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Abstract. Component-based systems are characterized by several or-
thogonal requirements, ranging from security to quality of service, which
may demand for the use of opposite strategies and interfering mecha-
nisms. To achieve a balanced tradeoff among these aspects, we have pre-
viously proposed the use of a predictive methodology, which encompasses
classical tools such as the noninterference approach to security analysis
and standard performance evaluation techniques. The former tool, which
is based on equivalence checking, is used to reveal functional dependen-
cies among component behaviors, while the latter tool, which relies on
reward-based numerical analysis, is used to study the quantitative impact
of these dependencies on the system performance. In order to strengthen
the relation between these two different analysis techniques we advocate
the use of performance-aware notions of behavioral equivalence as a for-
mal means for detecting functional and performance dependencies and
then pinpointing the metrics at the base of a balanced tradeoff.

1 Trading Security with Performance

One of the major issues in the design of modern computing systems is trading
dependability aspects with the expected quality of service [16, 10, 15]. A balanced
tradeoff is particularly hard to accomplish when the dependability aspect of
interest is security and the system under analysis requires the interaction of
several, possibly untrusted components performing their activities in wide-area,
public networks. As an example, it is commonly recognized that lightweight
securing infrastructures like those employed for access control in the setting of the
IEEE 802.11 standard for wireless local area networks [26] are able to mitigate
the impact of the securing mechanisms on quality of service parameters, such as
system throughput and response time, still preserving to a specific extent the
properties for which they are introduced.

Examples such as this emphasize the importance of integrating the different
qualitative and quantitative views of a system in order to understand whether a
reasonable balance can be achieved between the satisfaction of security require-
ments and the expected quality of service. However, foundational approaches
to the analysis of secure and performance-aware systems have not successfully



joined with the aim of assessing a balanced qualitative and quantitative pro-
file of these systems. Different aspects of a system behavior are usually dealt
with heterogeneous analysis techniques that are applied separately. These tech-
niques consider different descriptions of the software architecture, without a clear
comprehension of how to validate mutually such descriptions, how to combine
the results obtained through the various analysis techniques and, most impor-
tantly, how to evaluate the correlation among such results. On the other hand,
an integrated view of these aspects can be at the base of a predictive method-
ology combining functional verification and quantitative analysis, with the aim
of guiding the system design towards the desired tradeoff among security and
performance.

For component-based systems, in [4] we have introduced a predictive method-
ology that can be used in the early stages of the system design to estimate the
impact of untrusted components on the system security and performance, thus
providing the base for balancing functional and nonfunctional aspects of sys-
tem behavior. From the modeling standpoint, the methodology relies on formal
architectural description languages, which represent a useful aid for the design
of effective and efficient software applications. In fact, they provide support for
the rigorous specification of systems together with related automated analysis
techniques of functional properties and performance measures. From the analy-
sis standpoint, the methodology relies on the application of two phases based on
formal tools for the verification of functional interferences among system com-
ponents and the estimate of the metrics that quantitatively characterize these
interferences, respectively. In the first phase, the functional verification is per-
formed through the noninterference approach to information flow analysis [14],
which is widely recognized as a valid support to the investigation of several
different aspects of security [19]. In the second phase, the quantitative analy-
sis is conducted through standard numerical techniques [23]. For example, this
methodology can be used for studying the influence of faults/events triggered
by nontrusted components upon the behavior of other components performing
security-critical applications [24].

In this paper we extend the methodology of [4] in order to bridge the gap
between its two phases, i.e. between the functional noninterference analysis and
the nonfunctional performance-oriented analysis. This is accomplished by means
of performance-aware notions of behavioral equivalence to be used during non-
interference analysis, which make it possible to study both functional and non-
functional undesired dependencies and, as a consequence, to pinpoint directly
the metrics that guide the performance evaluation towards the desired tradeoff.
Such an approach can be profitably employed also by those designers who are
not familiar with the formal approaches underlying the methodology and are not
interested in going into the technicalities of the related ingredients. Moreover,
the employed analysis techniques are sufficiently general to represent a valid
tool for the study of many dependability aspects – not only security, but also,
e.g., safety and reliability – and, therefore, for the assessment of the performa-
bility profile of component-based software systems. The revised methodology is
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Fig. 1. Phases of the predictive methodology.

illustrated through its application to a running example based on a multilevel
security routing system.

The paper, which is an extended version of [3], is organized as follows. In
Sect. 2 we illustrate the revised predictive methodology by abstracting from the
specific paradigms and companion analysis techniques that can be used to im-
plement it. In Sect. 3 we briefly introduce a simple multilevel security routing
system, which is used throughout the paper as a running example. In Sect. 4
we show that the basic ingredients needed by the methodology are supplied by
the stochastic process-algebraic architectural description language Æmilia [8].
In Sect. 5 we describe the stochastic process algebra and the related behavioral
equivalences underlying the application of the quantitative noninterference ap-
proach, whose properties are then illustrated in Sect. 6. In Sect. 7 we show how
to apply the two phases of the revised predictive methodology to the running
example. Finally, in Sect. 8 some conclusions are drawn.

2 Revising the Predictive Methodology

The predictive methodology of [4] aims at integrating in a transparent way or-
thogonal formal approaches for predicting the existence, estimating the impact,
and mitigating the effect of interferences caused by some system components on
the behavior of other system components. For this purpose, the methodology
employs an integrated system view and combines different techniques for secu-
rity analysis and performance evaluation. More specifically, the methodology,
which is illustrated in Fig. 1, consists of the following two phases:



1. Noninterference analysis, which is carried out to predict the influence of
specific components on security properties, so as to establish the absence
of undesired, direct and indirect information flows through the system [14,
12]. Essentially, it reduces to verify whether system projections in which
certain components are enabled or disabled are equivalent to each other by
employing behavioral equivalences.

2. Performance evaluation, which is conducted to estimate the impact of the
previously revealed interferences and the effect of the corresponding mitigat-
ing strategies on the quality of service. To this aim, standard performance
techniques are employed, including, e.g., the numerical solution of Markov
chain models [23].

The results returned by each phase should help the designer to pinpoint the
causes of system crosscutting anomalies, change the system model, and config-
ure system parameters, depending on the security and performance requirements
that should be met. With respect to [4], in this paper we add quantitative model-
ing and analysis capabilities to the first phase. This extension allows for a more
complete investigation of the dependencies among components and a stricter
relation with the performance analysis.

In the following, we describe in detail the two phases of the revised method-
ology as illustrated in Fig. 1.

2.1 Noninterference Analysis

The objective of the first phase of the methodology is to reveal potential inter-
ferences among system components that may affect the satisfaction of security
requirements. Information flow analysis is a basic approach to the verification
of security properties. Among the several conditions that describe the charac-
teristics of unauthorized information flows one of the most interesting, for its
intuitive and wide-used idea in security analysis, is the noninterference require-
ment [14]. Very briefly, in a multilevel secure system a group of high security
level users, who perform confidential operations only, does not interfere with a
group of low security level users, who observe public operations only, if what
the former group of users can do with the confidential operations has no effect
on what the latter group of users can see. Noninterference analysis can reveal
direct and indirect information flows that violate the security policies based on
the access clearances assigned to different user groups.

In order to formalize what a user at a certain security level can see, the
activities performed by the system are divided into two disjoint sets: High, rep-
resenting system activities at high security level, and Low, representing system
activities at low security level. Then, independently of the specific formalization,
checking for noninterference actually consists of verifying the indistinguishabil-
ity of the different low-level views of the system that are obtained by changing
the high-level behavior.

Several notions of noninterference have been designed to analyze sequential
programs and concurrent systems (see, e.g., [25, 12, 22]). For instance, one of



these properties, called strong nondeterministic noninterference and formalized
in the CCS process algebraic setting [12], establishes whether the view of the
system behavior as observed by a low-level user when the system interacts with
high-level users is the same – according to weak bisimulation equivalence ≈B [20]
– as that observed by the low-level user in the absence of high-level users.

Formally, a process term P representing the behavior of a system has no
information leakage if the system view where the high-level activities are made
unobservable – denoted by P/High – is indistinguishable from the system view
where these activities are prevented from execution – denoted by P\High:

P/High ≈B P\High
A weak behavioral equivalence is needed because the noninterference comparison
requires the ability of abstracting from the high-level activities that a low-level
user cannot see directly. In particular, ≈B is sufficiently expressive to be sensitive
to high-level interferences causing, e.g., deadlock or violations of properties that
depend on the branching structure of the models. If the two system views to
compare do not behave the same, then a low-level user can detect indirectly the
behavior of the high-level part of the system by observing what happens at the
low level. In other words, an indirect information flow from high level to low
level, called covert channel, is set up by exploiting the distinguishing power of
the low-level user.

With respect to [4], the first phase of the revised methodology relies on
a wide range of fine-grained notions of noninterference including deterministic
ones, nondeterministic ones, probabilistic ones, timed ones, or a combination of
these, whose choice is left to the designer and depends on how strict the secu-
rity requirements are. For example, as already mentioned the nondeterministic
noninterference check is based on weak bisimulation equivalence ≈B, while the
timed noninterference check is defined in terms of weak Markovian bisimulation
equivalence, which is illustrated in Sect. 5. Moving to a quantitative framework
including fine-grained information augments the distinguishing power of the ob-
server [18]. In general, the more information is added to a system model, the
higher the number of vulnerabilities revealed through fine-grained notions of
noninterference. In this case, some covert channels that are revealed cannot be
completely eliminated without introducing complicated (and perhaps invasive)
securing strategies.

In the case that unwanted information flows are captured, diagnostic in-
formation – in the form of a modal logic formula returned by the equivalence
check – reveals the causes of the interference. If the information flow can be
eliminated, then this diagnostic information can be employed by the designer
to modify system components. Obviously, such modifications must be validated
also from a performance standpoint, in the sense that they should not cause an
intolerable degradation of the quality of service. This performance-based valida-
tion is mandatory even if the two system views to compare satisfy the strongest
property based on the finest information details. For instance, the satisfaction of
timed noninterference ensures that no timed covert channel occurs, but does not
provide specific information about the delivered quality of service, which may



be unsatisfactory because of the strategies adopted to avoid the information
leakage.

By contrast, due to their intrinsic nature many covert channels are either
unavoidable or tolerated, because they would require impractical revisions of
the system. In this case, we have to estimate the impact of these interferences
on the system performance.

2.2 Performance Analysis

The objective of the second phase of the methodology is to provide a performance
profile of the system. On the one hand, all the unavoidable information flows
that have been revealed in the first phase by the noninterference check must be
quantitatively analyzed in order to estimate their negative impact on security.
For this purpose, the bandwidth of the covert channels detected in the first phase
is quantitatively assessed in terms of information leakage per unit of time. On
the other hand, even in the case that every covert channel has been eliminated by
means of adequate securing strategies, the application of these possibly invasive
modifications could be made impractical by hard quality of service constraints.

Therefore, in this phase we trade performance aspects with covert channel
bandwidth and with each possible solution proposed to mitigate the information
leakage. This is done by observing the performance behavior of the system when
disabling and enabling the interfering components.

In this paper we refer to the representation of time passing that uses nonneg-
ative random variables, which is particularly appropriate when the time taken
by an event fluctuates according to some probability distribution. Among the
many distributions that can be used to model event timing, we concentrate on
exponential distributions. The reason is that they yield a simpler mathematical
treatment both on the semantic side and on the stochastic side, without sacrific-
ing expressiveness. Whenever all the activity durations are expressed through ex-
ponentially distributed random variables, the derived performance model, which
has already been used in the first phase to check for timed noninterference, turns
out to yield a continuous-time Markov chain, which can be analyzed through
standard numerical techniques [23].

With respect to [4], the choice of the performance metrics to analyze in the
second phase is facilitated by the feedback provided by the timed noninterference
check, which pinpoints the component activities interfering with the observable
quantitative behavior of the system. Should the first phase reveal undesired
information flows that are unavoidable or whose elimination is impractical, an
estimate of the related information leakage is provided in the second phase by
evaluating the performance metrics that are directly related to the bandwidth
of each information flow. These metrics provide different results for the two
system views corresponding to the presence and the absence of the interfering
components, respectively, and the difference between such results represents the
amount of information leakage. Similarly, quality of service metrics are assessed
by analyzing the same system views in order to measure the impact of any
residual covert channel on such metrics.



The output of this performance comparison is given by the value of some
important efficiency measures of the system together with the bandwidth of
its covert channels, expressed as the amount of information leaked per unit of
time. Such performance figures can be used in the second phase as a feedback to
tune system configuration parameters, in a way that lowers the covert channel
bandwidth under a tolerable threshold without jeopardizing the quality of ser-
vice delivered by the system. In the case that a reasonable tradeoff cannot be
obtained, it is necessary to adjust the model and restart the analysis.

In any case, independently of the possibly strict/relaxed security needs and
loose/tight quality of service constraints, the outcome resulting from the second
phase reveals whether a balanced tradeoff between security – in terms of band-
width of each covert channel – and performance – in terms of indices like system
productivity and response time – is met or not.

3 Running Example: Multilevel Security Routing System

The two phases of the predictive methodology are illustrated through a simple
multilevel security routing system. Multilevel security refers to the problem of
sharing data with different access clearances in the same system or network. The
goal is permitting information to flow freely among users having appropriate
security clearances while preventing leaks to unauthorized users.

For the sake of simplicity, we consider only two access clearance levels, high
and low, and users playing only two different roles, sender and receiver. The
communication between these users is controlled by a router that regulates the
exchange of messages among senders and receivers on the basis of their level.
We also assume that there is only one high (resp. low) sender and only one high
(resp. low) receiver.

4 Component-Oriented System Modeling and Verification

The application of the predictive methodology requires a sufficiently expressive
specification language. In this paper, we use the stochastic process-algebraic
architectural description language Æmilia [8].

As shown in Table 1, a textual architectural description in Æmilia starts with
its name and formal parameters (initialized with default values), then comprises
an architectural behavior section and an architectural topology section.

The first section defines the overall behavior of the system by means of types
of software components and connectors, which are collectively called architec-
tural element types. The behavior of an AET has to be provided in the form of
a sequence of behavioral equations written in a verbose variant of process alge-
bra allowing only for the inactive process (rendered as stop), the action prefix
operator supporting possible boolean guards and value passing, the alternative
composition operator (rendered as choice), and recursion.

Interactions are actions occurring in the process algebraic specification of the
behavior of the AET that act as interfaces for the AET itself, while all the other



ARCHI TYPE /name and initialized formal parameters.

ARCHI BEHAVIOR
...

...
ARCHI ELEM TYPE /AET name and formal parameters.

BEHAVIOR /sequence of process algebraic equations built from
stop, action prefix, choice, and recursion.

INPUT INTERACTIONS /input synchronous/semi-synchronous/asynchronous
uni/and/or-interactions.

OUTPUT INTERACTIONS /output synchronous/semi-synchronous/asynchronous
uni/and/or-interactions.

...
...

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES /AEI names and actual parameters.
ARCHI INTERACTIONS /architecture-level AEI interactions.
ARCHI ATTACHMENTS /attachments between AEI local interactions.

END

Table 1. Structure of an Æmilia textual description

actions are assumed to represent internal activities. Each interaction has to be
equipped with three qualifiers, with the first qualifier establishing whether the
interaction is an input or output interaction.

The second qualifier represents the synchronicity of the communications in
which the interaction can be involved. We distinguish among synchronous inter-
actions which are blocking, semi-synchronous interactions which cause no block-
ing as they raise an exception if prevented, and asynchronous interactions which
are completely decoupled from the other parties involved in the communication.

The third qualifier describes the multiplicity of the communications in which
the interaction can be involved. We distinguish among uni-interactions which
are mainly involved in one-to-one communications, and-interactions guiding in-
clusive one-to-many communications, and or-interactions guiding selective one-
to-many communications.

The second section of an Æmilia description defines the system topology.
This is accomplished in three steps. Firstly, we have the declaration of the in-
stances of the AETs – called AEIs – which represent the actual system compo-
nents and connectors, together with their actual parameters. Secondly, we have
the declaration of the architectural (as opposed to local) interactions, which are
some of the interactions of the AEIs that act as interfaces for the whole sys-
tems. Thirdly, we have the declaration of the architectural attachments among
the local interactions of the AEIs, which make the AEIs communicate with each
other. An attachment is admissible only if it goes from an output interaction
of an AEI to an input interaction of another AEI. Moreover, a uni-interaction



can be attached only to one interaction, whereas an and/or-interaction can be
attached only to uni-interactions.

Example 1. Let us model the system of Sect. 3 with Æmilia. Here is the archi-
tectural description header:

ARCHI_TYPE ML_Sec_Routing(const rate mlsr_sending_high := 4

const rate mlsr_sending_low := 4

const rate mlsr_trans_high := 5

const rate mlsr_trans_low := 5)

The formal data parameters specify a set of rates expressed in sec−1 that are
concerned with the duration of the system activities. These rates are passed as
actual parameters to the instances in the architectural topology section. The
average sending time for high and low senders is 250 msec, while the average
transmission time from the routing system to each receiver is 200 msec. We use
four different parameters because when conducting performance evaluation we
will make them vary in different ranges. The system comprises four AETs: the
sender, the buffer, the router, and the receiver.

The sender AET, which repeatedly sends messages, is defined as follows:

ARCHI_ELEM_TYPE Sender_Type(const rate sending_rate)

BEHAVIOR

Sender(void; void) =

<send, exp(sending_rate)> . Sender()

INPUT_INTERACTIONS void

OUTPUT_INTERACTIONS SYNC UNI send

Every action contains the specification of its duration. Exponentially timed ac-
tions are of the form exp(.). The duration of each such action is exponentially
distributed with parameter equal to the action rate (hence the average duration
is the inverse of the rate).

The receiver AET, which is waiting for incoming messages, is defined as
follows:

ARCHI_ELEM_TYPE Receiver_Type(void)

BEHAVIOR

Receiver(void; void) =

<receive, _(0, 1)> . Receiver()

INPUT_INTERACTIONS SYNC UNI receive

OUTPUT_INTERACTIONS void

Passive actions are of the form (.,.), where the two parameters are the priority
constraint and the weight, respectively. Each passive action gets a duration only
if it is attached to an exponentially timed or immediate action. Actions that are



not passive cannot be attached to each other. A passive action and a non-passive
action can be attached to each other if and only if their priority constraint and
priority level, respectively, are equal.

The routing system is made of two one-position buffers – one for each level
– and a shared router. The buffer AET is defined as follows:

ARCHI_ELEM_TYPE Buffer_Type(void)

BEHAVIOR

Buffer(void; void) =

<deposit, _(0, 1)> . <withdraw, _(1, 1)> . Buffer()

INPUT_INTERACTIONS SYNC UNI deposit

OUTPUT_INTERACTIONS SYNC UNI withdraw

The router accepts messages arriving from high and low senders and then
transmits them to receivers of the corresponding level. The router AET is as
follows:

ARCHI_ELEM_TYPE Router_Type(const rate trans_rate_high,

const rate trans_rate_low)

BEHAVIOR

Router(void; void) =

choice

{

<get_high, inf(1, 1)> .

<trans_high, exp(trans_rate_high)> . Router(),

<get_low, inf(1, 1)> .

<trans_low, exp(trans_rate_low)> . Router()

}

INPUT_INTERACTIONS SYNC UNI get_high; get_low

OUTPUT_INTERACTIONS SYNC UNI trans_high; trans_low

Immediate actions are of the form inf(.,.), where the two parameters are the
priority level and the weight, respectively. Each immediate action has duration
zero and takes precedence over exponentially timed actions, which are assumed
to have priority level 0.

Finally, the architectural topology section is as follows:

ARCHI_ELEM_INSTANCES

S_High : Sender_Type(mlsr_sending_high);

S_Low : Sender_Type(mlsr_sending_low);

B_High : Buffer_Type();

B_Low : Buffer_Type();

U : Router_Type(mlsr_trans_high,

mlsr_trans_low);

R_High : Receiver_Type();

R_Low : Receiver_Type()



ARCHI_INTERACTIONS

void

ARCHI_ATTACHMENTS

FROM S_High.send TO B_High.deposit;

FROM S_Low.send TO B_Low.deposit;

FROM B_High.withdraw TO U.get_high;

FROM B_Low.withdraw TO U.get_low;

FROM U.trans_high TO R_High.receive;

FROM U.trans_low TO R_Low.receive

Æmilia is equipped with a translation semantics into stochastic process al-
gebra as well as analysis techniques that, in the performance evaluation case, re-
quire the solution of the underlying stochastic process in the form of a continuous-
time Markov chain (CTMC). In order to enable the specification of performance
metrics in a component-oriented fashion, Æmilia is endowed with a companion
notation called Measure Specification Language (MSL) [5]. This notation builds
on a simple first-order logic by means of which reward structures [17] are associ-
ated with the CTMCs underlying component-oriented system models expressed
in Æmilia. The notation itself is component oriented because it includes a mech-
anism for defining measures that are parameterized with respect to component
activities and component behaviors. Such a mechanism allows performance met-
rics to be defined in a transparent way in terms of the activities that individual
components or parts of their behavior can carry out, or in terms of specific local
behaviors that describe the components of interest, thus facilitating the task for
nonexperts.

For instance, the use of the measure expressing system throughput simply
requires the designer to specify the component activities contributing to the
throughput. In fact the measure is defined in MSL as follows:

MEASURE throughput (C1.a1, . . . , Cn.an)

IS / body .

where body is a first-order logic formula specifying how the component activities
C1.a1, . . . , Cn.an contribute to the reward structure associated with the met-
ric. In particular, the throughput formula establishes that each state transition
labeled with an activity in {C1.a1, . . . , Cn.an} is given a unit reward, which spec-
ifies the instantaneous gain implied by the execution of the related transition.

MSL provides support for the incremental definition of performance mea-
sures. Basic measures like system throughput can be combined to define derived
measures. The body of a derived measure definition is an expression involving
identifiers of previously defined metrics each denoting the value of the corre-
sponding measure, as well as arithmetical operators and mathematical functions.

Example 2. As an example, the low-level productivity of the system of Sect. 3
is obtained by evaluating the following MSL definition:



MEASURE low_prod(U.trans_low)

IS throughput(U.trans_low)

while the overall system productivity can be specified in MSL as follows:

MEASURE total_prod(U.trans_low, U.trans_high)

IS low_prod(U.trans_low) + high_prod(U.trans_high)

where the high-level productivity is defined similarly to the low-level one. As can
be noted, the body of this derived measure definition is an arithmetic expression
whose atomic constituents are identifiers of basic measure definitions with actual
component-oriented parameters.

5 Stochastic Process Algebra Framework

In this section we describe the formal framework supporting Æmilia. We con-
sider a Markovian process calculus that we call MPC, which includes durational
actions and a multiway communication policy based on a mixture of the gen-
erative and reactive models of [13]. In the following, we illustrate the calculus
together with its bisimulation semantics.

5.1 Markovian Process Calculus

The basic elements of MPC are the actions, which are durational, hence they are
represented as pairs of the form <a, λ̃>, where a is the action name and λ̃ is the
action rate. There are three kinds of actions: exponentially timed, immediate,
and passive.

Exponentially timed actions are of the form <a, λ> with λ ∈ R>0. The
average duration of the action is equal to the reciprocal of its rate, i.e. 1/λ. When
several exponentially timed actions are enabled, the race policy is adopted: the
action that is executed is the fastest one. The sojourn time associated with a
process term P is thus the minimum of the random variables quantifying the
durations of the exponentially timed actions enabled by P . Since the minimum of
several exponentially distributed random variables is exponentially distributed
and its rate is the sum of the rates of the original variables, the sojourn time
associated with P is exponentially distributed with rate equal to the sum of the
rates of the actions enabled by P . Therefore, the average sojourn time associated
with P is the reciprocal of the sum of the rates of the actions it enables. The
probability of executing one of those actions is given by the action rate divided
by the sum of the rates of all the considered actions.

Immediate actions are of the form <a,∞l,w>, where l ∈ N>0 is the priority
level and w ∈ R>0 is the weight. Each immediate action has duration zero and
takes precedence over exponentially timed actions, which are assumed to have
priority level 0. When several immediate actions are enabled, the generative
preselection policy is adopted. This means that the lower priority immediate
actions are discarded, whereas each of the highest priority immediate actions is



given an execution probability equal to the action weight divided by the sum of
the weights of all the highest priority immediate actions.

Passive actions are of the form <a, ∗l′
w>, where l′ ∈ N is the priority con-

straint and w ∈ R>0 is the weight. The duration of a passive action is undefined.
When several passive actions are enabled, the reactive preselection policy is
adopted. This means that, within every set of enabled passive actions having
the same name, each such action is given an execution probability equal to the
action weight divided by the sum of the weights of all the actions in the set.
Instead, the choice among passive actions having different names is nondeter-
ministic. Likewise, the choice between a passive action and a non-passive action
is nondeterministic.

MPC relies on an asymmetric synchronization discipline, according to which
a nonpassive action can synchronize only with a passive action having the same
name. In other words, the synchronization between two nonpassive actions is
forbidden. Following the terminology of [13], the adopted synchronization disci-
pline mixes generative and reactive probabilistic aspects. Firstly, among all the
enabled nonpassive actions, the proposal of an action name is generated through
a selection based on the rates of those actions. Secondly, the enabled passive ac-
tions that have the same name as the proposed one react by means of a selection
based on their weights. Thirdly, the nonpassive action winning the generative
selection and the passive action winning the reactive selection synchronize with
each other. The rate of the synchronization is given by the rate of the selected
nonpassive action multiplied by the execution probability of the selected pas-
sive action. Multiway synchronizations are allowed provided that they involve
at most one nonpassive action, with all the other actions being passive.

Definition 1. Let Act = Name × Rate be a set of actions, with Name being a
set of action names containing a distinguished symbol τ for the invisible action
and Rate = R>0 ∪ {∞l,w | l ∈ N>0 ∧ w ∈ R>0} ∪ {∗l′

w | l′ ∈ N ∧ w ∈ R>0} being
a set of action rates (ranged over by λ̃). The set L of process terms is generated
by the following syntax:

P ::= 0 | <a, λ̃>.P | P + P | P/L | P ‖S P | A
where L, S ⊆ Name − {τ} and A is a process constant defined through the (pos-
sibly recursive) equation A

∆= P .

The semantics for the set P of closed and guarded process terms of L
is defined in the usual operational style by taking into account that the al-
ternative composition operator is not idempotent. For instance, process term
<a, λ>.0 + <a, λ>.0 is not the same as <a, λ>.0, because the average sojourn
time associated with the latter, i.e. 1/λ, is twice the average sojourn time asso-
ciated with the former, i.e. 1/(λ+λ). In order to assign distinct semantic models
to process terms like the two considered above, it is sufficient to keep track of
the multiplicity of each transition, intended as the number of different proofs for
the transition derivation. The labeled multitransition system for a process term
P ∈ P si denoted by [[P ]].

The null term 0 cannot execute any action, hence the corresponding seman-
tics is given by a state with no transitions. The action prefix term <a, λ̃>.P can



execute an action with name a and rate λ̃ and then behaves as P :

<a, λ>.P
a,λ−−−→ P <a,∞l,w>.P

a,∞l,w−−−→ P <a, ∗l′
w>.P

a,∗l′
w−−−→ P

The alternative composition P1 + P2 behaves as either P1 or P2 depending on
whether P1 or P2 executes an action first:

P1

a,λ̃−−−→ P ′

P1 + P2

a,λ̃−−−→ P ′

P2

a,λ̃−−−→ P ′

P1 + P2

a,λ̃−−−→ P ′

The hiding term P/L behaves as P with the difference that the name of every
action executed by P that belongs to L is turned into τ :

P
a,λ̃−−−→ P ′ a ∈ L

P/L
τ,λ̃−−−→ P ′/L

P
a,λ̃−−−→ P ′ a /∈ L

P/L
a,λ̃−−−→ P ′/L

The parallel composition P1 ‖S P2 behaves as P1 in parallel with P2 as long as
actions are executed whose name does not belong to S:

P1

a,λ̃−−−→ P ′1 a /∈ S

P1 ‖S P2

a,λ̃−−−→ P ′1 ‖S P2

P2

a,λ̃−−−→ P ′2 a /∈ S

P1 ‖S P2

a,λ̃−−−→ P1 ‖S P ′2
Generative-reactive synchronizations are forced between any non-passive action
executed by one term and any passive action executed by the other term that
have the same name belonging to S and the same priority level/constraint:

P1

a,λ−−−→ P ′1 P2

a,∗0w−−−→ P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2,a,0)−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

P1

a,∗0w−−−→ P ′1 P2

a,λ−−−→ P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1,a,0)−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

P1

a,∞l,v−−−→ P ′1 P2

a,∗l
w−−−→ P ′2 a ∈ S

P1 ‖S P2

a,∞l,v· w
weight(P2,a,l)−−−−−−−−−−−−−−−→P ′1 ‖S P ′2

P1

a,∗l
w−−−→ P ′1 P2

a,∞l,v−−−→ P ′2 a ∈ S

P1 ‖S P2

a,∞l,v· w
weight(P1,a,l)−−−−−−−−−−−−−−−→P ′1 ‖S P ′2

where weight(P, a, l) =
∑{|w | ∃P ′ ∈ P. P

a,∗l
w−−−→ P ′ |}. Reactive-reactive syn-

chronizations are forced between any two passive actions of the two terms that
have the same name belonging to S and the same priority constraint:

P1

a,∗l
w1−−−→ P ′1 P2

a,∗l
w2−−−→ P ′2 a ∈ S

P1 ‖S P2

a,∗l
w1

weight(P1,a,l) ·
w2

weight(P2,a,l) ·(weight(P1,a,l)+weight(P2,a,l))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

The process constant A behaves as the right-hand side process term in its
defining equation:

P
a,λ̃−−−→ P ′ A

∆= P

A
a,λ̃−−−→ P ′

We use the abbreviation P\S to stand for P ‖S 0, which intuitively describes



the behavior of a restriction operator. Moreover, if P
a1,λ̃1−−−→ . . .

an,λ̃n−−−→ P ′, with
n ∈ N, then we say that P ′ is a derivative of P and we denote with Der(P ) the
set of derivatives of P . Finally, we denote with Ppc the set of performance closed
process terms of P, i.e. those terms with no passive transitions. The stochas-
tic process underlying P ∈ Ppc is a CTMC possibly extended with immediate
transitions. States having outgoing immediate transitions are called vanishing
as the sojourn time in these states is zero. In order to retrieve a pure CTMC
stochastically equivalent to an extended CTMC, all the vanishing states can be
adequately eliminated.

5.2 Bisimulation Semantics

Markovian bisimulation equivalence relates two process terms whenever they are
able to mimic each other’s functional and performance behavior stepwise. This
notion is based on the process term exit rate, which is the rate at which a process
term can execute actions of a certain name that lead to a certain set of terms
and is given by the sum of the rates of those actions due to the race policy.

We now recall from [7] an extension of Markovian bisimilarity, whose basic
idea is to compare the exit rates of the process terms by taking into account the
three kinds of actions. This is accomplished by parameterizing the notion of exit
rate with respect to a number in Z representing the priority level of the action,
which is 0 if the action is exponentially timed, l if the action rate is ∞l,w, −l′−1
if the action rate is ∗l′

w.

Definition 2. Let P ∈ P, a ∈ Name, l ∈ Z, and C ⊆ P. The exit rate of P
when executing actions with name a and priority level l that lead to C is defined
through the following non-negative real function:

rate(P, a, l, C) =





∑{|λ | ∃P ′ ∈ C. P
a,λ−−−→ P ′ |} if l = 0

∑{|w | ∃P ′ ∈ C. P
a,∞l,w−−−→ P ′ |} if l > 0

∑{|w | ∃P ′ ∈ C. P
a,∗−l−1

w−−−→ P ′ |} if l < 0
where each sum is taken to be zero whenever its multiset is empty.

Extended Markovian bisimilarity compares the process term exit rates for
all possible action names and priority levels, except for those actions that will
always be pre-empted by higher priority actions of the form <τ,∞l,w>. We
denote by priτ

∞(P ) the priority level of the highest priority immediate τ -action
enabled by P , and we set priτ

∞(P ) = 0 if P does not enable any immediate
τ -action. Moreover, given l ∈ Z, we use no-pre(l, P ) to denote that no action of
level l can be pre-empted in P . Formally, this is the case whenever l ≥ priτ

∞(P )
or −l − 1 ≥ priτ

∞(P ).

Definition 3. An equivalence relation B ⊆ P × P is an extended Markovian
bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name,
equivalence classes C ∈ P/B, and priority levels l ∈ Z such that no-pre(l, P1)



and no-pre(l, P2):
rate(P1, a, l, C) = rate(P2, a, l, C)

Extended Markovian bisimilarity, denoted by ∼EMB, is the union of all the ex-
tended Markovian bisimulations.

The notion of exit rate can be weakened by means of a suitable notion of
reachability involving internal actions with zero duration <τ,∞l,w>, which are
unobservable. The idea is that, if a given class of process terms is not reached
directly after executing an action of a certain name and level, then we have
to explore the possibility of reaching that class by performing a finite-length
sequence of immediate τ -actions starting from the term reached after executing
the considered action. If this is possible, the probability of executing those action
sequences has to be taken into account too.

Definition 4. Let P ∈ P and l ∈ N>0. We say that P is l-unobservable iff
priτ

∞(P ) = l and P does not enable any immediate non-τ -action with priority
level l′ ≥ l, nor any passive action with priority constraint l′ ≥ l.

Definition 5. Let n ∈ N>0 and P1, P2, . . . , Pn+1 ∈ P. A path π of length n:

P1

τ,∞l1,w1−−−→ P2

τ,∞l2,w2−−−→ . . .
τ,∞ln,wn−−−→ Pn+1

is unobservable iff for all i = 1, . . . , n process term Pi is li-unobservable. In that
case, the probability of executing path π is given by:

prob(π) =
n∏

i=1

wi

rate(Pi,τ,li,P)

Definition 6. Let P ∈ P, a ∈ Name, l ∈ Z, and C ⊆ P. The weak exit rate at
which P executes actions of name a and level l that lead to C is defined through
the following non-negative real function:

ratew(P, a, l, C) =
∑

P ′∈Cw

rate(P, a, l, {P ′}) · probw(P ′, C)

where Cw is the weak backward closure of C:
Cw = C ∪ {Q ∈ P − C | Q can reach C via unobservable paths}

and probw is a R]0,1]-valued function representing the sum of the probabilities of
all the unobservable paths from a term in Cw to C:

probw(P ′, C) =

{
1 if P ′ ∈ C∑{| prob(π) | π unobs. path from P ′ to C |} if P ′ ∈ Cw − C

When comparing process term weak exit rates, besides taking pre-emption
into account, we also have to skip the comparison for classes that contain certain
unobservable terms. More precisely, we distinguish among observable, initially
unobservable, and fully unobservable terms. An observable process term is a
term that enables a visible action that cannot be preempted by any enabled
immediate τ -action. An initially unobservable process term is a term in which all
the enabled visible actions are preempted by some enabled immediate τ -action,
but at least one of the computations starting at this term with one of the higher
priority enabled immediate τ -actions reaches an observable process term. A fully
unobservable process term is a term in which all the enabled visible actions



are preempted by some enabled immediate τ -action, and all the computations
starting at this term with one of the higher priority enabled immediate τ -actions
are unobservable.

The weak exit rate comparison with respect to observable and fully unob-
servable classes must obviously be performed. In order to maximize the abstrac-
tion power in the presence of quantitative information attached to immediate
τ -actions, the comparison should be conducted with respect to the whole set
Pfu of fully unobservable process terms of P. By constrast, the comparison with
respect to initially unobservable classes should be skipped, otherwise process
terms like the following would not be weakly Markovian bisimilar to each other:

<a, λ>.<τ,∞l1,w1>.<b, µ>.0
<a, λ>.<τ,∞l2,w2>.<b, µ>.0
<a, λ>.<b, µ>.0

In fact, the initially unobservable process term <τ,∞l1,w1>.<b, µ>.0 reached by
the first one is not weakly Markovian bisimilar to the initially unobservable pro-
cess term <τ,∞l2,w2>.<b, µ>.0 reached by the second one if l1 6= l2 or w1 6= w2,
with neither of those initially unobservable process terms being reached by the
third one.

Definition 7. An equivalence relation B ⊆ P×P is a weak extended Markovian
bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name and
levels l ∈ Z such that no-pre(l, P1) and no-pre(l, P2):

ratew(P1, a, l, C) = ratew(P2, a, l, C) for all observable C ∈ P/B
ratew(P1, a, l,Pfu) = ratew(P2, a, l,Pfu)

Weak extended Markovian bisimilarity, denoted by ≈EMB, is the union of all the
weak extended Markovian bisimulations.

As examples of weakly extended Markovian bisimilar process terms we mention:
P1 ≡ <a, λ>.<τ,∞l,w>.<b, µ>.0
P2 ≡ <a, λ>.<b, µ>.0

and also:
P3 ≡ <a, λ>.(<τ,∞l,w1>.<b, µ>.0 + <τ,∞l,w2>.<c, γ>.0)
P4 ≡ <a, λ · w1

w1+w2
>.<b, µ>.0 + <a, λ · w2

w1+w2
>.<c, γ>.0

which is related to vanishing state elimination. We also point out that ≈EMB can
abstract not only from intermediate immediate τ -actions, but also from inter-
mediate unobservable self-loops, consistently with the fact that the probability
to escape from them is 1. For instance, P4 is also weakly extended Markovian
bisimilar to:

P ′3 ≡ <a, λ>.A

A
∆= <τ,∞l,w1>.<b, µ>.0 + <τ,∞l,w2>.<c, γ>.0 + <τ,∞l,w3>.A

Moreover, ≈EMB cannot abstract from initial immediate τ -actions, otherwise
compositionality with respect to the alternative composition operator would be
broken. Indeed, the following process terms:

P5 ≡ <τ,∞l,w>.<a, λ>.0
P6 ≡ <a, λ>.0

are not related by ≈EMB.



The careful classification of states on the basis of their functional and perfor-
mance observability is a key ingredient thanks to which congruence and axioma-
tization can be achieved for ≈EMB. In particular, compositionality with respect
to parallel composition is preserved by restricting to a well-prioritized subset of
the non-divergent process terms of P [7].

6 Noninterference Properties

In MPC, the classification of security levels surveyed in Sect. 2.1 is realized
by assuming that the set Name − {τ} of visible action names includes a set
NameL of low-level names and a set NameH of high-level names, such that
NameL ∩ NameH = ∅. All the remaining, unclassified action names are disre-
garded by hiding them, as they do not represent behaviors of high/low security
level users. In the following, we show two noninterference properties relying on
this classification.

6.1 Bisimulation-Based Strong Noninterference

The requirement at the base of the lack of any interference from high level to
low level can be easily expressed by the strong nondeterministic noninterference
property, which informally says that a system is secure if its observable low-level
behavior is the same in the presence and in the absence of high-level interac-
tions. The stochastic version of this property is called Bisimulation-based Strong
Stochastic Noninterference (BSSNI ) and is defined as follows.

Definition 8. (BSSNI) P ∈ Ppc is secure iff P/NameH ≈EMB P\NameH .

The nondeterministic version of this property, termed BSNNI [12], is eas-
ily obtained by replacing ≈EMB with ≈B. Similarly, the probabilistic version of
BSSNI , termed BSPNI [6], is defined by replacing ≈EMB with the weak proba-
bilistic bisimilarity of [11], denoted by ≈PB. Observed that ≈EMB implies ≈PB,
which in turn implies ≈B, from [11] it is immediate to derive the following theo-
rem showing the inclusion relations among the three different fine-grained notion
of bisimulation-based strong noninterference.

Theorem 1. (Conservative Extension) BSSNI ⊂ BSPNI ⊂ BSNNI .

6.2 Bisimulation-Based Strong Local Noninterference

The strongest property of [12] is the Strong Bisimulation Nondeducibility on
Compositions, which corresponds to the Strong Local Noninterference property
that was independently defined in [21]. In our framework, we consider such a
property under the name Bisimulation-based Strong Stochastic Local Noninter-
ference. The underlying intuition states that the absence of any interference is
ensured when the low-level user cannot distinguish which, if any, high-level event
has occurred at some point in the past.



Definition 9. (BSSLNI) P ∈ Ppc is secure iff ∀P ′ ∈ Der(P ) and ∀P ′′ such

that P ′
a,λ̃−−−→ P ′′, with a ∈ NameH , P ′\NameH ≈EMB P ′′\NameH .

In practice, this property states that the low-level view of the system is not
affected by the execution of high-level actions, because it is always the same,
from the viewpoint of the low-level user, just before and immediately after any
high-level event. The nondeterministic version, BSNLNI , and the probabilistic
version, BSPLNI , can be derived in the obvious way.

While the conservative extension theorem holds also for the notion of bisimul-
ation-based strong local noninterference, in the following it is more interesting
to investigate the nature of the relation between the strong local noninterference
notion and the strong noninterference notion. Both in the nondeterministic set-
ting and in the probabilistic setting, the former is stronger than the latter. As
an example, consider the following process term:

P7 ≡ <h,∞1,w>.<h,∞1,w>.<l, µ>.0 + <τ,∞1,w>.<l, µ>.0
where h ∈ NameH and l ∈ NameL. Then, P7 satisfies the three bisimulation-
based strong noninterference properties, while it does not satisfy the three bisi-
mulation-based strong local noninterference properties. In particular, the inter-
ference captured by the latter group of properties occurs whenever the high-level
user enables the first high-level action h and then disables the second one.

In general, BSNLNI ⊂ BSNNI [12] and BSPLNI ⊂ BSPNI [6]. However,
this inclusion relation does not hold anymore in the stochastic framework. The
reason stems from the fine-grained information associated with the high-level
actions. The intuition is that the strong local noninterference notion analyzes
the low-level view of the system before and after the execution of a high-level
action by taking into account neither the time spent by its execution (if it is
exponentially timed) nor its priority (if it is immediate).

For instance, consider the process term:
P8 ≡ <h, λ>.<l, µ>.0 + <l, µ>.0

which satisfies BSSLNI , because its low-level view is <l, µ>.0 before and after
the execution of the high-level action h. However, P8 is not BSSNI secure, be-
cause <l, µ>.0 and <τ, λ>.<l, µ>.0+<l, µ>.0, which represent the two low-level
views to compare, are not weakly extended Markovian bisimilar. The motivation
is given by the race policy between the two exponentially timed actions. Simi-
larly, consider the process terms:

P9 ≡ <h,∞2,w>.P10 + P10

P10 ≡ <l,∞1,w>.0 + <l′,∞2,w>.0
Then P9 is clearly BSSLNI secure, but not BSSNI secure. In particular, while
in P9\NameH no pre-emption occurs, in P9/NameH the low-level action l is ini-
tially pre-empted by the higher priority τ -action, thus altering the probability
of executing the two low-level actions l and l′.

In practice, in the stochastic setting the notions of strong noninterference
and strong local noninterference cannot be compared.

Theorem 2. BSSLNI 6⊂ BSSNI and BSSNI 6⊂ BSSLNI .



7 Experimental Study

In this section we apply the predictive methodology to the Æmilia description
of the multilevel security routing system of Sect. 3. The analysis is conducted
by means of the Æmilia-based software tool TwoTowers [9].

7.1 Noninterference Analysis of the Running Example

The main security requirement of interest for the considered system is given
by the absence of any kind of interference from high users to low users. Hence,
according to the two roles played by users at the two different security clearances,
we assume that the following classification of local interactions accompanies the
Æmilia description:

HIGH S_High.send; R_High.receive

LOW S_Low.send; R_Low.receive

while the remaining local interactions, which represent internal communications
within the routing system, are made unobservable as they do not represent
activities under the direct control of high/low users.

Firstly, let us examine functional covert channels and consider the prop-
erty BSNNI . By omitting the rates from the labeled multitransition system
underlying the Æmilia description ML Sec Routing we obtain the nondeter-
ministic semantic model depicted in the upper part of Fig. 2. As far as transi-
tion labels are concerned, we assume what follows: aH (resp. aL) is the action
name resulting from the attachment of S High.send (resp. S Low.send) with
B High.deposit (resp. B Low.deposit); the routing activities, modeled by the
attachments from B High.withdraw to U.get high and from B Low.withdraw
to U.get low, are turned into τ -actions; the action name resulting from the
attachment of U.trans high (resp. U.trans low) with R High.receive (resp.
R Low.receive) is expressed by the label bH (resp. bL). Fig. 2 also shows in its
lower part the two system views to compare according to BSNNI . The weak
bisimulation relating these two system views is illustrated by graphically repre-
senting in the same way the states that belong to the same class. Hence, it is easy
to verify that the noninterference check is satisfied and the functional behavior
of the system is secure. Intuitively, the availability to serve low messages is never
compromised independently of the high behavior.

Secondly, consider a richer noninterference analysis based on probabilistic
information and BSPNI . The related noninterference check is satisfied as well
so that the system turns out to be secure. Intuitively, the unique probabilistic
choice observable at the low level, which is between the transmission of a low
message from the router to the corresponding receiver and the sending of a new
message from the low sender to the corresponding buffer, is not altered by any
high activity.

Thirdly, suppose that fine-grained information based on time is important for
security requirements. For instance, a motivation for this stronger verification
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Fig. 2. Labeled multitransition system of the running example and its low-level views
to compare according to BSNNI .

is to verify whether at the low level we can capture the behavior of the high
sender by observing the time needed to receive a low message. The introduction
of temporal information causes an information flow, which is revealed by the
violation of BSSNI . The diagnostic information returned by this check intuitively
reveals two interferences.

On the one hand, the presence of S High is detected at the low level by
observing the time passage. Indeed, the version of this component with hiding
describes a working process that, according to the race policy, competes with
the other durational processes, while the version of the same component with
restriction does not. On the other hand, from the viewpoint of the low receiver,
the time spent by the router to transmit high messages describes an observable
busy-waiting phase.



As a commonly used approach in security modeling, the removal of these
information flows requires the application of strict control mechanisms that, as
expected, degrade the performance of the system in order to make the behavior
of the high sender transparent to the low observer.

The first interference that has been captured shows that S High reveals its
behavior when executing high durational activities. To avoid this covert channel,
it is necessary to confine the behavior of the component in order to hide its
impact on the timing of low activities. This can be done by defining a sort of
black box that limits and controls the activities performed by the high sender.
Formally, S High becomes an instance of the new AET High Sender Type, which
is defined as follows:

ARCHI_ELEM_TYPE High_Sender_Type(const rate sending_rate,

const prio h,

const prio k)

BEHAVIOR

High_Sender(void; void) =

<tau, inf(2,1)> .

choice

{

<high_interaction, inf(h, 1)> .

<send, exp(sending_rate)> . High_Sender(),

<no_high_interaction, inf(k, 1)> .

<tau, exp(sending_rate)> . High_Sender()

}

INPUT_INTERACTIONS void

OUTPUT_INTERACTIONS SYNC UNI send; high_interaction

where we assume that h > k > 2. The initial τ -action denotes the activation
of the black box and is technically needed because it allows ≈EMB to abstract
from the subsequent immediate τ -actions. Action high interaction ∈ High
denotes the intention by the high sender of sending a message, while action
no high interaction represents the absence of any activity by the high sender.
Because of the chosen priorities, the branch guarded by no high interaction,
which is internal and, therefore, unobservable when applying the noninterference
check, is enabled iff the high sender is prevented from any interaction with
the routing system. The role of this branch is to simulate, from a temporal
standpoint, the presence of the high sender in a way that makes its absence
invisible to the low observer.

This is not enough to hide completely the interference. Whenever the high
sender is blocked because the high buffer is full and hence not willing to accept
further messages, then the black box does not compete for the resource time.
Indeed, in this case the high sender declares its intention of sending a message
and then waits for the transmission of the message. This observable behavior
would reveal to the low observer that the high buffer is full. This covert channel



can be avoided by introducing the high buffer AET, of which B High becomes
an instance:

ARCHI_ELEM_TYPE High_Buffer_Type(const rate waiting_rate)

BEHAVIOR

High_Buffer(void; void) =

<deposit, _(0, 1)> .

choice

{

<withdraw, _(1, 1)> . High_Buffer(),

<tau, exp(waiting_rate)> . High_Buffer()

}

INPUT_INTERACTIONS SYNC UNI deposit

OUTPUT_INTERACTIONS SYNC UNI withdraw

where we assume that the actual rate passed to B High is the same as that passed
to S High, because its role is to simulate the durational activities of the high
sender whenever it is blocked because of buffer saturation.

The second interference that has been captured shows that the AEI U forces
a busy-waiting phase for the low receiver whenever transmitting high messages.
The router can be made transparent to the low receiver by following an approach
borrowed from round-robin scheduling strategies. The intuition is similar to that
underlying the black box. The routing activities are divided into temporal slots,
each one dedicated to a class of senders in a round-robin fashion. Independently
of the presence of a pending message from a sender of the current class, the
temporal slot is spent. In this way, a low receiver cannot deduce whether the
high slot has been actively exploited. Formally, we replace the AET Router Type
with the following round-robin router type, of which U becomes an instance:

ARCHI_ELEM_TYPE RR_Router_Type(const rate trans_rate_high,

const rate trans_rate_low)

BEHAVIOR

Low_Round(void; void) =

choice

{

<get_low, inf(1, 1)> .

<trans_low, exp(trans_rate_low)> . High_Round(),

<tau, exp(trans_rate_low)> . High_Round()

};

High_Round(void; void) =

choice

{

<get_high, inf(1, 1)> .

<trans_high, exp(trans_rate_high)> . Low_Round(),

<tau, exp(trans_rate_high)> . Low_Round()

}



INPUT_INTERACTIONS SYNC UNI get_high; get_low

OUTPUT_INTERACTIONS SYNC UNI trans_high; trans_low

With these modifications, the system ML Sec Routing passes the stochastic
noninterference check based on BSSNI , i.e. the two views of the system that are
obtained by enabling and disabling, respectively, the high activities are indistin-
guishable from the viewpoint of the low observer.

The introduction of information about time makes the satisfaction of non-
interference properties a very hard task, which can be accomplished through
invasive strategies aiming at controlling the temporal behavior of the system.
This claim is strengthened by the fact that we employed one of the least restric-
tive noninterference properties in the literature. As an example, we ignored the
interference caused by a high receiver that blocks the transmission of the high
message, because this problem can be easily avoided by making the interaction
trans high asynchronous [2].

This and more subtle problems can be revealed by strong notions of se-
curity like strong local noninterference. In particular, the revised version of
ML Sec Routing satisfies both BSNLNI and BSPLNI , provided that the trans-
mission of the high message to the corresponding receiver is made asynchronous.
On the other hand, such a relaxation is not enough to make the system BSSLNI
secure. For this purpose, all the exponentially timed actions executed by the
black box must be made invisible in order to keep them out of the control of the
high sender. Then, the black box should be further complicated in such a way
that the (priority, probabilistic, and temporal) low view of the system must be
the same before and after the execution of action high interaction.

7.2 Performance Evaluation of the Running Example

Now we are ready to apply the second phase of the predictive methodology to
the Æmilia description of the multilevel security routing system. Moving on to
the second phase of the methodology is needed to estimate the impact of covert
channels and of the related securing countermeasures on the quality of service
delivered by the system.

The first analysis we conduct aims at measuring the amount of informa-
tion leakage for the original version of the running example. The BSSNI -based
noninterference analysis has shown that some covert channels reveal to the low
receiver the high behavior. In particular, the observations of the low receiver are
expressed in terms of low productivity of the system. Hence, the related perfor-
mance metric, described by the MSL measure low prod, offers different results
depending on the presence/absence of high interferences. This different quanti-
tative behavior that is exhibited by the two system views to compare must be
estimated from a performance standpoint.

Formally, the metric low prod is estimated in the presence and in the absence
of high interactions. The results are depicted in Fig. 3(a), where we also report,
for the sake of comparison, the number of messages transmitted to the high
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Fig. 3. Performance evaluation of different versions of the multilevel security routing
system

receiver whenever the high activities are enabled, which is represented by the
metric high prod.

The curves refer to the scenario in which the average sending time for the
low sender varies in the range [50, 500] msec. The influence of the undesired
information flow is easily estimated by comparing the two thicked curves that
are related to the low system productivity in the presence and in the absence of
high interferences.

The removal of each covert channel requires strict control mechanisms that
degrade the performance. In Fig. 3(b) we estimate the system productivity when
activating all the securing strategies described in the previous section. Thanks to
these strategies, the two thicked curves of Fig. 3(a) collapse into the same curve,
i.e. the low system productivity is independent of the high sender behavior, while
the high system productivity becomes constant. This is an expected result as
the securing countermeasures make the two system views to compare indistin-
guishable from the viewpoint of the low receiver. However, it is easy to observe
the cost that is paid in terms of decrease of the low system productivity with
respect to the scenario of Fig. 3(a). In this respect, it is interesting to compare
the low system productivity with that of Fig. 3(a) in the presence of high in-
terferences. The performance degradation experienced by the low receiver when
activating the securing mechanisms is remarkable if the low sending frequency
is high (about 23% for mlsr sending low equal to 20, i.e. one request every
50 msec). The degradation is reduced when the low sending frequency decreases
and is not perceived anymore for mlsr sending low equal to 2, i.e. one request
every 500 msec.



Hence, depending on the scenario we consider, the securing mechanisms may
or may not have a sustainable impact from a performance perspective. Obviously,
any intermediate tradeoff can be analyzed by removing some of the securing
mechanisms that are needed to make the system completely secure.

8 Conclusions

Strong notions of noninterference are hard to satisfy when modeling real-world
systems that are much more complex than the running example surveyed in this
paper. Adding fine-grained information such as time opens new scenarios where
covert channels cannot be completely eliminated without severely limiting the
system behaviors and functionalities. For this reason it becomes important to
apply a methodology aiming at trading the minimization of the covert channel
bandwidth with the reduction of the quality of service. More concrete examples
of the relevance of this methodology as a valid approach to architecting secure
and, more in general, dependable systems have been provided in [4, 1].

In general, an approach towards the mitigation of strict constraints imposed
by noninterference properties should be based on tolerance thresholds, which are
expressed in terms of negligible difference with respect to a family of performance
metrics of interest. By following this approach, the predictive methodology can
be used to estimate whether unwanted interferences are negligible (e.g. because
they are revealed whenever the system execution is observed for a long time) and,
therefore, cause a tolerable amount of information leakage in terms of sensitive
data that are revealed on the long run.

Another way to improve the flexibility of the methodology consists of employ-
ing approximate notions of behavioral equivalences, through which it is possible
to estimate the difference between the system views to compare according to the
specific noninterference property. The tolerance introduced by the approxima-
tion would allow us to relate systems that are similar but do not behave exactly
the same.
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