
Linear Typing for Asset-aware
Programming

Università degli Studi di Padova

M. Bugliesi, S. Crafa, G. Dal Sasso, S. Rossi, A. Spanò

Meeting PRIN NiRvAna 2024

Università Ca’ Foscari Venezia

Udine, June 6-8

2/25

Valuables

fun processOrder(order) {
if isAvailable(order.productId)

save(order)

}

module Marketplace {

struct Order {
customerId : Address,
productId : String,
date : Timestamp,
priority : Integer,
…

}

fun buyProduct(productId, money) {
let order = Order { … }
processOrder(order)
deposit(money)

}

fun processOrder(order) {
save(order)

}

}

fun processOrder(order) {
if isAvailable(order.productId)

save(order)
save(order)

}DROP ERROR COPY ERROR

OK

VALUABLE

• Smart contracts generally manipulate

data representing valuable objects

(assets)

• It should not be possible to duplicate

or lose an asset

1 2

3/25

Valuables

fun processOrder(order) {
if isAvailable(order.productId)

save(order)

}

module Marketplace {

struct Order {
customerId : Address,
productId : String,
date : Timestamp,
priority : Integer,
…

}

fun buyProduct(productId, money) {
let order = Order { … }
processOrder(order)
deposit(money)

}

fun processOrder(order) {
save(order)

}

}

fun processOrder(order) {
if isAvailable(order.productId)

save(order)
save(order)

}DROP ERROR COPY ERROR

OK

VALUABLE

• Smart contracts generally manipulate

data representing valuable objects

(assets)

• It should not be possible to duplicate

or lose an asset

A compile-time check

would be useful in asset-

aware programming! 1 2

Forgetting to deposit the money is also

an error.

4/25

Linear Types in Move

• User-defined datatypes can be tagged with capabilities

struct Copiable has copy {
/* fields */

}

struct Droppable has drop {
/* fields */

}

struct Normal has copy, drop {
/* fields */

}

struct Linear {
/* fields */

}

Can be copied, not dropped

Can be dropped, not copied

Can be copied and dropped

Cannot be copied or dropped

5/25

Moving Linear Datatypes

• Non-copiable data can only be moved through scopes

• Prevents double-spending at compile-time

ERROR : variable ‘c’ does not exist anymore because it has been moved

struct Coin {
amount : u64

}

public fun mint(n : u64) { Coin { amount: n } }
public fun spend(c : Coin) { /* spend money somehow */ }

argument ‘c’ is moved

integers are copiable but the enclosing struct is not

let c = mint(1000);
spend(c);
spend(c);

• Other modules cannot access fields (Information Hiding)

6/25

let x = 8;
x = 9;

The Drop Ability

• A drop can happen in two sites:

- Assignment

- End of scope

• Disabling drop avoids asset loss

Value 8 is dropped at the end of the scope

Value 8 is dropped when left-value is replaced

{
let x = 8;

}

7/25

Formalization of Move

8/25

Highlights

Type system and operational semantics

• Resource Preservation: assets cannot be duplicated or accidentally lost at runtime

• Proves double-spending is prevented at compile time

• Equivalent to theorem by Blackshear et al. for bytecode lifted to source code

• Helps proving properties hold when compiling Move into other bytecodes

• Mechanized in Agda

A pure subset of Move

• No side effects (assignment), no references

• Monadic representation of CPS

9/25

CPS and State Monads in a nutshell

struct Coin {
amount : u64

}

let c1 = mint(100);
let c2 = spend(c1, 10);
let c3 = spend(c2, 30);

type state = Coin

do mint(100);
spend(10);
spend(30);

CPS State Monad

State Monad automatizes the Continuation-Passing Style

A simplified example:

10/25

Basic properties

11/25

Basic properties

𝑇1

Curry Howard correspondence

Proof of Lemma 6 ⇔ Value : 𝑇1

12/25

FM: the Pack and Unpack

13/25

Resource Preservation

We proved that in FM resource values (linear struct values) can't be duplicated and can't

be lost during the execution of a program.

• The programmer can't create a new resource without explicitly doing so with a pack.

• The programmer can’t delete a resource without explicitly doing so with an unpack.

14/25

Resource Preservation

We proved that in FM resource values (linear struct values) can't be duplicated and can't

be lost during the execution of a program.

• The programmer can't create a new resource without explicitly doing so with a pack.

• The programmer can’t delete a resource without explicitly doing so with an unpack.

15/25

Resource Preservation

Resources introduced by 𝜋∗.

𝑅𝐼(𝜋
∗) : The identifiers 𝑘 of

the linear structs explicitly

created during 𝜋∗.

Resources used by 𝜋∗.

𝑅𝑈(𝜋
∗) : The identifiers 𝑘 of the

linear structs explicitly unpacked

during 𝜋∗.

During evaluation, we

mark newly created struct

values with a fresh

identifier k in order to

distinguish them.

16/25

Thank you.

