
Blockchain Economy issues:
Maximal Extractable Value (MEV)

Semia Guesmi

08-06-2024

PRIN NiRvAna: Noninterference and Reversibility Analysis in Private Blockchains

Our aim

• The DeFi ecosystem involves complex interactions and dependencies between
protocols. These protocols have inherent vulnerabilities that malicious actors can
exploit to economically harm the compound service.

• We focus solely on the contract, verifying its security, and identifying any
potentially risky instructions within it.

• We identify MEV opportunities within the smart contract using a formal modeling
framework.

MEV:
Maximal
Extractable
Value

• MEV represents the maximum potential gain

that users, including miners and validators,

can achieve through interactions with a smart

contract and its associated dependencies in a

malicious way.

MEV: A Serious
Risk to Blockchain
Security

• By the start of 2021, the cumulative value of MEV extracted on

Ethereum reached $78m, which then shot up to $554m by the end of

the year. By the end of 2022, MEV extracted on Ethereum stands at

over $686m.

Ref: https://chain.link/

https://explore.flashbots.net/

MEV Actors

SearchersBlock producer (Miners /

Validators)

➢ Transaction manipulation
➢ Run complex algorithms

➢ Generalized frontrunners (bots)

Extracted MEV Split by Role

MEV vulnerabilities

Arbitrage: Miners can exploit price differences across different decentralized exchanges (DEXs) by inserting their transactions ahead of others.

Front-Running: Miners observe pending transactions in the mempool and insert their transactions before high-value trades to profit from price movements.

Back-running: Miners observe pending transactions in the mempool and insert their transactions after high-value trades to profit from price movements.

Sandwich Attacks: Involves placing one transaction before and one after a victim's transaction to manipulate market prices and extract value.

Liquidation: Miners can capitalize on liquidations in DeFi lending protocols by ensuring their liquidation transactions are processed first.

Smart Contract Design: Certain DeFi protocols may unintentionally enable MEV opportunities due to their logic and transaction flows.

Noninterference

• Noninterference aims to capture
unwanted information flows in multi-
level systems.

• The notion of confidentiality: High and
low levels.

• A flow of information from high to low
could represent the public disclosure of
private data.

State of the art
Adversary perspective: Secure if the global MEV does not significantly increase.

Global MEV 𝑀𝐸𝑉 𝑆 = max 𝑔𝑎𝑖𝑛𝑨𝒅𝒗 𝑆, 𝑋 ቚ 𝑋 ∈ 𝐾 𝐴𝑑𝑣 ∗

∆ interacts safely with S 𝑀𝐸𝑉 𝑆 ∆ ≤ 1 + 𝜀 𝑀𝐸𝑉 𝑆
(𝜀 − 𝑐𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑠𝑒𝑒 𝐶𝑙𝑜𝑐𝑘𝑤𝑜𝑟𝑘 𝐹𝑖𝑛𝑎𝑛𝑐𝑒 𝑏𝑡 𝐵𝑎𝑏𝑒𝑙, 𝐷𝑎𝑖𝑎𝑛, 𝐾𝑒𝑙𝑘𝑎𝑟, 𝐽𝑢𝑒𝑙𝑠)

Contract perspective: Secure if being in a composition does not cause loss.

Local MEV 𝑀𝐸𝑉 𝑆, ∆ = max 𝑙𝑜𝑠𝑠∆ 𝑆, 𝑋 ቚ 𝑋 ∈ 𝐾 𝐴𝑑𝑣 ∗

S does not interfere with the new contract ∆ if: 𝑀𝐸𝑉 𝑆 ∆ , ∆ = 𝑀𝐸𝑉∆ 𝑆 ∆ , ∆
(𝐷𝑒𝐹𝑖 𝑐𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑠 𝑀𝐸𝑉 𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐵𝑎𝑟𝑡𝑜𝑙𝑒𝑡𝑡𝑖, 𝑀𝑎𝑟𝑐ℎ𝑒𝑠𝑖𝑛, 𝑅𝑜𝑏𝑒𝑟𝑡𝑜)

Generalized Unwinding Condition 𝓦 ≐, 𝓡, ≑

A pictorial representation of the unwinding

condition

Contract perspective in Computational framework:

✓ formalizing noninterference through unwinding conditions to analyze MEV.

✓ Guarantees that any reachable state resulting from high-level interactions still maintains

indistinguishability with respect to low-level observations.

Example:
The Bet
Contract

𝐵𝑒𝑡_𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ≡ 𝒄𝒐 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 | 𝐵𝑒𝑡 | 𝑊𝑖𝑛 | 𝐶𝑙𝑜𝑠𝑒 𝒐𝒄 (imperative language)

The adversary M is rich enough, she can fire the following sequence:

𝐵𝑒𝑡 & 𝐴𝑚𝑚 ≡ 𝒄𝒐 𝐵𝑒𝑡_𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 | 𝐴𝑚𝑚_𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 𝒐𝒄

𝐵𝑒𝑡 & 𝐴𝑚𝑚, 𝜎
↓

… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑤𝑎𝑝 (H)

↓
𝐵𝑒𝑡&𝐴𝑚𝑚′, 𝜎 [𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝐸𝑡ℎ𝑒𝑟/900, 𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝑇2/400]

↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑎𝑡𝑒𝑅𝑎𝑡𝑒
↓

𝐵𝑒𝑡, 𝜎 [𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝐸𝑡ℎ𝑒𝑟/900, 𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝑇2/400, 𝐴𝑚𝑚𝑅𝑎𝑡𝑒𝐸𝑡ℎ𝑒𝑟/2.25]
↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑊𝑖𝑛
↓

𝑒𝑛𝑑, 𝜎 [𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝐸𝑡ℎ𝑒𝑟/900, 𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝑇2/400, 𝐴𝑚𝑚𝑅𝑎𝑡𝑒𝐸𝑡ℎ𝑒𝑟/2.25, 𝑩𝒆𝒕𝑾𝒂𝒍𝒍𝒆𝒕/𝟎]

𝐵𝑒𝑡 & 𝐴𝑚𝑚, 𝜎
↓

… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑊𝑖𝑛
↓

𝐴𝑚𝑚, 𝜎 [𝑆𝑒𝑛𝑑𝑒𝑟𝑊𝑖𝑛/‘𝑁𝑈𝐿𝐿’
↓

… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑎𝑡𝑒𝑅𝑎𝑡𝑒
↓

𝑒𝑛𝑑, 𝜎 [𝑆𝑒𝑛𝑑𝑒𝑟𝑊𝑖𝑛/‘𝑁𝑈𝐿𝐿’, 𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝐸𝑡ℎ𝑒𝑟/600, 𝐴𝑚𝑚𝑊𝑎𝑙𝑙𝑒𝑡𝑇2/600, 𝑩𝒆𝒕𝑾𝒂𝒍𝒍𝒆𝒕/𝟏𝟎]

✓ Identify the precise instructions and variables within the code that could potentially lead to information flows.

✓ Identify the specific dependencies of the contract that require deeper analysis.

Arbitrage Example

A contract to arbitrage with a Lending Pool.

❑ Convenient exchange

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆, 𝝈
↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑃. 𝐵𝑜𝑟𝑟𝑜𝑤(10: 𝑇0)
↓

 𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′, 𝝈[𝑊𝐴𝑅𝐵𝑇0 /𝟏𝟎 ,𝑊𝐴𝑅𝐵𝑇1/𝟎]
↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑀𝑀1. 𝑆𝑤𝑎𝑝(10: 𝑇0)
↓

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′′, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 /𝟎 ,𝑊𝐴𝑅𝐵𝑇1/𝟏𝟐]
↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑀𝑀2. 𝑆𝑤𝑎𝑝(12: 𝑇1)
↓

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′′′, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 /𝟏𝟑 ,𝑊𝐴𝑅𝐵𝑇1/𝟎]
↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑃. 𝑅𝑒𝑝𝑎𝑦(10: 𝑇0)
↓

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′′′, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 | 13− 10 ,𝑊𝐴𝑅𝐵𝑇1/𝟎]
↓

… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑒𝑛𝑑𝑒𝑟. 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑾𝑨𝑹𝑩𝑻𝟎: 𝑇0)
↓

𝑬𝒏𝒅, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 | 0 ,𝑊𝐴𝑅𝐵𝑇1/𝟎]

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆, 𝝈
↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑃. 𝐵𝑜𝑟𝑟𝑜𝑤(10: 𝑇0)
↓

 𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′, 𝝈[𝑊𝐴𝑅𝐵𝑇0 /𝟏𝟎 ,𝑊𝐴𝑅𝐵𝑇1/𝟎]
↓
… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑀𝑀1. 𝑆𝑤𝑎𝑝(10: 𝑇0)
↓

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′′, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 /𝟎 ,𝑊𝐴𝑅𝐵𝑇1/𝟏𝟐]
↓

 … % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑀𝑀2. 𝑆𝑤𝑎𝑝(12: 𝑇1)
↓

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′′′, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 /𝟗 ,𝑊𝐴𝑅𝐵𝑇1/𝟎]
↓

 … % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑃. 𝑅𝑒𝑝𝑎𝑦(10: 𝑇0)
↓

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆′′′′, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 | 9 − 10 , 𝑊𝐴𝑅𝐵𝑇1/0]
↓

… % 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑒𝑛𝑑𝑒𝑟. 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑊𝐴𝑅𝐵𝑇0: 𝑇0)
↓

𝑬𝒏𝒅, 𝝈 [𝑊𝐴𝑅𝐵𝑇0 |9 − 10,𝑊𝐴𝑅𝐵𝑇1/𝟎]

𝝈 [𝑊𝐴𝑅𝐵𝑇0/0 , 𝑊𝐴𝑅𝐵𝑇1/0]

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆 ≡ 𝐵𝑜𝑟𝑟𝑜𝑤 ; 𝑆𝑤𝑎𝑝; 𝑆𝑤𝑎𝑝; 𝑅𝑒𝑝𝑎𝑦 ; 𝑖𝑓 𝑊𝐴𝑅𝐵𝑇0 > 0 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ;

❑ Inconvenient exchange

↑
Gain

𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒈𝒆 ≡ 𝒂𝒘𝒂𝒊𝒕 𝑪𝟎. 𝒈𝒆𝒕𝑹𝒂𝒕𝒆 𝑻𝟎 ∗ 𝑪𝟏. 𝒈𝒆𝒕𝑹𝒂𝒕𝒆 𝑻𝟎 > 𝟏 {
 𝐵𝑜𝑟𝑟𝑜𝑤 ;
𝑆𝑤𝑎𝑝;
𝑆𝑤𝑎𝑝;
𝑅𝑒𝑝𝑎𝑦 ;
𝑖𝑓 𝑊𝐴𝑅𝐵𝑇0 > 0 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ;
 }

Await operator as a guarantee

Downgrading Mechanism

• Differentiate a secure scenario from the potentially risky one.

• This mechanism enables explicit allowance of delimited flows, providing an
approach to managing information flow within the system.

• The "𝒅𝒐𝒘𝒏𝒈𝒓𝒂𝒅𝒆()" function declassifies high-level variables, thereby
reducing its sensitivity to a lower-level variable. Consequently, rendering it not
considered as dangerous in the unwinding test.

𝑃 ≡ 𝐻 ∶= 0; 𝐷 ∶= 𝒅𝒐𝒘𝒏𝒈𝒓𝒂𝒅𝒆(𝐻); 𝑖𝑓(𝐷 > 0){𝐿 ∶= 𝐷} 𝑒𝑙𝑠𝑒 {𝑠𝑘𝑖𝑝}

Example: Implementing the Downgrading
Mechanism in the Win Program

Bet Contract: price oracle (Exchange)

𝑊𝑖𝑛 Program Demonstrates Non-

interference within 𝓦(≐,𝓡, ≑)

Framework

Unwinding conditions
for security in
imperative languages

(𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐹𝑙𝑜𝑤 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠 𝐴𝑛𝑛𝑎𝑙𝑖𝑠𝑎, 𝐶𝑎𝑟𝑙𝑎, 𝑆𝑎𝑏𝑖𝑛𝑎,)

Future Work

• In depth investigating the relationships
between Unwinding Conditions and MEV, and
to implement this methodology.

• Applying this method to analyze other case
studies involving MEV attacks.

• Define this framework on fragments of
languages for smart contracts, such as solidity.

THANKS FOR THE
ATTENTION.

	Slide 1: Blockchain Economy issues: Maximal Extractable Value (MEV)
	Slide 2
	Slide 3: MEV: Maximal Extractable Value
	Slide 4: MEV: A Serious Risk to Blockchain Security
	Slide 5: MEV Actors
	Slide 6: MEV vulnerabilities
	Slide 7: Noninterference
	Slide 8: State of the art
	Slide 9: Generalized Unwinding Condition bold script cap W open paren approaches the limit ,bold script cap R ,, geometrically equal to , close paren
	Slide 10: Example: The Bet Contract
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Arbitrage Example
	Slide 15
	Slide 16: Await operator as a guarantee
	Slide 17
	Slide 18: Example: Implementing the Downgrading Mechanism in the Win Program
	Slide 19
	Slide 20
	Slide 21

