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Abstract. Probabilistic timed automata are an extension of timed au-
tomata with discrete probability distributions. In previous work, a prob-
abilistic notion of time divergence for probabilistic timed automata has
been considered, which requires the divergence of time with probability
1. We show that this notion can lead to cases in which the probabilistic
timed automaton satisfies a correctness requirement by making an infi-
nite number of probabilistic transitions in a finite amount of time. To
avoid such cases, we consider strict time divergence which concerns the
divergence of time over all paths, rather than time divergence of paths
with probability 1. We present new model-checking algorithms for proba-
bilistic timed automata both for probabilistic and strict divergence. The
algorithms have the same complexity as the previous model-checking
algorithms for probabilistic timed automata.

1 Introduction

Model checking is an automatic verification technique for establishing that a
model of a system satisfies a formally-specified property [1]. Two particular
classes of systems have been subject to extensions of the basic model-checking
paradigm. Firstly, methods for timed systems, in which the durations of system
behaviours is critical for the system’s correctness, have been developed, with
particular emphasis on techniques for the system-description formalism of timed
automata [2]. Secondly, methods for probabilistic systems, in which system be-
haviours have associated probabilities of occurrence, have been introduced, in
this case concentrating on techniques for Markov chains (in which the choice
between transitions is probabilistic) or Markov decision processes (in which the
choice between transitions is both nondeterministic and probabilistic). In this
paper, we consider methods for probabilistic timed systems, in which both timed
and probabilistic behaviour coexist. In the context of probabilistic timed systems,
a correctness requirement typically combines probabilistic and timing thresholds,
such as “a request is followed by a response within 5 time units with probability
0.99 or greater”. A number of model-checking methods for system-description
formalisms for such systems, which generally can differ in terms of the way in
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which the interaction of probability and time is modelled both in the system and
in the correctness requirements, have been presented [3–9]. Our focus is on the
system-description formalism of probabilistic timed automata [10, 6], which can
be regarded as an extension of timed automata with discrete probability distri-
butions, or, equivalently, an extension of Markov decision processes with timed
automata-like clocks, constraints and resets. Probabilistic timed automata have
been used to model systems such as the IEEE 1394 root contention protocol,
the backoff procedure in IEEE 802.11 Wireless LANs, and the IPv4 Zeroconf
protocol [11].

When modelling timed systems, the issue of time divergence is of importance.
Roughly speaking, behaviours of the model which correspond to the case in which
the amount of time elapsed converges do not correspond to phenomena that a
real system can exhibit, and therefore should be excluded from model-checking
analyses. Methods for model checking timed automata therefore are defined in
such a way as to consider divergent behaviours only [12–14]. Recall that, for
probabilistic timed automata (as for Markov decision processes), a strategy is
a function which resolves the nondeterminism of the system, by mapping finite
system behaviours to nondeterministic alternative transitions available in the
last state of the behaviour. For probabilistic timed automata, a probabilistic no-
tion of time divergence has been presented [6], which requires that time diverges
with probability 1 for all strategies of the model. We henceforth refer to this no-
tion as probabilistic divergence. Furthermore, a model-checking algorithm for the
probabilistic timed temporal logic Ptctl based on the standard region graph
construction [2, 12] is presented in [6], and which computes the correct proba-
bility of property satisfaction in the case in which all strategies of the model
are probabilistically divergent. This is guaranteed when all structural loops in
the graph of the probabilistic automaton require that at least one time unit
elapses, which holds for many case studies considered [11]. The algorithm runs
in EXPTIME, which is optimal by the results of [15]. Furthermore, a symbolic
probabilistic model-checking method for probabilistic timed automata has been
presented which can be applied also if not all strategies of the system are prob-
abilistically divergent [16], although this algorithm does not run in EXPTIME.

There remain two questions in this context. The first concerns whether there
exists an EXPTIME algorithm for Ptctl model checking of probabilistic timed
automata with probabilistically divergent strategies. The second question con-
cerns whether the notion of probabilistic divergence is generally applicable. Con-
sider the probabilistic timed automaton of Figure 1 (where edges without a prob-
ability label correspond to probability 1). From the location l0, there exists a
probabilistically divergent strategy to reach l2 with probability 1. An example
of such a strategy is the following: the first time l0 is visited, let 1

2 time units
elapse, then select the rightmost transition; if the probabilistic choice is resolved
so that l0 is then visited, let 1

4 time units elapse, then take the rightmost tran-
sition again; if l0 is visited for a third time, then let 1

8 time units elapse, then
take the rightmost transition again, and so on. Then the value of the clock x
will never be 1, and the strategy will be able to take the rightmost transition an
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Fig. 1. Maximal reachability probabilities under probabilistic and strict divergence.

infinite number of times, resulting in the probability of
∑

k≥1
1
2i = 1 of reaching

l2. However, in the case in which we assume that the selection of the rightmost
transition corresponds to the change of some physical state in the system, the
behaviour exhibited by this strategy should be excluded from the analysis of
the system. Therefore we argue that it is important to have an alternative to
probabilistic divergence. We propose strict divergence, which requires that all
behaviours (rather than probability 1 of the behaviours) of a strategy should be
time divergent. Note that, with the requirement of strict divergence, the max-
imum probability of reaching l2 from l0 can be made to be arbitrarily close to
1 (by making arbitrarily large the upper bound on the number of times the
rightmost transition is selected before the leftmost transition is taken). How-
ever, there is no strictly divergent strategy which reaches l2 from l0 actually
with probability 1. Therefore, the correctness property which specifies that l2
is reached with probability 1 for some strategy is satisfied under probabilistic
divergence, but not under strict divergence.

In this paper, after first recalling the definition of probabilistic timed au-
tomata and Ptctl, we present an EXPTIME algorithm for Ptctl model check-
ing with probabilistic divergence in Section 3. Then, in Section 4, we present an
EXPTIME algorithm for Ptctl model checking with strict divergence.

Related work. The distinction between probabilistic and strict divergence is
inspired by the distinction between fairness and strict fairness, as introduced
by Baier and Kwiatkowska in the context of model checking Markov decision
processes [17, 18]. We note that [19] features randomized strategies in the con-
text of 2-player timed games which are required to be either time divergent, or
blameless for the convergence of time, over all paths. In [20], the probability of
behaviours satisfying a (Büchi) correctness requirement and are divergent can
be computed. We do not follow this approach, in which the correctness property
is adapted to encode also the divergence of time, because it does not exclude
strategies in which time converges with positive probability.

2 Probabilistic Timed Automata

Preliminaries. We use R≥0 to denote the set of non-negative real numbers,
N to denote the set of natural numbers, and AP to denote a set of atomic
propositions. Given a set Q and a function µ : Q→ R≥0, we define support(µ) =
{q ∈ Q | µ(q) > 0}. A (discrete) probability distribution over a countable set
Q is a function µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. Let Dist(Q) be the set



of distributions over Q. If Q is an uncountable set, we define Dist(Q) to be the
set of functions µ : Q → [0, 1], such that support(µ) is a countable set and µ
restricted to support(µ) is a (discrete) probability distribution.

A timed Markov decision process (TMDP) T = (S,→, lab) comprises the fol-
lowing components: a (possibly uncountable) set of states S; a (possibly uncount-
able) timed probabilistic, nondeterministic transition relation →⊆ S × R≥0 ×
Dist(S); and a labelling function lab : S → 2AP . The transitions from state to
state of a TMDP are performed in two steps: given that the current state is
s, the first step concerns a nondeterministic selection of (s, d, µ) ∈→, where d
corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distribution µ, as to which state to make
the transition to (that is, we make a transition to a state s′ ∈ S with probability

µ(s′)). We often denote such a completed transition by s
d,µ−−→ s′. A TMDP is

total if, for each state s ∈ S, there exists at least one transition (s, , ) ∈→.

An infinite path of T is an infinite sequence of transitions r = s0
d0,µ0−−−→

s1
d1,µ1−−−→ · · · such that the target state of one transition is the source state of

the next. Similarly, a finite path of T is a finite sequence of consecutive transitions

r = s0
d0,µ0−−−→ s1

d1,µ1−−−→ · · · dn−1,µn−1−−−−−−−→ sn. If r is finite, the length of r, denoted by
|r|, is equal to the number of transitions along r. If r is infinite, we let |r| = ∞.
We use PathT

ful to denote the set of infinite paths of T, and PathT
fin the set of

finite paths of T. When clear from the context, we omit the superscript T. If
r is a finite path, we denote by last(r) the last state of r. For any path r and
i ≤ |r|, let r(i) = si be the (i+ 1)th state along r, and let step(r, i) = µi be the
(i + 1)th distribution taken along r. Let PathT

ful (s) and PathT
fin(s) refer to the

sets of infinite and finite paths of T, respectively, commencing in state s ∈ S.

A strategy of a TMDP T is a function σ mapping every finite path r ∈ Pathfin

to a transition (last(r), d, µ) ∈→. Let ΣT be the set of strategies of T (when the
context is clear, we write simply Σ). For any strategy σ ∈ Σ, let Pathσ

ful and
Pathσ

fin denote the sets of infinite and finite paths, respectively, resulting from
the choices of σ. For a state s ∈ S, let Pathσ

ful (s) = Pathσ
ful ∩ Path ful(s) and

Pathσ
fin(s) = Pathσ

fin ∩Pathfin(s). Given a strategy σ ∈ Σ and a state s ∈ S, we
define the probability measure Probσ

s over Pathσ
ful (s) in the standard way [21].

An untimed Markov decision process (MDP) M = (S,→, lab) is defined as a
TMDP, but for which →⊆ S × Dist(S) (that is, the transition relation → does
not contain timing information). A sub-MDP (S′,→′, lab|S′) of M is an MDP
such that S′ ⊆ S, →′⊆→, and lab|S′ is equal to lab restricted to S′. Let T ⊆ S.
The sub-MDP of M induced by T is the sub-MDP (T,→|T , lab|T ) of M, where
→|T = {(s, ν) ∈→| s ∈ T ∧ support(ν) ⊆ T }. Occasionally we omit the labelling
function lab for MDPs. The graph of an MDP (S,→) is the pair (S,E) where
(s, s′) ∈ E if and only if there exists (s, µ) ∈→ such that s′ ∈ support(µ). An
end component (EC) of an MDP M is a sub-MDP (C,D) ∈ 2S × 2→ such that
(1) if (s, µ) ∈ D, then s ∈ C and support(µ) ⊆ C, and (2) the graph of (C,D)
is strongly connected [5]. An end component (C,D) of M is maximal if there



does not exist any EC (C′, D′) of M such that (C,D) �= (C′, D′), C ⊆ C′ and
D ⊆ D′.

Probabilistic timed automata. Let X be a finite set of real-valued variables
called clocks, the values of which increase at the same rate as real-time. The
set CC (X ) of clock constraints over X is defined as the set of conjunctions over
atomic formulae of the form x ∼ c, where x, y ∈ X , ∼∈ {<,≤, >,≥,=}, and
c ∈ N. A probabilistic timed automaton (PTA) P = (L,X , inv , prob,L) consists
of the following components: a finite set L of locations ; a finite set X of clocks; a
function inv : L→ CC (X ) associating an invariant condition with each location;
a finite set prob ⊆ L × CC (X ) × Dist(2X × L) of probabilistic edges such that,
for each l ∈ L, there exists at least one (l, , ) ∈ prob; and a labelling function
L : L → 2AP . A probabilistic edge (l, g, p) ∈ prob is a triple containing (1) a
source location l, (2) a clock constraint g, called a guard, and (3) a probability
distribution p which assigns probability to pairs of the form (X, l′), whereX ⊆ X
is a clock set X and l′ ∈ L is a location. The behaviour of a probabilistic timed
automaton takes a similar form to that of a timed automaton [2]: in any location
time can advance as long as the invariant holds, and a probabilistic edge can
be taken if its guard is satisfied by the current values of the clocks. However,
probabilistic timed automata generalize timed automata in the sense that, once
a probabilistic edge is nondeterministically selected, the choice of which clocks
to reset and which target location to make the transition to is probabilistic.

We refer to a mapping v : X → R≥0 as a clock valuation. Let R
X
≥0 denote

the set of clock valuations. For a clock valuation v ∈ R
X
≥0 and a value d ∈ R≥0,

we use v + d to denote the clock valuation such that (v + d)(x) = v(x) + d
for all clocks x ∈ X . For a clock set X ⊆ X , we let v[X := 0] be the clock
valuation obtained from v by resetting all clocks within X to 0; formally, we let
v[X := 0](x) = 0 for all x ∈ X , and let v[X := 0](x) = v(x) for all x ∈ X \X .
The clock valuation v satisfies the clock constraint ψ ∈ CC (X ), written v |= ψ,
if and only if ψ resolves to true after substituting each clock x ∈ X with the
corresponding clock value v(x).

The semantics of the probabilistic timed automaton P = (L,X , inv , prob,L)
is the TMDP T[P] = (S,→, lab) where:

– S = {(l, v) | l ∈ L and v ∈ R
X
≥0 s.t. v |= inv (l)};

– → is the smallest set such that ((l, v), d, µ) ∈→ if there exist d ∈ R≥0 and a
probabilistic edge (l, g, p) ∈ prob where:
1. v + d |= g, and v + d′ |= inv(l) for all 0 ≤ d′ ≤ d;
2. for any (X, l′) ∈ 2X × L, we have that p(X, l′) > 0 implies (v + d)[X :=

0] |= inv(l′);
3. for any (l′, v′) ∈ S, we have that µ(l′, v′) =

∑
X∈Reset(v,d,v′) p(X, l

′),
where Reset(v, d, v′) = {X ⊆ X | (v + d)[X := 0] = v′}.

– lab is such that lab(l, v) = L(l) for each state (l, v) ∈ S.

We restrict our attention to PTA P with a semantic TMDP T[P] which is
total. This can be guaranteed by a syntactic condition on PTA which has been
presented in [22], and which holds generally for PTA models in practice [11].



s, w |=Σ a iff a ∈ lab(s)
s, w |=Σ z ∼ c iff w(z) ∼ c
s, w |=Σ z · Φ iff s, w[z := 0] |=Σ Φ
s, w |=Σ Φ1 ∧ Φ2 iff s, w |=Σ Φ1 and s, w |=Σ Φ2

s, w |=Σ ¬Φ iff s, w �|=Σ Φ
s, w |=Σ P��ζ(ϕ) iff Probσ

s {r ∈ Pathσ
ful(s) | r, w |=Σ ϕ} �� ζ for all σ ∈ Σ

r, w |=Σ Φ1UΦ2 iff ∃ position (i, δ) of r s.t. r(i, δ), w + Dur(r, i, δ) |=Σ Φ2,
and ∀ positions (j, δ′) of r s.t. (j, δ′) ≺r (i, δ) we have
r(j, δ′), w + Dur(r, j, δ′) |=Σ Φ1 ∨ Φ2 .

Fig. 2. Semantics of Ptctl.

We say that σ is a strategy of P if σ is a strategy of ΣT[P]. Given a path

r = (l0, v0)
d0,µ0−−−→ (l1, v1)

d1,µ1−−−→ · · · of T[P], for every i ∈ N, we use r(i, d), with
0 ≤ d ≤ di, to denote the state (li, vi + d) reached from (li, vi) after delaying
d time units. A pair (i, d) is called a position of r. We define a total order on
positions of r: given positions (i, d), (j, d′) of r, the position (i, d) precedes (j, d′)
— denoted (i, d) ≺r (j, d′) — if and only if either i < j, or i = j and d < d′.

To reason about time divergence in the remainder of the paper, we con-
struct a modified PTA in the following manner [23, 24]. First we add a new
atomic proposition tick to AP . Given a PTA P = (L,X , inv , prob,L), its en-
larged PTA P′ = (L′,X ′, inv ′, prob ′,L′) is constructed as follows. For each lo-
cation l ∈ L, we introduce a new location l. Let L′ = L ∪ {l | l ∈ L}, and
X ′ = X ∪ {z}. For each l ∈ L, let inv ′(l) = inv ′(l) = inv(l) ∧ (z ≤ 1). Let
prob ′ = prob ∪ {(l, (z = 1), p(∅,l)), (l, (z = 1), p({z},l)) | l ∈ L}, where p(∅,l) and
p({z},l) are the distributions assigning probability 1 to the elements (∅, l) and
({z}, l), respectively. Finally, let L′(l) = L(l) and L′(l) = L(l) ∪ {tick} for each
l ∈ L. Note that tick becomes true at all natural numbered time points after the
start of execution of the PTA. In the remainder of the paper, we assume that
all considered PTA are enlarged.

Probabilistic timed temporal logic. We now describe a probabilistic, timed
temporal logic which combines Pctl [4, 25] and Tctl [12, 13], and which can be
used to specify properties of probabilistic timed automata [6]. Assume that the
PTA P = (L,X , inv , prob,L) is fixed. Let Z be a finite set of clocks disjoint from
X . Clocks in the set Z are called formula clocks. Valuations of formula clocks
are denoted by w : Z → R≥0. The formulae of Ptctl (Probabilistic Timed
Computation Tree Logic) are given by the following grammar:

Φ ::= a | z ∼ c | z · Φ | Φ ∧ Φ | ¬Φ | P��ζ(ΦUΦ)

where a ∈ AP is an atomic proposition, z ∈ Z is a formula clock, ∼∈ {<,≤,=,
≥, >}, c ∈ N is a natural number, ��∈ {<,≤,≥, >}, and ζ ∈ [0, 1] is a probability.



We proceed to define the satisfaction relation of Ptctl for TMDPs. Given
the infinite path r = s0

d0,µ0−−−→ s1
d1,µ1−−−→ · · · of the TMDP T, let Dur(r, i, d) =

d+
∑

0≤k<i dk be the accumulated duration along r until position (i, d). Given
a set of strategies Σ ⊆ ΣT[P] of P, and a Ptctl formula Φ, we define the
satisfaction relation |=Σ of Ptctl as in Figure 2.

In the following, for simplicity, we generally encode formula clock valuations
within the state of a PTA: that is, a state (l, v) ∈ S consists of a location l

and a clock valuation v ∈ R
(X∪Z)
≥0 . This allows us to write s |=Σ Φ rather than

s, w |=Σ Φ.
The model-checking problem for a PTA P and a Ptctl formula Φ, given a set

Σ ⊆ ΣT[P] of strategies, consists of computing the set [[Φ]]Σ = {s ∈ S | s |=Σ Φ}.
When clear from the context, we write [[Φ]] rather than [[Φ]]Σ . From [6, 15], the
Ptctl model-checking problem with respect to the full set ΣT[P] of strategies is
EXPTIME-complete.

3 Probabilistic Divergence

In this section, we give an EXPTIME algorithm for Ptctl model checking of
PTA with the definition of probabilistically-divergent strategies of [6]. Through-
out this section, we assume that the PTA P = (L,X , inv , prob,L) and the Ptctl
formula Φ, which has a set Z of formula clocks, are fixed. A path r ∈ Path ful is
divergent if limk→∞ Dur(r, k, 0) = ∞. Let Timediv be the set of divergent paths.
A strategy σ ∈ ΣT[P] is probabilistically divergent if, for all states s ∈ S, we have
Probσ

s (Timediv) = 1. The set of all probabilistically divergent strategies of P is
denoted by ΣPd

P .

Region MDP. Our first task is to construct an MDP from P and Φ by using the
standard region graph construction [2, 6]. For t ∈ R≥0, we let frac(t) = t − �t�.
For each clock x ∈ X ∪ Z, we let cx be the maximal constant to which x is
compared in any of the guards of probabilistic edges or invariants of P, or in a
clock constraint in the formula Φ (if x is not involved in any clock constraint of
P or Φ, we let cx = 1). Two clock valuations v, v′ ∈ R

(X∪Z)
≥0 are clock equivalent

if the following conditions are satisfied: (1) for all clocks x ∈ X ∪ Z, we have
v(x) ≤ cx if and only if v′(x) ≤ cx; (2) for all clocks x ∈ X ∪ Z with v(x) ≤ cx,
we have �v(x)� = �v′(x)�; (3) for all clocks x, y ∈ X ∪ Z with v(x) ≤ cx and
v(y) ≤ cy, we have frac(v(x)) ≤ frac(v(y)) if and only if frac(v′(x)) ≤ frac(v′(y));
and (4) for all clocks x ∈ X ∪ Z with v(x) ≤ cx, we have frac(v(x)) = 0 if and
only if frac(v′(x)) = 0. We use α and β to refer to classes of clock equivalence.

Two states (l, v), (l′, v′) are region equivalent if (1) l = l′, and (2) v and v′

are clock equivalent. A region is an equivalence class of region equivalence. Let
Regions be the set of regions of P and Φ. The number of regions corresponding
to the PTA P and the Ptctl formula Φ is bounded by |L| · ∏x∈X∪Z(cx + 1) ·
|X ∪ Z|! · 2|X∪Z|.



The set of regions of a PTA P and the Ptctl formula Φ can be used to
construct an untimed, finite-state MDP Reg[P, Φ] = (Regions,→Reg, labReg) in
the following way. The set of states of Reg[P, Φ] is the set Regions of regions.
The transition relation →Reg⊆ Regions × Dist(Regions) is the smallest set such
that ((l, α), ν) ∈→Reg if there exists ((l, v), d, µ) ∈→ such that (1) v ∈ α, and (2)
for each (l′, β) ∈ Regions such that there exists (l′, v′) ∈ support(µ) and v′ ∈ β
(by definition, this (l′, v′) will be unique), we have ν(l′, β) = µ(l′, v′), otherwise
(l′, β) = 0. For each region (l, α) ∈ Regions, we let labReg(l, α) = L(l).

Given a clock valuation v, the unique clock equivalence class to which v
belongs is denoted by [v]. Given a state (l, v) ∈ S, the unique region to which

(l, v) belongs is (l, [v]), and is denoted by [(l, v)]. An infinite path r = s0
d0,µ0−−−→

s1
d1,µ1−−−→ · · · of T[P] corresponds to a unique infinite path [r] = [s0]

ν0−→ [s1]
ν1−→

· · · . Similarly, a finite path r = s0
d0,µ0−−−→ s1

d1,µ1−−−→ · · · dn−1,µn−1−−−−−−−→ sn of T[P]
corresponds to a unique finite path [r] = [s0]

ν0−→ [s1]
ν1−→ · · · νn−1−−−→ [sn].

Probabilistically divergent strategies on Reg[P, Φ]. In the following, we
use Ltl notation (see, for example, [1]), which is interpreted on paths of Reg[P, Φ]
in the standard way. An infinite path r of Reg[P, Φ] is region divergent if it
satisfies the condition ��tick . Note that an infinite path r of T[P] is divergent
if and only if [r] is region divergent. Hence [Timediv] =

⋃
r∈Timediv [r] = {r ∈

PathReg[P,Φ]
ful | r |= ��tick} is the set of all region divergent runs (where |= is the

standard satisfaction for Ltl properties on finite-state systems [1]). A strategy
σ ∈ ΣReg[P,Φ] is probabilistically region divergent if, for all regions R ∈ Regions,
we have Probσ

R(��tick ) = 1. The set of all probabilistically region divergent
strategies of Reg[P, Φ] is denoted by ΣPd

Reg[P,Φ].
We can check whether there exists a probabilistically region divergent strat-

egy of Reg[P, Φ] by computing the set of regions from which it is possible to sat-
isfy ��tick with probability 1, then comparing this set to Regions. Formally, we
compute the set of regions of Reg[P, Φ], denoted by [[¬P<1(��tick)]], for which
R ∈ [[¬P<1(��tick )]] if and only if there exists a strategy σ ∈ ΣReg[P,Φ] such
that Probσ

R(��tick ) = 1. If [[¬P<1(��tick )]] �= Regions, then Reg[P, Φ] does not
have a probabilistically region divergent strategy. We note that, for the region
R = (l, α), we have (l, α) ∈ [[¬P<1(��tick )]] if and only if there exists σ ∈ ΣT[P]

such that Probσ
(l,v)(Timediv) = 1 for all v ∈ α. The set [[¬P<1(��tick)]] can be

computed on Reg[P, Φ] using polynomial-time algorithms for Büchi objectives
of Markov decision processes [26]. In the remainder of this section, we assume
that Reg[P, Φ] has at least one probabilistically region divergent strategy; that
is, [[¬P<1(��tick)]] = Regions. If this is not the case, we compute the sub-MDP
of Reg[P, Φ] induced by [[¬P<1(��tick)]] and use it in the place of Reg[P, Φ].

Ptctl model checking with probabilistic divergence. The only formula
which depends on the notion of strategy is P��ζ(Φ1UΦ2), and hence we consider
sub-formulae of Φ of this form. We assume that, for each state s ∈ S, we have



s |=ΣPd
P
Φi if and only if [s] |=ΣPd

Reg[P,Φ]
Φi for i ∈ {1, 2}. From standard reasoning,

for any path r ∈ Path ful of T[P], we have r |=Σ Φ1UΦ2 if and only if [r] |= Φ1UΦ2,
where Σ is an arbitrary set of strategies.

Proposition 1. (1) Let σ ∈ ΣPd
P be a probabilistically divergent strategy. Then

there exists a probabilistically region divergent strategy σ′ ∈ ΣPd
Reg[P,Φ] such that

Probσ
s (Φ1UΦ2) = Probσ′

[s](Φ1UΦ2) for all states s ∈ S. (2) Let σ ∈ ΣPd
Reg[P,Φ] be

a probabilistically region divergent strategy. Then there exists a probabilistically
divergent strategy σ′ ∈ ΣPd

P such that Probσ
[s](Φ1UΦ2) = Probσ′

s (Φ1UΦ2) for all
states s ∈ S.

Corollary 1. For any s ∈ S, we have s |=ΣPd
P

P��ζ(Φ1UΦ2) if and only if
[s] |=ΣPd

Reg[P,Φ]
P��ζ(Φ1UΦ2).

Corollary 1 follows from Proposition 1 and the semantics of Ptctl. Therefore
it suffices to consider resolving properties of the form P��ζ(Φ1UΦ2) on Reg[P, Φ].
We now make a case distinction based on whether P��ζ(Φ1UΦ2) is of the form (A)
P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2), or (B) P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2). In the remain-
der of this section, we generally omit the subscript from the sets of strategies of
Reg[P, Φ], and write Σ for ΣReg[P,Φ], and ΣPd for ΣPd

Reg[P,Φ].

Case (A): properties of the form P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2). The following
proposition states that any strategy of Reg[P, Φ] can be transformed into a
probabilistically region divergent strategy which assigns the same or greater
probability to the satisfaction of Φ1UΦ2.

Proposition 2. Let σ ∈ Σ be a strategy of Reg[P, Φ] and R ∈ Regions be a
region. There exists a probabilistically region divergent strategy σ′ ∈ ΣPd such
that Probσ

R(Φ1UΦ2) ≤ Probσ′
R (Φ1UΦ2).

Proposition 2, together with the fact that ΣPd ⊆ Σ, establishes that there
exists a probabilistically region divergent strategy which assigns the same proba-
bility to satisfying Φ1UΦ2 as a maximal – but not necessarily divergent – strategy
of Reg[P, Φ]. Combining this fact with standard methods for finite-state MDPs
[25, 17], we conclude that Reg[P, Φ] can be used directly to compute maximal
probabilities of until formulae.

Theorem 1. Let R ∈ Regions be a region. Then R |=ΣPd P≤ζ(Φ1UΦ2) (respec-
tively, P<ζ(Φ1UΦ2)) if and only if R |=Σ P≤ζ(Φ1UΦ2) (respectively, P<ζ(Φ1UΦ2)).

Case (B): properties of the form P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2). To avoid overload-
ing the subsequent notation, we consider properties in the form P≥ζ(¬Φ1U¬Φ2)
or P>ζ(¬Φ1U¬Φ2). Observe that ¬(¬Φ1U¬Φ2) ≡ Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)
(from classical reasoning about temporal logic). Therefore, the maximal prob-
ability over probabilistically region divergent strategies of satisfying Φ2U(Φ1 ∧
Φ2)∨�(¬Φ1 ∧Φ2) equals 1 minus the minimal probability over probabilistically



region divergent strategies of satisfying ¬Φ1U¬Φ2. Hence, our aim is to com-
pute the maximal probability over probabilistically region divergent strategies
of satisfying Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2).

We introduce a notion of time-divergent EC. A time-divergent EC (C,D)
is an EC of Reg[P, Φ] such that tick ∈ labReg(R) for some region R ∈ C (a
similar definition is featured in [5]). For an infinite path r ∈ PathReg[P,Φ]

ful , let

Cr = {R |∞∃ i ≥ 0.r(i) = R} and Dr = {(R, ν) |∞∃ i ≥ 0.R ∈ Cr ∧ step(r, i) = ν}.
Let Inf(r) = (Cr, Dr). Note that a path r ∈ PathReg[P,Φ]

ful of Reg[P, Φ] is region
divergent if and only if Inf(r) is a time-divergent EC. For C ⊆ Regions and
D ⊆→Reg, let Path(C,D)

ful (R) = {r ∈ PathReg[P,Φ]
ful (R) | Inf(r) = (C,D)}. The

next lemma adapts to probabilistic divergence a fundamental result for ECs
[5], and states that a probabilistically region divergent strategy will be confined
eventually to time-divergent ECs with probability 1.

Lemma 1. Let E be the set of time-divergent ECs of Reg[P, Φ], let R ∈ Regions

and let σ ∈ ΣPd. Then Probσ
R(

⋃
(C,D)∈E Path(C,D)

ful (R)) = 1.

Let U ⊆ Regions be a set of regions. The set MU of time-divergent maximal
ECs within U can be computed as follows: first compute the set of maximal
ECs of the sub-MDP of Reg[P, Φ] induced by U by the standard maximal EC
computation algorithm of [5], then include in MU only those maximal ECs with
at least one region labelled by tick .

We compute the set M[[¬Φ1∧Φ2]] of time-divergent maximal ECs within the
set of states satisfying ¬Φ1 ∧ Φ2. Let U¬Φ1∧Φ2 =

⋃
(C,D)∈M[[¬Φ1∧Φ2]]

C be the set
of regions corresponding to M[[¬Φ1∧Φ2]]. By abuse of notation, we use U¬Φ1∧Φ2

as an atomic proposition such that R |=Σ U¬Φ1∧Φ2 if and only if R ∈ U¬Φ1∧Φ2 .
Note that, by Proposition 2, for any strategy σ ∈ Σ and R ∈ Regions, there
exists a probabilistically region divergent strategy σ′ ∈ ΣPd such that:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) ≤ Probσ′

R (Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) .

Proposition 3. Let R ∈ Regions be a region and σ ∈ ΣPd be a probabilisti-
cally region divergent strategy of Reg[P, Φ]. There exists a probabilistically region
divergent strategy σ′ ∈ ΣPd such that:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) ≤ Probσ′

R (Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

Proposition 4. Let R ∈ Regions be a region and σ ∈ ΣPd be a probabilistically
region divergent strategy of Reg[P, Φ]. Then:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) ≥ Probσ

R(Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

The subsequent theorem then follows from Proposition 2, Proposition 3,
Proposition 4, and the fact that ΣPd ⊆ Σ.

Theorem 2. Let R ∈ Regions be a region. Then R |=ΣPd P≥ζ(¬Φ1U¬Φ2) (re-
spectively, P>ζ(¬Φ1U¬Φ2)) if and only if R |=Σ P≤1−ζ(Φ2U((Φ1∧Φ2)∨U¬Φ1∧Φ2))
(respectively, P<1−ζ(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2))).
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Fig. 3. Minimal reachability probabilities under probabilistic and strict divergence.

The following theorem is a consequence of Corollary 1, Theorem 1, Theorem 2
and the following facts: the size of Reg[P, Φ] is exponential in the size of P and Φ;
computing the maximal probability of a formula of the form Φ1UΦ2 on MDPs is
in polynomial-time [25, 17]; model checking PTA against properties of the form
¬P<1(�a) is EXPTIME-hard [15].

Theorem 3. Let P be a PTA and Φ be a formula of Ptctl. Then the prob-
lem of computing the set [[Φ]] for P under probabilistically divergent strategies is
EXPTIME-complete.

4 Strict Divergence

We now extend the model-checking algorithm for probabilistically divergent
strategies to provide a model-checking algorithm for strictly divergent adver-
saries. Given a PTA P, a strategy σ ∈ ΣT[P] is strictly divergent if, for all states
s ∈ S, we have Pathσ

ful (s) ⊆ Timediv. The set of all probabilistically divergent
strategies of P is denoted by ΣSd

P . An example of the difference between proba-
bilistic and strict divergence for maximal reachability probabilities (or maximal
probabilities of satisfying formulae of the form Φ1UΦ2) has been presented in
the introduction. For minimal reachability (or Φ1UΦ2) probabilities, note that,
in the PTA of Figure 3, the minimum probability of reaching l2 from l1 is 0 under
probabilistically divergent strategies, but is 1 under strictly divergent strategies.

Strictly divergent strategies on Reg[P, Φ]. A strategy σ ∈ ΣReg[P,Φ] is
strictly region divergent if, for all regions R ∈ Regions, all paths r ∈ Pathσ

ful (R)
are region divergent. The set of strictly region divergent strategies of Reg[P, Φ] is
denoted by ΣSd

Reg[P,Φ]. We generally write Σ instead of ΣReg[P,Φ], and ΣSd instead
of ΣSd

Reg[P,Φ].
Similarly to the case of Section 3, we can check whether there exists a strictly

region divergent strategy of Reg[P, Φ] by computing the set of regions from
which it is possible to satisfy ��tick on all paths. For this purpose, we com-
pute the set of regions satisfying the Atl [27] formula 〈〈N〉〉(��tick ), where
Reg[P, Φ] is interpreted as a turn-based game with 2 players: player N corre-
sponds to nondeterministic choice between transitions from a region, whereas
player P refers to choice between probabilistic alternatives corresponding to a
transition. Then the formula 〈〈N〉〉(��tick ) expresses the property that player
N has the aim of ensuring region time divergence, regardless of the choices of



player P . Formally, [[〈〈N〉〉(��tick )]] = {R ∈ Regions | ∃σ ∈ ΣReg[P,Φ].∀r ∈
Pathσ

ful (R).r |=Σ ��tick}. We note that, for the region R = (l, α), we have
(l, α) ∈ [[〈〈N〉〉(��tick )]] if and only if there exists σ ∈ ΣT[P] such that r is
divergent for all paths r ∈ Pathσ

ful (l, v), for all v ∈ α. In order to compute
[[〈〈N〉〉(��tick )]], we rely on standard methods for obtaining the winning states
in 2-player turn-based games with Büchi objectives [26]. In the remainder of this
section, we assume that Reg[P, Φ] has at least one strictly region divergent strat-
egy; that is, [[〈〈N〉〉(��tick )]] = Regions. If this is not the case, we compute the
sub-MDP of Reg[P, Φ] induced by [[〈〈N〉〉(��tick )]] and use the new sub-MDP in
the place of Reg[P, Φ].

Ptctl model checking with strict divergence. We now describe a Ptctl
model-checking algorithm for the semantics under strictly divergent strategies.
The mechanism that we add to the Ptctl model-checking algorithm in order to
cater for strict divergence is inspired by similar results of [17, 18], and takes the
form of the following: a set Tmax of regions of Reg[P, Φ] is computed from which
it is guaranteed that there exists an optimal (maximal or minimal probability),
strictly divergent strategy. From regions not in Tmax, there does not exist such a
strategy. However, from regions not in Tmax, we show that we can approximate
arbitrarily closely an optimal, probabilistically divergent strategy.

We first present an analogue of Proposition 1 adapted to strict divergence.

Proposition 5. (1) Let σ ∈ ΣSd
P be a strictly divergent strategy. Then there ex-

ists a strictly region divergent strategy σ′ ∈ ΣSd
Reg[P,Φ] such that Probσ

s (Φ1UΦ2) =

Probσ′
[s](Φ1UΦ2) for all states s ∈ S. (2) Let σ ∈ ΣSd

Reg[P,Φ] be a strictly region
divergent strategy. Then there exists a strictly divergent strategy σ′ ∈ ΣSd

P such
that Probσ

[s](Φ1UΦ2) = Probσ′
s (Φ1UΦ2) for all states s ∈ S.

Corollary 2. For any s ∈ S, we have s |=ΣSd
P

P��ζ(Φ1UΦ2) if and only if
[s] |=ΣSd

Reg[P,Φ]
P��ζ(Φ1UΦ2).

Therefore, as in Section 3, it suffices to resolve properties of the form P��ζ(Φ1UΦ2)
on Reg[P, Φ]. We make a case distinction based on whether P��ζ(Φ1UΦ2) is of
the form (A) P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2), or (B) P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2).

Case (A): properties of the form P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2). Recall that the
example in the introduction shows that a PTA may exhibit a strategy with
a certain probability of reaching a location under probabilistic divergence, but,
under strict divergence, there may not exist a strategy with the same probability.
However, we show that strictly region divergent strategies can approximate from
below the probability of satisfying Φ1UΦ2 of an arbitrary strategy on Reg[P, Φ].

Lemma 2. Let R ∈ Regions and let σ ∈ Σ be a strategy of Reg[P, Φ]. Then, for
every n ∈ N, there exists a strictly region divergent strategy σn ∈ ΣSd such that
Probσn

R (Φ1UΦ2) ≥ Probσ
R(Φ1UΦ2) − 1

n .



The intuition underlying the proof of the lemma is that we construct σn to
behave the same as σ on all paths whose length does not exceed some constant
cn which depends on n. From the last regions of paths of length cn, the strategy
σn then behaves as a strictly region divergent strategy. From Lemma 1 of [28],
given σ and n, such a constant can be found such that the lemma holds.

Given that it is possible to approximate arbitrarily closely using strictly
divergent strategies the probability of satisfying a property Φ1UΦ2 of an arbitrary
strategy, the case P≤ζ(Φ1UΦ2) is not of interest: a maximal arbitrary strategy
satisfies Φ1UΦ2 with probability greater than ζ if and only if there exists a strictly
divergent strategy satisfying Φ1UΦ2 with probability greater than ζ. Hence, we
concentrate on the case of P<ζ(Φ1UΦ2).

Let R ∈ Regions, and pmax
R (Φ1UΦ2) = maxσ∈Σ Probσ

R(Φ1UΦ2). Following [17,
18], for each region R ∈ Regions of Reg[P, Φ], we define the set Max (R,Φ1UΦ2).
If R ∈ Regions \ [[Φ1]], then we let Max (R,Φ1UΦ2) = {(R′, ν) ∈→Reg| R = R′}.
If R ∈ [[Φ1]], then we let Max (R,Φ1UΦ2) equal:

{
(R, ν) ∈→Reg| pmax

R (Φ1UΦ2) =
∑

R′′∈Regions

ν(R′′) · pmax
R′′ (Φ1UΦ2)

}
.

We use Mmax to denote the MDP obtained by removing from Reg[P, Φ] all
transitions which are not in Max ( , Φ1UΦ2). Formally, let Mmax = (Regions,
→max

Reg , labReg), where →max
Reg =

⋃
R∈Regions Max (R,Φ1UΦ2).

Let T = [[Φ2]] ∪ Regions \ Regions+(Φ1, Φ2), and let [[∃�T]] = {R ∈ Regions |
∃r ∈ Pathfin(R) s.t. last(r) ∈ T}. We apply the following algorithm to Mmax.

1. Let U equal Regions and M equal Mmax.
2. Repeat the following:

(a) Let U equal either [[〈〈N〉〉(�tick )]] or [[∃�T]], computed on M.
(b) Compute the sub-MDP of M induced by U, and call this sub-MDP M.
Until M cannot be changed by the above.

Let Tmax be the set of regions of the MDP obtained on termination of the
algorithm. The strategies of this MDP do not select non-optimal transitions
(from the definition of Mmax), and can be both strictly region divergent and
reach T with probability 1. We state this formally in relation to strategies of
Reg[P, Φ] in the following lemma.

Lemma 3. Let R ∈ Regions. Then R ∈ Tmax if and only if there exists a strategy
σ ∈ Σ such that (1) for each r ∈ Pathσ

fin(R), we have σ(r) ∈ Max (last(r), Φ1UΦ2),
(2) σ ∈ ΣSd (σ is strictly region divergent) and (3) Probσ

R(�T) = 1.

We note the importance of reaching T with probability 1: strategies satisfying
this requirement do not idle in a cycle of transitions. Such cycles, in which a
strategy does not attempt to reach [[Φ2]], may be locally optimal (in the sense
that transitions of Mmax are taken), but will be globally sub-optimal: another
strategy which does not cycle, but attempts to reach [[Φ2]], will correspond to a
higher probability of satisfying Φ1UΦ2.



Our next task is to show that, from regions in Tmax, there exists a strictly
region divergent strategy with the same probability of satisfying Φ1UΦ2 as for
an optimal strategy which is not necessarily strictly region divergent.

Proposition 6. Let R ∈ Tmax and σ ∈ ΣSd be such that Probσ
R(�T) = 1 and,

for each r ∈ Pathσ
fin (R), we have σ(r) ∈ Max (last(r), Φ1UΦ2). Then pmax

R (Φ1UΦ2) =
Probσ

R(Φ1UΦ2).

Next, we show that, from regions not in Tmax, it is not possible to find
strictly region divergent strategies which obtain the probability of satisfying
Φ1UΦ2 computed over arbitrary strategies on Reg[P, Φ].

Lemma 4. Let R ∈ Regions\Tmax. Then, for σ ∈ ΣSd, we have pmax
R (Φ1UΦ2) >

Probσ
R(Φ1UΦ2).

The combination of Lemma 2, Proposition 6 and Lemma 4 allows us to obtain
the following result.

Theorem 4. Let R ∈ Regions be a region. Then:

R |=ΣSd P≤ζ(Φ1UΦ2) ⇔ pmax
R (Φ1UΦ2) ≤ ζ

R |=ΣSd P<ζ(Φ1UΦ2) ⇔
{
pmax

R (Φ1UΦ2) < ζ if R ∈ Tmax

pmax
R (Φ1UΦ2) ≤ ζ otherwise.

Case (B): properties of the form P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2). Analogously to
Section 3, we use the equivalence ¬(¬Φ1U¬Φ2) ≡ Φ2U(Φ1∧Φ2)∨�(¬Φ1∧Φ2), and
then compute the maximal probability over strictly region divergent strategies
of satisfying the formula Φ2U(Φ1 ∧Φ2)∨�(¬Φ1 ∧Φ2). This resulting probability
corresponds to the 1 minus the minimal probability of strictly region divergent
strategies satisfying ¬Φ1U¬Φ2.

In Section 3, we computed the set of time-divergent maximal ECs in which
�(¬Φ1 ∧ Φ2) was guaranteed. In the context of strict region divergence, time-
divergent ECs do not suffice, because a strategy which confines itself to a time-
divergent EC could exhibit a path (albeit with probability 0) which is not time
divergent. Therefore we introduce strictly-divergent ECs. A strictly-divergent
EC (C,D) is an EC of Reg[P, Φ] such that, for all regions R ∈ C, we have
R ∈ [[〈〈N〉〉(�tick )]] in the sub-MDP (C,D) (hence the strategy witnessing �tick
for all paths from R is a strategy of (C,D)). Intuitively, a strategy can guar-
antee strict region divergence and remain within a strictly-divergent EC (C,D)
by choosing transitions according to a strategy of the sub-MDP (C,D) which
witnesses 〈〈N〉〉(�tick ); then, after a tick -region is visited, the strategy again
chooses transitions according to a strategy which, starting from the current re-
gion, witnesses 〈〈N〉〉(�tick ), and so on. We also obtain an analogue of Lemma 1.

Lemma 5. Let F be the set of strictly-divergent ECs of Reg[P, Φ], let R ∈
Regions and let σ ∈ ΣSd. Then Probσ

R(
⋃

(C,D)∈F Path(C,D)
ful (R)) = 1.

Let U ⊆ Regions. The set of strictly-divergent maximal ECs within the set U
can be computed using the following algorithm.



1. Compute the set MU of maximal ECs of Reg[P, Φ] within U.1 Let M = MU.
2. Repeat the following:

(a) Remove some (C,D) from M.
(b) Compute [[〈〈N〉〉(�tick )]] obtained from the sub-MDP (C,D).
(c) Compute the maximal ECs (C1, D1), ..., (Cn, Dn) of the sub-MDP (C,D)

induced by [[〈〈N〉〉(�tick )]], and add them to M.
Until M cannot be changed by the above iteration.

At the termination of the algorithm, the set M will be the set of strictly-divergent
maximal ECs of Reg[P, Φ] induced by U. We use SU to denote this set.

We then follow the approach of Section 3 by computing the set S[[¬Φ1∧Φ2]] of
strictly-divergent maximal ECs within the set of states satisfying ¬Φ1 ∧ Φ2. Let
V¬Φ1∧Φ2 =

⋃
(C,D)∈S[[¬Φ1∧Φ2]]

C be the set of regions corresponding to S[[¬Φ1∧Φ2]].
We use V¬Φ1∧Φ2 as an atomic proposition such that R |=Σ V¬Φ1∧Φ2 if and only
if R ∈ V¬Φ1∧Φ2 . Then we consider the path formula Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2).
We derive the following facts from Case (A). In the following, the set Tmax

is defined with respect to the until formula Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2) (rather
than with respect to Φ1UΦ2, as in Case (A)). Let T = [[(Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2 ]] ∪
Regions \ Regions+(Φ2, (Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2). From Proposition 6, for R ∈ Tmax

and σ ∈ ΣSd such that Probσ
R(�T) = 1 and σ(r) ∈ Max (last(r), Φ1UΦ2) for each

r ∈ Pathσ
fin(R), we have that:

pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) = Probσ

R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) .

From Lemma 4, R ∈ Regions \ Tmax implies that for σ ∈ ΣSd we have:

pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2))) > Probσ

R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) .

We present analogues of Proposition 3 and Proposition 4 adapted for strict
region divergence.

Proposition 7. Let R ∈ Regions be a region and σ ∈ ΣSd be a strictly region
divergent strategy of Reg[P, Φ] such that Probσ

R(�T) = 1. There exists a strictly
region divergent strategy σ′ ∈ ΣSd such that:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≤ Probσ′

R (Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

Proposition 8. Let R ∈ Regions and σ ∈ ΣSd be a strictly region divergent
strategy of Reg[P, Φ]. Then:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≥ Probσ

R(Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

Applying Proposition 7, Proposition 8 and Theorem 4, we then obtain the
following result.

1 Recall that an algorithm for this purpose can be found in [5].



Theorem 5. Let R ∈ Regions be a region. Then:

R |=ΣSd P≥ζ(¬Φ1U¬Φ2) ⇔ 1 − pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≥ ζ

R |=ΣSd P>ζ(¬Φ1U¬Φ2) ⇔
{

1 − pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) > ζ if [s] ∈ Tmax

1 − pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≥ ζ otherwise.

From Corollary 2, Theorem 4 and Theorem 5, and from the fact that the
procedures for computing Tmax and the set of strictly-divergent maximal ECs
presented above run in time polynomial in the size of Reg[P, Φ], we then obtain
the following result.

Theorem 6. Let P be a PTA and Φ be a formula of Ptctl. Then the problem
of computing the set [[Φ]] for P under strictly divergent strategies is EXPTIME-
complete.

5 Conclusions

We have presented optimal model-checking algorithms for PTA for two notions
of time divergence. As in previous methods [6], the algorithms rely on a com-
putation of probabilities of satisfying an until property on a finite-state MDP
resulting from the classical region graph construction. For probabilistic diver-
gence and properties of the form P≥ζ(Φ1UΦ2) and P>ζ(Φ1UΦ2), the algorithms
rely also on the computation of maximal ECs in which a strategy can ensure
time divergence with probability 1. For strict divergence and for properties of
the form P<ζ(Φ1UΦ2), we compute the set of states in which the maximal un-
til probability can be obtained by a strictly-divergent strategy; for all other
states, strictly-divergent strategies can approximate arbitrarily closely the max-
imal probability. A similar technique can be used for properties of the form
P>ζ(Φ1UΦ2) in combination with the computation of maximal ECs in which a
strategy can ensure time divergence on all paths. The techniques of this paper
are useful when considering models in which there are no lower time bounds on
structural loops: these include abstract models of embedded controllers in which
lower bounds on certain reaction times are left unspecified. In future work we in-
tend to extend our notions of divergence to controller synthesis, and to consider
symbolic, zone-based algorithms for strict divergence.
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