
1 / 34

University of Udine

Lumpabilities in PEPA

Riccardo Romanello1

1 UNIVERSITY OF UDINE, ITALY

June 6, 2023

A stochastic process is a random process evolving with time.

Definition 1 (Stochastic Process)
Let (Ω,F ,P) be a probability space, (S,Σ) be a measurable
space and T be a totally ordered set. A stochastic process X is
defined as:

X = {Xt | t ∈ T}

S is the state space of the process and we say that X is in state
s ∈ S at time t ∈ T if X (t) = Xt = s.

2 / 34

Stochastic Process

Stochastic processes can be categorized into two different
classes:
▶ Discrete Time if T is discrete. State changes with fixed

frequency and transitions all take the same time

▶ Continuous Time if T is continuous. In this case transitions
can take different amounts of times.

3 / 34

Discrete Time vs Continuous Time

Definition 2 (Markov Property)
Let X be a stochastic process and let t be the current (discrete)
time.
We say that X has the Markov property, if for each future time
y > t, the distribution of Xy does not depend on the past history
P = {Xu | u < t}.

Roughly speaking, the future depends only on the current state
and not on the past.
We will say that X is a Markov Process if and only if X enjoys
the Markov property.

4 / 34

Markov Property

Definition 3 (Markov chain)
A Markov Chain is a Markov process X indexed by time T such
that the state space S is discrete.

As for stochastic processes, also for Markov chain we can split
between Continuous Time (CTMC) and Discrete Time (DTMC)
according to the properties of T.

5 / 34

Markov Chain

▶ We can thinkg of a DTMC as a process being in a certain
state st at time t

▶ At time t + 1, the process goes from st to some s′ with
probability pst,s′

▶ In CTMC the transition between state is not instantaneous

▶ It starts in state s0 and then moves towards state s1 with
probability ps0,s1

▶ Such movement has a delay that is exponentially
distributed with parameter qs0,s1 = rs0 · ps0,s1 — also known
as transition rate.

6 / 34

DTMC and CTMC for everyone

For CTMC the Markov property can be restated as:

P(Xt+y = s′ | Xu = su : u ≤ t) = P(Xt+y = s′ | Xt = st)

On the other hand, for DTMC it becomes:

P(Xt = st |
t−1∧
i=1

Xt−1 = st−1) = P(Xt = st | Xt−1 = st−1)

7 / 34

Markov Properties—reformulated

We are interested in Markov Chains for which probabilities do
not change over time.

Definition 4 (Time-homogeneous DTMC)
A DTMC X is time-homogeneous if for all states s, s′ ∈ S and all
times t, t′ ∈ T it holds that

pt(s, s′) = pt′(s, s′)

Definition 5 (Time-homogeneous CTMC)
Similarly, a CTMC X is time-homogeneous if for all states s, s′ ∈ S
and all times t, t′ ∈ T the following holds

P(Xt+y = s′ | Xt = s) = P(Xt′+y = s′ | Xt′ = s) = py(s, s′)

8 / 34

Time-homogeneous Markov Chains

▶ A DTMC is described using a transition probability matrix P
where Pi,j = pi,j for all i, j

▶ A CTMC is described using a infinitesimal generator matrix
Q where Qi,j = qi,j for all i ̸= j and Qi,i = ri for all i

9 / 34

Representing Markov Chains

▶ With Markov Chains, we usually describe reactive systems

▶ We are often interested in properties for the long run

▶ One property could be the probability of the system to be
in a certain state after some amount of time

▶ Probability of being in state s′ at time t depends on the
initial state s

▶ This dependency disappears as time goes on, for the
markov property

Given a time-homogeneous Markov chain, we can express this
fact by taking the limit of such probabilities:

lim
t→∞

P(Xt = s′ | X0 = s) = π(s′)

10 / 34

Steady State

▶ The description of stochastic processes via Markov chains
is a cumbersome and often unfeasible activity

▶ Moreover, it is hard to check if the stochastic process is
correct or not

▶ Adding an abstraction layer by using a compact
representation that is easy to produce and verify, can be a
way to address both the issues

▶ Stochastic process algebras fit this role of additional layer

▶ We adopt PEPA as process algebra to model stochastic
processes.

11 / 34

Encoding stochastic processes

▶ A PEPA model consists of a set of components that engage
either individually or cooperatively in activities

▶ Components represent identifiable units, and can be either
atomic or composed

▶ Activities capture actions performed by the components.
Every activity is associated with an action type

▶ Activities are not instantaneous. The probability that an
activity a with rate r happens within a period of time of
length t is given by Fa(t) = 1 − e−rt

▶ Hence, an activity with action type α and rate r is
completely defined by the pair (α, r).

12 / 34

Performance Evaluation Process Algebra

The PEPA language provides very simple combinators that can
be used to compose the components and describe their
activities.
The grammar is presented with a distinction between parallel
and sequential components:

P ::= P ▷◁
L

P | P/L | S

S ::= (α, r).S | S + S | A

13 / 34

PEPA syntax

▶ An activity is enabled for a component P if P can
immediately start that activity

▶ A PEPA components may have more than one activity
enabled

▶ We assume that when a component reaches a certain state
all the enabled activities start to take place

▶ Despite that, only the first activity that is completed takes
effect — the other ones are aborted

▶ The set of enabled activities for a PEPA component C is
denoted by Act(C).

14 / 34

PEPA race condition

▶ PEPA semantics rules induce a labelled transition system
(S,T, { t−→ | t ∈ T})

▶ S is the set of possible configurations of the components

▶ T is the set of the labels

▶ The transition relation represents the completed activities.

15 / 34

PEPA operational semantics

16 / 34

PEPA operational semantics

Definition 6 (Derivative set)
Let C be a PEPA component. The derivative set of C, denoted by
ds(C) is the smallest set of PEPA components such that:
▶ C ∈ ds(C)

▶ if Ci ∈ ds(C) and there exists an activity a ∈ Act(C) such
that Ci

a−→ Cj, then Cj ∈ ds(C).

17 / 34

Labelled Transition System - LTS

Definition 7 (Derivation graph)
Let C be a PEPA component. We denote with D(C) the
derivation graph of C with nodes ds(C).
Edge (Ci,Cj, a) exists if and only there exists an inference tree
leading to Ci

a−→ Cj.
Let Ci,Cj ∈ ds(C) be two nodes, then:

q(Ci,Cj, α) =
∑

Ci
(α,r)−−−→Cj

r

Moreover, we define q(Ci,Cj) =
∑

α∈A q(Ci,Cj, α) as the total
transition rate.

18 / 34

Labelled Transition System - LTS - II

Definition 8
Let C be a finite PEPA model, its underlying Markov chain is the
stochastic process X (t) whose states are elements of ds(C), and
whose transitions are given by the edges of D(C) with rates
given by the total transition rates.

19 / 34

From LTS to CTMC

Before introducing equivalences over PEPA components, we
must define what makes two states of a stochastic process
equivalent.

Definition 9 (strong lumpability)
Let X (t) be a CTMC with state space S and let ∼ be an
equivalence relation over S. We say that X (t) is strongly
lumpable with respect to ∼, if it induces a partition on the state
space S such that for any equivalence classes Si,Sj ∈ S/ ∼ with
i ̸= j and for s, s′ ∈ Si:∑

s′′∈Sj

q(s, s′′) =
∑

s′′∈Sj

q(s′, s′′)

20 / 34

Lumping of Stochastic processes

Definition 10 (strongly lumped CTMC)
Let X (t) be a CTMC with a state space S and let ∼ be a strong
lumping. Then the lumped CTMC X̃ (t) has S/ ∼ as set of
states, and the transition rates are given by:

q(S,S′) =
∑
s′∈S′

q(s, s′)

21 / 34

Strongly Lumped Markov chain

▶ Strong lumpability is not the only notion of lumpability
defined over stochastic processes

▶ Exact lumpability is another example

▶ It differs from strong lumpability because it defines two
states as exactly lumpable if the rates into them are the
same from any other class

▶ The exactly lumped CTMC is defined in the same way as
the strongly lumped one

▶ If ∼ is both an exact and a strong lumpability, then it is
called a strict lumpability.

22 / 34

Exact Lumped Markov chain

▶ We can now move to the definition of equivalences
between PEPA components

▶ It will induce a partitioning of the underlying CTMC

▶ Equivalences oves PEPA components must take into
account also action types

▶ Equivalences over PEPA components will be stricter than
equivalences over stochastic processes.

23 / 34

Lumping of PEPA components

Definition 11 (Lumpable relation)
Let R be a relation over PEPA components. We say that R is a
lumpable relation if, for any PEPA component P, the quotient
ds(P)/R induces an equivalence relation over the state space of
the underlying CTMC of P that is a strong lumping.

Definition 12 (Unioun closure)
Let I be a set of indices and Ri be a lumpable relation for all
i ∈ I. Then the union:

R = ∪i∈IRi

is also a lumpable relation.

24 / 34

Lumpable relation

Definition 13 (Lumpable bisimulation)
Let R ⊆ C × C be an equivalence relation over PEPA
components. We say that R is a lumpable bisimulation if for
every components P,Q such that PRQ, then for all α ∈ A and
for all S ∈ C/R such that:
▶ either α ̸= τ

▶ or α = τ and P,Q /∈ S
it holds that q(P,S, α) = q(Q,S, α).

25 / 34

Lumpable bisimulation

Definition 14 (Proportional Lumpability)
Let X (t) be a CTMC with state space S and ∼ be an
equivalence relation over S. We say that X (t) is proportionally
lumpable with respect to ∼ if there exists a function κ from S to
R+ such that ∼ induces a partition on the state space of X (t)
satisfying the property that for any equivalence classes
Si,Sj ∈ S/ ∼ with Si ̸= Sj and s, s′ ∈ Si∑

s′′∈Sj
q(s, s′′)

κ(s)
=

∑
s′′∈Sj

q(s′, s′′)

κ(s)

26 / 34

Proportional Lumpability

▶ PEPA provides an Eclipse plug-in freely downloadable

▶ The plug-in allows the user to model concurrent processes
using the PEPA stochastic process algebra inside the
Eclipse Editor

▶ After that, the state space can be derived and various
performances can be obtained.

27 / 34

Eclipse plugin

The general steps that the plug-in performs on an input file are:
1 Parsing the PEPA file

2 Exploration of the state space according to PEPA’s
semantics

3 Derivation of the CTMC model

4 Compute performance measures over the model.

28 / 34

High level design

We now explain the actual steps performed by PEPA plug-in to
derive the CTMC model:

1 Derivation of the LTS model

2 Aggregation of the LTS according to the chosen
aggregation algorithm

3 Derivation of the aggregated CTMC model

29 / 34

On the CTMC derivation

The aggregation algorithms are applied directly to the LTS
model.
The classes used to handle the generated partition are the
following:
▶ An interface PartitionBlock is provided to handle a single

block of a partition
▶ The Partition class is used to handle a partition refinement

algorithm in its completeness

▶ PartitionBlock has been implemented within two classes:
LinkedPartitionBlock and ArrayPartitionBlock

▶ LinkedPartitionBlock allows to store a block with a linked
list

▶ ArrayPartitionBlock uses an array instead.

30 / 34

Partition Refinement Algorithms

Aggregation algorithms are applied to LTS.
▶ An interface LTS has been provided

▶ It has been subsequently implemented in the LTSModel
class

▶ The state space exploration is done using the
TextSpaceExplorer class. The output is a multi-LTS
semantics of the input PEPA model

▶ Such structure is then used to initialize an LTSModel
which is then aggregated.

31 / 34

The Labelled Transition System

▶ An interface AggregationAlgorithm is provided

▶ Every time a new aggregation algorithm has to be
implemented, it must implement such interface

▶ Each aggregation algorithm is agnostic of the rest of the
plug-in. It refers only to the partition refinement data
structure and the LTS

32 / 34

Aggregation algorithms

Aggregation algorithms compute a partition of the state space,
that has to be aggregated.

AggregationStateSpaceBuilder class performs the following
steps to fulfill such goal:
▶ A state space exploration is performed

▶ The LTS is build from such visit

▶ Aggregated partition is obtained via the selected
aggregation algorithm

▶ The state space is aggregated.

33 / 34

Aggregated state space

▶ Each block of a partition is aggregated into a single state

▶ Let B,B′ be two blocks and let s ∈ B, s′ ∈ B′ be two states in
such blocks

▶ If there is a transition labelled α between s and s′, then
there is a transition labelled α between B and B′.

▶ The rate of the α transition between B and B′ is:∑
s∈B

∑
s′∈B′

q(s, s′, α)

34 / 34

Aggregating a single block

