University of Udine

Lumpabilities in PEPA

Riccardo Romanello

UNIVERSITY OF UDINE, ITALY

June 6, 2023

1/34

A stochastic process is a random process evolving with time.

Definition 1 (Stochastic Process)

Let (©). /.) be a probability space, (5. >) be a measurable
space and | be a totally ordered set. A stochastic process " is

defined as:
X ={X;|teT}

&' is the state space of the process and we say that .1 is in state
sc Sattimef e Tif V() = X, =s.

2/34

Stochastic processes can be categorized into two different
classes:

» Discrete Time if 1" is discrete. State changes with fixed
frequency and transitions all take the same time

> Continuous Time if T is continuous. In this case transitions
can take different amounts of times.

3/34

Definition 2 (Markov Property)

Let . be a stochastic process and let / be the current (discrete)
time.

We say that -t has the Markov property, if for each future time

y > 1, the distribution of X, does not depend on the past history
P={X,|u<t}

Roughly speaking, the future depends only on the current state
and not on the past.

We will say that " is a Markov Process if and only if " enjoys
the Markov property.

4/34

Definition 3 (Markov chain)

A Markov Chain is a Markov process ! indexed by time 7 such
that the state space & is discrete.

As for stochastic processes, also for Markov chain we can split
between Continuous Time (CTMC) and Discrete Time (DTMC)
according to the properties of 7.

5/34

We can thinkg of a DTMC as a process being in a certain
state s; at time

At time / + 1, the process goes from s, to some s’ with
probability p., .

» In CTMC the transition between state is not instantaneous

> It starts in state sy and then moves towards state s; with

probability p. .,

Such movement has a delay that is exponentially
distributed with parameter ;. ., — ., - p;, ;, — also known
as transition rate.

6/34

For CTMC the Markov property can be restated as:

P(Xt+y = S/ ’ Xu =s5,:u< t) =]P(Xt+y :S, | Xt :St)

On the other hand, for DTMC it becomes:

-1
P(X; = st | N\ X1 =s01) = P(Xe = ¢ | X1 = 511)
i=1

7/34

We are interested in Markov Chains for which probabilities do
not change over time.

Definition 4 (Time-homogeneous DTMC)

A DTMC .t is time-homogeneous if for all states 5. 5" « & and all
times /. /' « T it holds that

pt(S,SI) = pt/(S,S/)

Definition 5 (Time-homogeneous CTMC)

Similarly, a CTMC 1 is time-homogeneous if for all states 5. 5" « &
and all times . /" ¢ T the following holds

P(Xipy =5 | Xe =5) =P(Xpyy =5 | Xo =) =py(s,5')

8/34

» A DTMC is described using a transition probability matrix I
where P;; = p; ; forall 7,]

» A CTMC is described using a infinitesimal generator matrix
O where O;; = ¢;; forall / # jand O, ; = ; for all |

9/34

» With Markov Chains, we usually describe reactive systems

> We are often interested in properties for the long run

» One property could be the probability of the system to be
in a certain state after some amount of time

> Probability of being in state s” at time / depends on the
initial state s

» This dependency disappears as time goes on, for the
markov property

Given a time-homogeneous Markov chain, we can express this
fact by taking the limit of such probabilities:

: o oy
tl_lfléloIP’(Xt—S | Xo =s) =mn(s")

10 /34

The description of stochastic processes via Markov chains
is a cumbersome and often unfeasible activity

Moreover, it is hard to check if the stochastic process is
correct or not

Adding an abstraction layer by using a compact
representation that is easy to produce and verify, can be a
way to address both the issues

» Stochastic process algebras fit this role of additional layer

» We adopt PEPA as process algebra to model stochastic

processes.

11/34

A PEPA model consists of a set of components that engage
either individually or cooperatively in activities

Components represent identifiable units, and can be either
atomic or composed

Activities capture actions performed by the components.
Every activity is associated with an action type

Activities are not instantaneous. The probability that an
activity 7 with rate » happens within a period of time of
length / is givenby I,(1) = 1 —¢ "

Hence, an activity with action type « and rate r is
completely defined by the pair (. 7).

12 /34

The PEPA language provides very simple combinators that can
be used to compose the components and describe their
activities.

The grammar is presented with a distinction between parallel
and sequential components:

Pu=PBP | P/L | S
S:=(a,r).S | S+S | A

13 /34

An activity is enabled for a component P if I’ can
immediately start that activity

A PEPA components may have more than one activity
enabled

We assume that when a component reaches a certain state
all the enabled activities start to take place

Despite that, only the first activity that is completed takes
effect — the other ones are aborted

The set of enabled activities for a PEPA component C is
denoted by Act(C).

14 /34

» PEPA semantics rules induce a labelled transition system
(S.T.{= [teT})

> 5 is the set of possible configurations of the components
» T is the set of the labels

» The transition relation represents the completed activities.

15/34

Cooperation

(a,r) (a,r)
P Pl /
@ D) o@D
PpaQ—>PpaQ Pe@Q ——@™x=Q
P (aﬁ)\ P Q (a'rz), Q,

PmQ“mpgq

(@€ L) R= 5 tymin(ra(P),ra(Q))

16 /34

Definition 6 (Derivative set)

Let C be a PEPA component. The derivative set of C, denoted by
ds(C) is the smallest set of PEPA components such that:

> Ceds(C)

» if C; « ds(C) and there exists an activity 7 « Ac/(C) such
that C; % Cj, then C; € ds(C).

17/ 34

Definition 7 (Derivation graph)

Let C be a PEPA component. We denote with 7(C) the
derivation graph of C with nodes ds(C).
Edge (C;. C;.2) exists if and only there exists an inference tree

leading to C; C;.
Let C;. C; © ds(C) be two nodes, then:

‘J(Ci,ija) = Z r

()
Ci—C;

Moreover, we define ¢(C;. C;) = >, (C;. C;. o) as the total
transition rate.

18 /34

Definition 8

Let C be a finite PEPA model, its underlying Markov chain is the
stochastic process .1'(/) whose states are elements of ds(C), and
whose transitions are given by the edges of 77(C) with rates
given by the total transition rates.

19/34

Before introducing equivalences over PEPA components, we
must define what makes two states of a stochastic process
equivalent.

Definition 9 (strong lumpability)

Let V() be a CTMC with state space & and let ~ be an
equivalence relation over &. We say that .1'() is strongly
lumpable with respect to ~, if it induces a partition on the state
space & such that for any equivalence classes 5;. 5, « &/ ~ with
i #jand fors,s’ € S;:

> abs) =) g8

s// eS] S”ES]'

20/ 34

Definition 10 (strongly lumped CTMC)

Let () be a CTMC with a state space & and let - be a strong
lumping. Then the lumped CTMC (/) has &/ ~ as set of
states, and the transition rates are given by:

q(8,5") = qus

s'eS’

21/34

Strong lumpability is not the only notion of lumpability
defined over stochastic processes

» Exact lumpability is another example

> It differs from strong lumpability because it defines two

states as exactly lumpable if the rates info them are the
same from any other class

The exactly lumped CTMC is defined in the same way as
the strongly lumped one

If ~ is both an exact and a strong lumpability, then it is
called a strict lumpability.

22/34

We can now move to the definition of equivalences
between PEPA components

» It will induce a partitioning of the underlying CTMC

» Equivalences oves PEPA components must take into

account also action types

Equivalences over PEPA components will be stricter than
equivalences over stochastic processes.

23 /34

Definition 11 (Lumpable relation)

Let 72 be a relation over PEPA components. We say that 77 is a
lumpable relation if, for any PEPA component , the quotient
ds(P)/ R induces an equivalence relation over the state space of
the underlying CTMC of I’ that is a strong lumping.

Definition 12 (Unioun closure)

Let | be a set of indices and 77; be a lumpable relation for all
i < . Then the union:
R = UierRi

is also a lumpable relation.

24 /34

Definition 13 (Lumpable bisimulation)

Let 72 C C » (C be an equivalence relation over PEPA
components. We say that 77 is a lumpable bisimulation if for
every components .) such that 7770, then for all o « 4 and
forall 5 ¢ (/R such that:

> either o # 7
» ora=7tand P,Q ¢ S
it holds that g(P, S, o) = q(Q, S, @).

25/ 34

Definition 14 (Proportional Lumpability)

Let V(1) be a CTMC with state space & and ~ be an
equivalence relation over &. We say that .\'(f) is proportionally
lumpable with respect to ~ if there exists a function » from & to
[such that ~ induces a partition on the state space of (/)
satisfying the property that for any equivalence classes

Si,S; € S/ ~with S; # S;and 5,8’ € S;

Zs”esj q(S,S”) . Zs”esj q(sl75”)
K(s) B ()

26 /34

» PEPA provides an Eclipse plug-in freely downloadable

» The plug-in allows the user to model concurrent processes
using the PEPA stochastic process algebra inside the
Eclipse Editor

> After that, the state space can be derived and various
performances can be obtained.

27 /34

The general steps that the plug-in performs on an input file are:
@ Parsing the PEPA file

® Exploration of the state space according to PEPA’s
semantics

@ Derivation of the CTMC model

@ Compute performance measures over the model.

28 /34

We now explain the actual steps performed by PEPA plug-in to
derive the CTMC model:

@ Derivation of the LTS model

® Aggregation of the LTS according to the chosen
aggregation algorithm

® Derivation of the aggregated CTMC model

29/34

The aggregation algorithms are applied directly to the LTS
model.

The classes used to handle the generated partition are the
following:

» An interface PartitionBlock is provided to handle a single
block of a partition

» The Partition class is used to handle a partition refinement
algorithm in its completeness

> PartitionBlock has been implemented within two classes:
LinkedPartitionBlock and ArrayPartitionBlock

> LinkedPartitionBlock allows to store a block with a linked
list

» ArrayPartitionBlock uses an array instead.

30/ 34

Aggregation algorithms are applied to LTS.
» An interface LTS has been provided

» It has been subsequently implemented in the LTSModel
class

» The state space exploration is done using the
TextSpaceExplorer class. The output is a multi-LTS
semantics of the input PEPA model

P Such structure is then used to initialize an LTSModel
which is then aggregated.

31/34

» An interface AggregationAlgorithm is provided

» Every time a new aggregation algorithm has to be
implemented, it must implement such interface

» Each aggregation algorithm is agnostic of the rest of the
plug-in. It refers only to the partition refinement data
structure and the LTS

32/34

Aggregation algorithms compute a partition of the state space,
that has to be aggregated.

AggregationStateSpaceBuilder class performs the following
steps to fulfill such goal:

» A state space exploration is performed
» The LTS is build from such visit

> Aggregated partition is obtained via the selected
aggregation algorithm

> The state space is aggregated.

33/34

» Each block of a partition is aggregated into a single state

> Let B. B’ be two blocks and let s © B.s’ ¢ B be two states in
such blocks

b If there is a transition labelled o between s and s/, then
there is a transition labelled o between B and B’.

> The rate of the o transition between B and B’ is:

Z Z q(s,s',)

sEB s’eB’

34 /34

