Blockchain Economy Issues:
Maximal Extractable Value (MEV)

Semia Guesmi
08-06-2024

PRIN NiRvAna: Noninterference and Reversibility Analysis in Private Blockchains

Our aim

« The DeFi ecosystem involves complex interactions and dependencies between
protocols. These protocols have inherent vulnerabilities that malicious actors can
exploit to economically harm the compound service.

« We focus solely on the contract, verifying its security, and identifying any
potentially risky instructions within it.

« We identify MEV opportunities within the smart contract using a formal modeling
framework.

_ * MEV represents the maximum potential gain
MEYV:.

that users, including miners and validators,

Maximal | ! end va
EXtractabI o can achieve through interactions with a smart

contract and 1ts assoclated dependencies in a
Value P

malicious way.

Cumulative Extracted MEV - Gross Profit

. - » By the start of 2021, the cumulative value of MEV extracted on
MEV: A Serious .
.] Ethereum reached $78m, which then shot up to $554m by the end of
R ISk tO B I OCkChaI N the year. By the end of 2022, MEV extracted on Ethereum stands at

SECU “ty over $686m.

Ref: https://chain.link/

https://explore.flashbots.net/

MEV Actors

., Block producer (Miners / @% Searchers
=7 Validators)

$675.62M » Run complex algorithms

» Transaction manipulation
» Generalized frontrunners (bots)

MEV Miner Income MEV Searcher Income

MEV vulnerabilities

Arbitrage: Miners can exploit price differences across different decentralized exchanges (DEXSs) by inserting their transactions ahead of others.
Front-Running: Miners observe pending transactions in the mempool and insert their transactions before high-value trades to profit from price movements.
Back-running: Miners observe pending transactions in the mempool and insert their transactions after high-value trades to profit from price movements.
Sandwich Attacks: Involves placing one transaction before and one after a victim's transaction to manipulate market prices and extract value.

Liguidation: Miners can capitalize on liquidations in DeFi lending protocols by ensuring their liquidation transactions are processed first.

Smart Contract Design: Certain DeFi protocols may unintentionally enable MEV opportunities due to their logic and transaction flows.

Noninterference

 Noninterference aims to capture
unwanted information flows in multi- .
level systems. "

 The notion of confidentiality: High and
low levels. R

« A flow of information from high to low Q
could represent the public disclosure of é‘ > Low level

private data.

user

State of the art

Adversary perspective: Secure if the global MEV does not significantly increase.

Global MEV MEV(S) = max{gainAdv (S,K) ‘X € K(Adv)*}

A interacts safely withS & MEV (S|A) < (1 + €) MEV(S)

(¢ — composability, see Clockwork Finance bt Babel, Daian, Kelkar, Juels)

Contract perspective: Secure if being in a composition does not cause loss.

Local MEV MEV(S,A) = max {lossA (S,%) ‘K € K(Adv)*}

S does not interfere with the new contract A if: MEV (S|A,A) = MEV, (S| A,A)

(DeFi composability as MEV non — inter ference Bartoletti, Marchesin, Roberto)

Generalized Unwinding Condition W(=, R, =)

Contract perspective in Computational framework:

v" formalizing noninterference through unwinding conditions to analyze MEV.
v" Guarantees that any reachable state resulting from high-level interactions still maintains

Indistinguishability with respect to low-level observations.

@ E:E <F,Iw> =5 (G <encha’>

=Y ¢ =1 p
3 | !
<O> Low level (F'_' H) > > <8ﬂd, p!>
J k A pictorial representation of the unwinding

condition

Bet_Contract = co Constructor | Bet | Win | Close oc (imperative language)

m
0

GetRate ()

RateT (H)

AFFECTED »
BY

SetRate
(newRate)
OWNER

DEPOSIT

WITHDRAW

DEPOSIT
BetWallet (L)

GetRate (T)

RateT (H)

AFFECTED

By

AmmWallet (H) Swap (x:T;)
B
a
Ty AddLiquidity
=

(xT,, y:T)

Example:
The Bet
Contract

S =M[310: ETH] | AMM[600: ETH, 600: T] | blocknum=n—k | - --
A =Bet[l10:ETH, tok = T,rate = 3, owner = A,deadline = n]

The adversary M is rich enough, she can fire the following sequence:

S|A

M:Bet .bet(? 1(0:ETH)

M:AMM .swap(? 300:ETH,0)

M:Bet .win()

M:AMM .swap(7 200:T.0)
>

M[300: ETH] | AMM[600: ETH, 600: T| | Bet [20: ETH, - - -]

M[200: T] | AMM[900: ETH, 400: T| | Bet[20: ETH, - - - |

20: ETH, 200: T] | AMM[900: ETH, 400: T] | Bet[0: ETH, - - -]

M[320: ETH] | AMM[600: ETH, 600: T] | Bet[0: ETH, - - - |

Bet & Amm = co Bet_Contract | Amm_Contract oc

(Bet & Amm, o)
l % execution of Swap (H)
(Bet&Amm', o [AmmWalletEtiller/900,AmmWalletT2/400])
l % execution of GateRate
(Bet, o [AmmWalletEther/900,Ammlj/alletTZ/ALOO, AmmRateEther/2.25])
l % execution of Win
(end, o [AmmWalletEther/9OO,AmmWalletTlZ/ALOO, AmmRateEther/2.25, BetWallet/0])

(Bet & Amm, o)
l

... % execution of Win

!
(Amm, o [SenderWin/‘NULL’)
!

... % execution of GateRate

l
(end, o [SenderWin/'NULL', AmmW alletEther /600, AmmW alletT2 /600, BetWallet/10])

v" ldentify the precise instructions and variables within the code that could potentially lead to information flows.

v" Identify the specific dependencies of the contract that require deeper analysis.

Arbitrage Example

contract LPArbitragecoci,p {
constructor () {
(t0,tl1)=1p.getTokens ();
require lp.getToken()==t0 && cl.getTokens ()==(t0,t1);

¥
arbitrage (x) {
lp.borrow(x) ; // borrow x:t0
cO.swap(?x:t0,0) ; // sell tO, buy ti
cl.swap(?7#t1:t1,0); // =ell ti1, buy tO
lp.repay(?x:t0); // repay x:tO0
require #t0>0; // gain is positive
sender !#t0:t0 // transfer gain to sender
¥

A contract to arbitrage with a Lending Pool.

0 [WarpgT0/0 , WyprpT1/0]

Arbitrage = Borrow ; Swap; Swap; Repay ;if (WyrgT0 > 0) {Transfer};

U Convenient exchange

(Arbitrage, o)
\)
... % execution of LP.Borrow(10:TO0)

O Inconvenient exchange

(Arbitrage, o)
\)
... % execution of LP.Borrow(10:TO0)

(Arbitrage’,a[WAR;TO /10 W,rsT1/0])

l % execution of AMM1.Swap(10:T0)
(Arbitrage’, o [WARiTO /0 WyrpT1/121])

i % execution of AMM?2.Swap(12:T1)

(Arbitrage’, o[WAR;TO /10 W,zsT1/01])

l % execution of AMM1.Swap(10:TO0)
(Arbitrage'’, o [WARiTO /O WirgT1/1217)

l % execution of AMM?2.Swap(12:T1)

(Arbitrage'’, o [WA:BTO /13 WyrsT1/0])
i % execution of LP.Repay(10:TO0)
(Arbitrage'”’, o [WA:BTO / 13—10 W,rsT1/0])
. % extcution of Sender.Transfer (W 4ggT0:T0)

' 0

(End,o [WyppT0 [0 WsrgT1/0]) .
Gain

T
(Arbitrage’’,a [WygrgT0 /9 WyrsT1/0])
)

- % executlx LP.Repay(10:TO0)

(Arbitrage’"”,o | , WyrgT1/0])

ender.Transfer(W,zgT0:T0)

(End,O' [WARBTO /9_101WARBT1/O])

Awalit operator as a guarantee

arbitrage (x) { Arbitrage = await(C0. getRate(T0) * C1.getRate(T0) > 1) {

lp.borrow(x); éhnT?W;

cO.swap(?x:t0,0) ; SWZPt

cl.swap(7#t1:t1,0); wap;
Repay ;

lp.repay (?x:t0) ; if (WypgT0 > 0) {Transfer};
require #t0>0; }

sender !#t0:t0

Downgrading Mechanism

 Differentiate a secure scenario from the potentially risky one.

« This mechanism enables explicit allowance of delimited flows, providing an
approach to managing information flow within the system.

* The "downgrade()" function declassifies high-level variables, thereby
reducing its sensitivity to a lower-level variable. Consequently, rendering it not
considered as dangerous in the unwinding test.

P = H:= 0; D := downgrade(H); if (D > 0){L := D} else {skip}

Example: Implementing the Downgrading
Mechanism in the Win Program

1: Program WiN Bet Contract: price oracle (Exchange)
2 while (Deadline > BlockNum) do

3 await (SenderWin = Player) do Win Program Demonstrates Non-
4 skip interference within W(=,R, <)

5 if (Player # ExchangeOwner) then Framework

6: CurrentRate:=downgrade(ExchangeRate);

7 else

8 CurrentRate:=0;
135 if (BetRate < CurrentRate) then
11: PlayerWalletEther : = PlayerWalletEther + BetWallet;
12: BetWallet := 0;
13: else

14: Player := ‘NULL’

Unwinding conditions
for security In
Imperative languages

(a,0) > n

p- — ace
(skip, o) 3 (end, o) (X :=a,0) - (end, o[X /n])
(Pn0) > (P0) p g (P,) = (end. o)
(Py; Py, o) = (Py; Py,0”) (Py; Py,0) = (P, 0")
(b,5)— true (b,oc)— false
- bee - bee
(1£(b) {Fo} else {Pi},0) > (P, 0) (1£(b) {Po} else {P},0) — (P, 0)
(b,0)— true (b, c)— false
bee bee

(while(b) {P}, o) — (P;while(b) {P}, o) (while(b) {P}, o) — (end, o)

(b,0)— true (S,o0) e (end,c”)

(b,o)— false

€,U6; bee P bee
(await(b) {S},0) — (end,o”’) (await(b) {S}, o) — (await(b) {S}, o)
(P,0) > (B, o)
(co P|...|P]...|P, oc, o) 5 (co Py|...|P/|...|P, oc,0") (co end|...|end|...|end oc, &) = (end, o)

(Compositional Information Flow Security for Concurrent Programs Annalisa, Carla, Sabina,)

Future Work

* In depth investigating the relationships
between Unwinding Conditions and MEV, and
to implement this methodology.

« Applying this method to analyze other case
studies involving MEV attacks.

* Define this framework on fragments of
languages for smart contracts, such as solidity.

THANKS FOR THE
ATTENTION.

	Slide 1: Blockchain Economy issues: Maximal Extractable Value (MEV)
	Slide 2
	Slide 3: MEV: Maximal Extractable Value
	Slide 4: MEV: A Serious Risk to Blockchain Security
	Slide 5: MEV Actors
	Slide 6: MEV vulnerabilities
	Slide 7: Noninterference
	Slide 8: State of the art
	Slide 9: Generalized Unwinding Condition bold script cap W open paren approaches the limit ,bold script cap R ,, geometrically equal to , close paren
	Slide 10: Example: The Bet Contract
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Arbitrage Example
	Slide 15
	Slide 16: Await operator as a guarantee
	Slide 17
	Slide 18: Example: Implementing the Downgrading Mechanism in the Win Program
	Slide 19
	Slide 20
	Slide 21

