {a, c} indicates that the initial
state ; (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely978-1-6654-4895-6/21/$31.00 ©2021 IEEE
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b and c are in conflict

b causally depends on a

Since b and c are in conflict there  
is no configuration containing both 

If b is present in a configuration then 
also a is present

a < b   b#c 



Background 3/3
• PESs have been extended to account for reversible computing


• accomodate the undoing of executed actions by removing events from 
configurations 


• accounts for different kinds of reversibility: backtracking, causal-respecting 
(transactions / checkpoint rollback) and out-of-order (biochemical reactions)


• Reversible PESs (rPESs) add two more relations to PESs 


• reverse causation (≺) and 


• prevention (▹) 


• A recent work shows that the operational model of (reversible) PES can be 
recovered by reversible Causal Nets (runs),



Causal Nets
• Causal nets are occurrence nets where causality is expressed via inhibitor 

arcs a not derived by the usual flow relation


• Occurrence nets are Petri nets in which


• the net seen as a graph has no cycles;


• every place (circle) has at most one incoming transition (e.g., no backward 
conflict)


• no node is in self-conflict 


• Every PT net can be unfolded into an occurrence net (Winskel81)   



Causal Nets

In causal nets causality is recovered from inhibitor arcs instead of the usual overlap 
between post and presets of transitions (e.g., flow relation)


Inhibitor arcs prevents the firing of a transition if a token is present in some place of the net



Causal Nets - example

1 < 2 
1 < 4 
2 < 3 
2#4
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Reverse causal nets

Inhibitor arcs can be also used to model


• Reverse causality (a cannot reversed until b occurs)


• Prevention (a can be undone if b has not happened)



What about asynchrony?

• Asymmetric ESs relax the notion of conflict by considering weak causality  

• Intuitively, an event e weakly causes the event e′ (written e ↗ e′) if e′ can 
happen after e but e cannot happen after e′


• This can be considered as an asymmetric conflict because e′ forbids e to 
take place, but not the other way round 


• Symmetric conflicts can be recovered by making a pair of conflicting events 
to weakly cause each other


• e # e’ == (e ↗ e′) and (e′ ↗ e)



AESs



AESs

a < b   b#c 
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a < b   b#c a < b   b ↗ c   c ↗ b 
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AESs

a < b   b#c a < b   b ↗ c   c ↗ b a < b   b ↗ c   



AESs

a < b   b#c a < b   b ↗ c   c ↗ b a < b   b ↗ c   



AESs

a < b   b#c a < b   b ↗ c   c ↗ b a < b   b ↗ c   



Reverse Asynchronous Causal Net



Asynchronous conflicts?
event a

event b

event c

a < b


a < c


c can happen after 
b


b cannot happen 
after c


b ↗ c 



Reversing
event a

event b

event c

c is reversed before 
b is reversed


b ▹ c




From rCNs to rAESs 

E = {a,b,c}


U = {b}


< = {(a,b), (b,c)}


↗ = {(a,c), (b,c), (b,a)}


≺ = {(a,b), (b,b)}


▹ = {(b,c)}
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From rCNs to rAESs 

E = {a,b,c}
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Results (correspondence)

Also, we can show a correspondence in terms of configurations


<latexit sha1_base64="LfAU379e1hyIHzgaDlJPo2ZhrHw="></latexit>

Let H an rAES. Then X 2 Conf(H) i↵ X 2 Conf(Nr(H))
<latexit sha1_base64="zCmLnBLgYuG9HCnBFvwminP/z3g="></latexit>

Let V T an rACN. Then X 2 Conf(V T ) i↵ X 2 Conf(Er(V ))



Results (categories)



Conclusions

• We have established a correspondence between two different models


• (Reversible) CNs and (reversible) AESs


• On the net side, all the relations are homogeneously modelled via inhibitor 
arcs


• Inhibitor arcs are powerful enough
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Future work

• The tight correspondence between rCNs and rAESs can be exploited in 
debugging


• rAES can be used to give “constraints” to the system (e.g., express the 
desired behaviour)


• rCNs can be used as the “operational” counterpart to be executed / 
reflected in the debugger


• Investigate which token philosophy obeys or rACN


• Individual or collective?


