

Università degli Studi di Padova

Università Ca' Foscari Venezia

Linear Typing for Asset-aware Programming

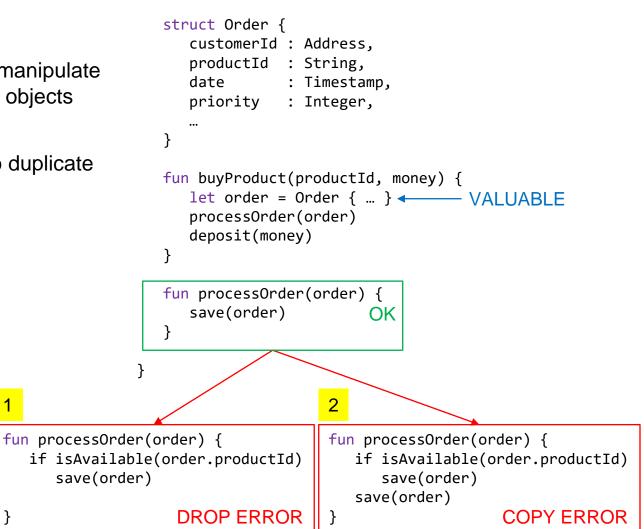
M. Bugliesi, S. Crafa, G. Dal Sasso, S. Rossi, A. Spanò

Meeting PRIN NiRvAna 2024

Udine, June 6-8

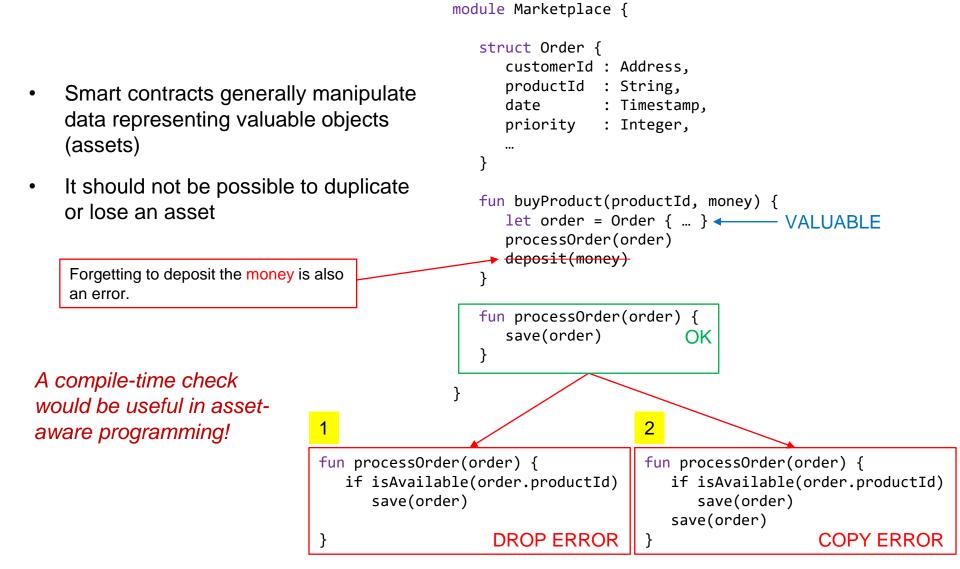
Valuables

- Smart contracts generally manipulate data representing valuable objects (assets)
- It should not be possible to duplicate or lose an asset



module Marketplace {

Valuables



Linear Types in Move

• User-defined datatypes can be *tagged* with **capabilities**

```
struct Copiable has copy {
    /* fields */
}
```

```
struct Droppable has drop {
   /* fields */
}
```

```
struct Normal has copy, drop {
    /* fields */
}
```

```
struct Linear {
    /* fields */
}
```

Can be **copied**, not dropped

Can be dropped, not copied

Can be copied and dropped

Cannot be copied or dropped

Moving Linear Datatypes

- Non-copiable data can only be **moved** through scopes
- Prevents double-spending at compile-time

• Other modules cannot access fields (Information Hiding)

The Drop Ability

- A drop can happen in two sites:
 - Assignment
 - End of scope
- Disabling drop avoids asset loss

Formalization of Move

Value $v ::= n$	integer				
$ \underline{struct \{k\} \operatorname{M.S} \left[\overline{v} \right]}$	struct value $k \in K$	Term t :::	=	v	value
	n c n			x	variable
				x.j	select j -th field of x
Type T $::=$ Int integer				$\operatorname{let} x = t_1 \operatorname{in} t_2$	let binding
M.S struct name				$\texttt{call}\mathrm{M.F}[\overline{t}]$	function call
				pack $\mathrm{M.S}[\overline{t}]$	constructor
				unpack $\{\overline{x}\}=t_1$ in t_2	deconstructor
				if t_1 then t_2 else t_3	
FD ::= fun $\mathrm{F}\left(\overline{x}:\overline{\mathrm{T}} ight):\mathrm{T}_{r}\left\{t_{b} ight\}$	function definition			pub t	publish a resource
SD ::= str $\mathrm{S}\left\{\top, \overline{\mathrm{T}}\right\}$ str $\mathrm{S}\left\{\bot\right\}$	$\{, \overline{T}\}$ struct definition			$\underline{exec} \operatorname{M} t$	function body
$\mathrm{MD} ::= \mathrm{M} \left\{ \overline{\mathrm{SD}} \; , \; \overline{\mathrm{FD}} \right\}$	module definition			$\underline{v}.\underline{j}$	select j -th field of v
$P ::= \overline{MD}$	program				

Highlights

Type system and operational semantics

- Resource Preservation: assets cannot be duplicated or accidentally lost at runtime
- Proves double-spending is prevented at compile time
- Equivalent to theorem by Blackshear et al. for bytecode lifted to source code
- Helps proving properties hold when compiling Move into other bytecodes
- Mechanized in Agda

A pure subset of Move

- No side effects (assignment), no references
- Monadic representation of CPS

CPS and State Monads in a nutshell

A simplified example:

CPS

```
struct Coin {
    amount : u64
}
let c1 = mint(100);
let c2 = spend(c1, 10);
let c3 = spend(c2, 30);
```

State Monad

type state = Coin

```
do mint(100);
    spend(10);
    spend(30);
```

State Monad automatizes the Continuation-Passing Style

Basic properties

Lemma 5 (Substitution). Given $M_v \ni \Delta_1 \vdash v : T_v \bowtie \Delta_2$, the following two properties hold:

- 1. If $M \ni \Gamma_1, x : U \vdash t : T \rhd \Gamma_2, x : U$ with $U = T_v^\circ$ or $U = T_v^\bullet$ then $M \ni \Gamma_1, x : U \vdash t\{x := v\} : T \rhd \Gamma_2, x : U$
- 2. If $\mathbf{M} \ni \Gamma_1, x : \mathbf{T}_v^{\circ} \vdash t : \mathbf{T} \succ \Gamma_2, x : \mathbf{T}_v^{\bullet}$ then $\mathbf{M} \ni \Gamma_1, x : \mathbf{T}_v^{\bullet} \vdash t\{x := v\} : \mathbf{T} \succ \Gamma_2, x : \mathbf{T}_v^{\bullet}$

Lemma 6 (Type preservation). If $M \ni \Gamma_1 \vdash t : T \rhd \Gamma_2$ and $M \ni t \rightarrow t'$ then:

$$\mathbf{M} \ni \Gamma_1 \vdash t' : \mathbf{T} \vartriangleright \Gamma_2$$

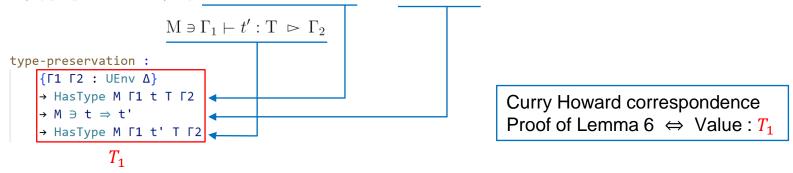
Theorem 1 (Type Safety). If $M \ni \emptyset \vdash t : T \rhd \emptyset$ and $M \ni t \to^* t'$ then, either t' is a value or there exists a term t'' such that $M \ni t' \to t''$.

Basic properties

Lemma 5 (Substitution). Given $M_v \ni \Delta_1 \vdash v : T_v \bowtie \Delta_2$, the following two properties hold:

- 1. If $M \ni \Gamma_1, x : U \vdash t : T \rhd \Gamma_2, x : U$ with $U = T_v^\circ$ or $U = T_v^\bullet$ then $M \ni \Gamma_1, x : U \vdash t\{x := v\} : T \rhd \Gamma_2, x : U$
- 2. If $\mathbf{M} \ni \Gamma_1, x : \mathbf{T}_v^{\circ} \vdash t : \mathbf{T} \succ \Gamma_2, x : \mathbf{T}_v^{\bullet}$ then $\mathbf{M} \ni \Gamma_1, x : \mathbf{T}_v^{\bullet} \vdash t\{x := v\} : \mathbf{T} \succ \Gamma_2, x : \mathbf{T}_v^{\bullet}$

Lemma 6 (Type preservation). If $M \ni \Gamma_1 \vdash t : T \rhd \Gamma_2$ and $M \ni t \rightarrow t'$ then:



Theorem 1 (Type Safety). If $M \ni \emptyset \vdash t : T \rhd \emptyset$ and $M \ni t \to^* t'$ then, either t' is a value or there exists a term t'' such that $M \ni t' \to t''$.

```
type-safety :

| HasType M [] t1 T []
\rightarrow M \ni t1 \Rightarrow^* t2
\rightarrow (Value t2) \ \ (P.\exists \ \lambda \ t3 \rightarrow M \ni t2 \Rightarrow t3)
```

Value $v ::= n$	integer				
$ \underline{struct \{k\} \operatorname{M.S} \left[\overline{v} \right]}$	struct value $k \in K$	Term t	::=	v	value
κ.	$\kappa \in R$			x	variable
				x. j	select j -th field of x
Type T $::=$ Int integer				$\operatorname{let} x = t_1 \operatorname{in} t_2$	let binding
M.S struct name				$\texttt{call}\mathrm{M.F}[\overline{t}]$	function call
				pack $\mathrm{M.S}[\overline{t}]$	constructor
				unpack $\{\overline{x}\}=t_1$ in t_2	deconstructor
				if t_1 then t_2 else t_3	
FD ::= fun $\mathrm{F}\left(\overline{x}:\overline{\mathrm{T}}\right):\mathrm{T}_{r}\left\{t_{b} ight\}$	function definition			pub t	publish a resource
SD ::= str $\mathrm{S} \{ \top, \overline{\mathrm{T}} \} \mid str \mathrm{S} \{ \bot \}$	$, \overline{T} \}$ struct definition			$\underline{exec} \operatorname{M} t$	function body
$\mathrm{MD} ::= \mathrm{M} \left\{ \overline{\mathrm{SD}} \; , \; \overline{\mathrm{FD}} \right\}$	module definition			v.j	select j -th field of v
$P ::= \overline{MD}$	program				

Resource Preservation

We proved that in FM resource values (linear struct values) can't be duplicated and can't be lost during the execution of a program.

- The programmer can't create a new resource without **explicitly** doing so with a pack.
- The programmer can't delete a resource without **explicitly** doing so with an unpack.

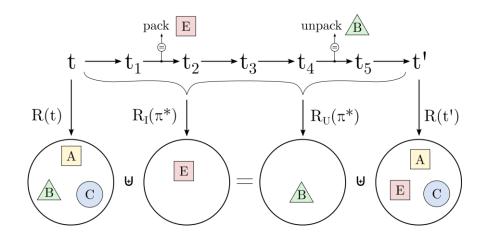
Resource Preservation

We proved that in FM resource values (linear struct values) can't be duplicated and can't be lost during the execution of a program.

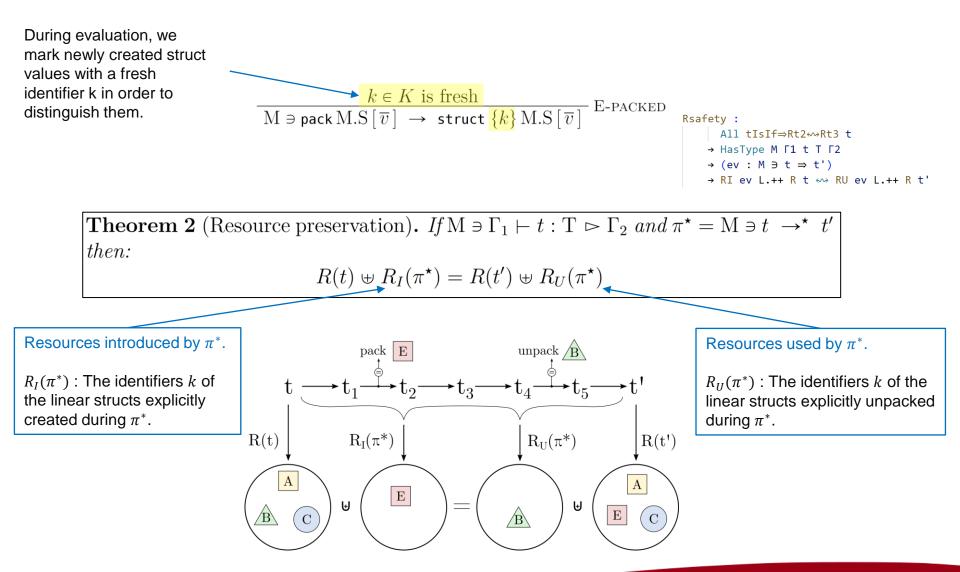
- The programmer can't create a new resource without **explicitly** doing so with a pack.
- The programmer can't delete a resource without **explicitly** doing so with an unpack.

Theorem 2 (Resource preservation). If $M \ni \Gamma_1 \vdash t : T \rhd \Gamma_2$ and $\pi^* = M \ni t \rightarrow^* t'$ then: h

$$R(t) \uplus R_I(\pi^{\star}) = R(t') \uplus R_U(\pi^{\star})$$



Resource Preservation



Thank you.