
Selecting Optimal Maintenance Plans based on Cost/Reliability Tradeoffs for
Software Subject to Structural and Behavioral Changes

Vittorio Cortellessa
Dipartimento di Informatica

Università dell’Aquila
Via Vetoio, 1, Coppito (AQ), 67010 Italy

vittorio.cortellessa@univaq.it

Raffaela Mirandola, Pasqualina Potena
Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32, Milano, 20133 Italy

{mirandola,potena}@elet.polimi.it

Abstract—Software maintenance is assuming ever more a
crucial role in the lifecycle due to the high variability of
software requirements and environment. New development
paradigms are being defined to support the numerous decisions
that have to be taken after the software deployment. On
the basis of the increasing request of software quality, non-
functional attributes should enter in the decisional process to
avoid changes that compromise the software quality. In this
paper we define an optimization model that drives the choice
of a maintenance plan (i.e. a set of maintenance actions to
be taken) in correspondence of a certain change scenario.
A change scenario is a set of new requirements that induce
changes in the structural and behavioral architecture of the
software system. The solution of such model, as shown in this
paper on a mobile application, provides the set of actions that
minimize the maintenance cost while guaranteeing a certain
level of software reliability. We also show how this instrument
can be used to perform a sensitivity analysis of maintenance
plans vs cost/reliability tradeoff.

Keywords-software cost; software reliability; optimization
model.

I. INTRODUCTION

Software maintenance is assuming ever more a crucial
role in the lifecycle due to the high variability of software
requirements and environment. New development paradigms
are being defined to support the numerous decisions that
have to be taken after the software deployment. On the basis
of the increasing request of software quality, non-functional
attributes should enter in the decisional process to avoid
changes that could compromise the software quality.

In this paper we define an optimization model able to
find the set of maintenance actions needed to tackle a
certain change scenario. A change scenario is a set of
new requirements that induce changes in the structural and
behavioral architecture of the software system. In particular,
we consider as possible changes, the introduction of new
functionalities and the modification of the dynamics of
existing functionalities. The set of maintenance actions pro-
vided by the solution of the optimization model guarantees
the required level of reliability for the whole system and
minimizes the maintenance cost.

Several research efforts have been devoted in the last years
to the definition of methods and tools able to predict and
evaluate the quality of a software system ([8], [9], [1]).
Usually their goal is to predict and/or analyze some quality
attributes, like performance or reliability, starting from the
architectural description of the system, or to select the
architecture of the system, among a finite set of candidates,
that better fulfill the required quality.

In this paper we address the problem of system quality
from a different point of view: starting from the description
of the system and from a set of new requirements, we
devise the set of actions to be accomplished to obtain a new
architecture able to fulfill the new requirements with the
minimum cost and guaranteeing a given level of reliability.

Specifically, in our model, for each new requirement in
a change scenario, we consider the different set of mainte-
nance actions (called maintenance plans) able to guarantee
this new requirement and we obtain a set of decisions that
lead to the definition of a new architecture for the system
that guarantees the required reliability and at the same
time minimize the maintenance cost. To keep as simple as
possible the modelling aspects of our model, we assume
that the set of maintenance actions able to deal with each
requirements are independent from each other.

The new architecture can be obtained changing both the
structure and the behavior of a system. Specifically, to
modify the system structure the model solution suggests how
to replace existing software units with different available
instances and if the adoption of new software units is
necessary.

With respect to changes in the system behavior the
model solution suggests how to modify the system scenar-
ios (expressed, for example, as UML Sequence Diagrams)
by removing or introducing interaction(s) between existing
units and between these latter and new units.

The optimization model verifies the impact of the changes
on the system reliability by predicting the reliability of the
system obtained after the application of a plan chosen for
each change requirement. Furthermore, the model allows
studying the cost to maintain the system while varying the

reliability bound, i.e. the system reliability can be also a
requirement to be changed.

Besides, in order to open the solution space to addi-
tional possibilities, our model allows the combination of
maintenance plans with additional unit replacement actions.
In other words, in the optimization model we leave to
the solver the possibility to choose additional replacement
actions that have not been embedded in any selected plan.
If the maintainer does not want to replace existing units, the
model will not suggest such additional replacement actions.

The proposed optimization model could be modified to
be used as well in another phase of the software life-cycle
by specializing it to capture typical aspects of the different
phase. For example, in the architectural design phase the
model parameters have to be estimated in a different way
because in such a phase the system implementation is not yet
available. Therefore, for example, the choice to either keep
or replace an existing unit does not have to be supported,
whereas in the maintenance phase the model can support
such a choice.

Besides, our approach is not tied to any particular appli-
cation domain (e.g. component and service) and it could
be enhanced for supporting the adaptation of elementary
services at runtime.

The paper is organized as follows: in Section II we
provide the formulation of the optimization model that
represents the core of our approach; in Section III we apply
our approach to an example; Section IV introduces related
work and discusses the novelty of our contribution; and
conclusions are presented in Section V.

II. OPTIMIZATION MODEL FORMULATION

In this section we introduce the formulation of our model
aimed at finding the optimal set of maintenance actions
needed to tackle required changes to the software architec-
ture. “Optimal” is here intended as the actions that incur
in a minimum cost while guaranteeing a certain level of
reliability for the whole system.

Let S be the software architecture of a deployed system
composed by n elementary software units. Since our model
may support different lifecycle phases, we adopt a general
definition of software unit: it is a self-contained deployable
software module containing data and operations, which pro-
vides/requires services to/from other elementary elements.
A unit instance is a specific implementation of a unit 1.

Through the composition of its n software units, the
system offers services to users. Let us assume that for
each offered functionality we dispose of an UML Sequence
Diagram (SD) describing its dynamics in terms of interac-
tions that take place between software units to provide the

1Our framework can work for any semantics given to software units
under the condition that the parameters are associated to the correct units.
The only difference, of course, is in the techniques needed to estimate the
model parameters, but this is out of the scope of this paper.

functionality. Let us also assume that we dispose of SDs
for functionalities that are not active in the current system
implementation, but they can be activated to satisfy new
requirements.

Let ui be the i-th unit (1 ≤ i ≤ n).
Let K be the total number of SDs, i.e. the ones related to

active functionalities plus the ones related to functionalities
that may be introduced.

Let pexeck be the probability that the k-th system func-
tionality will be invoked. It must hold: pexeck ≥ 0 for
all k = 1 . . .K and

∑K
k=1 pexeck = 1. This information

can be synthesized from the operational profile [25] (2).
It is obvious that for a non-active functionality k we get
pexeck = 0.

Let cs be a change scenario, namely a set of m new re-
quirements (called change requirements) to be satisfied. Let
reqr be the r-th element of this set, with (1 ≤ r ≤ m). In
this paper we only consider two types of new requirements,
that are: (i) introducing a new functionality, (ii) modifying
the dynamics of an existing functionality.

In order to introduce a new functionality one of the SDs
that are not active must be activated, namely it enters the
set of SDs that contribute to the costs, reliability, etc. of the
whole software architecture. In order to modify the dynamics
of an existing functionality, certain interactions of the SD
related to the functionality have to be added/removed.

In order to satisfy such new requirements some mainte-
nance actions have to be performed. A maintenance plan is a
set of actions that address a certain requirement. Obviously,
for each requirement several maintenance plans may be
available. Since they suggest different maintenance actions,
they may differ for maintenance cost and/or for the system
reliability achieved after the application of their actions. Let
MPr be the set of maintenance plans available for the r-th
requirement in cs (3).

In order to keep as simple as possible the modelling
aspects of our work, we have taken into account only
software maintenance actions. The model can be enhanced,
for example, by suggesting hardware actions such as the
introduction of a new server. Besides, we do not focus
on corrective maintenance actions, such as bug fixing or
exception handling. In this paper we consider the following
maintenance activities:

1) Introducing new software units: A maintenance action
may suggest to embed into the system one or more

2Note that such assumption might be not realistic in all cases the
operational profile may be not (fully) available. However, in such cases
the domain knowledge and the information provided by the software
architecture could be used for estimating it, as suggested for example in
[27].

3In the remainder of the paper a plan p ∈ MPr is also called mprp.

new software units (4). We call NewS the set of
new available units that can provide different func-
tionalities, whereas newunh represents the h-th unit
of NewS.

2) Replacing existing unit instances with functionally
equivalent ones: A maintenance action may suggest
to replace a software unit with one of additional
instances available for it (e.g. a COTS component
available in the market). We assume that the additional
instances available for the unit ui are functionally
compliant with it, i.e. each instance provides at least
all services provided by ui and requires at most all
services required by ui (in Section II-A we discuss
how to relax such an assumption by introducing inte-
gration/adaptation costs). Besides, the instances may
differ from ui for cost and reliability. We call Availi
the set of instances available for the ui, while uij is
the j-th instance of Availi.

3) Modifying the interactions between software units in
a certain functionality: A maintenance action may
suggest to modify the system dynamics by intro-
ducing/removing interactions between software units
within a certain functionality.

It is obvious that any combination of such maintenance
actions may have a considerable impact on the cost and
reliability of the software architecture. Therefore, our opti-
mization model aims at quantifying such impact to suggest
the best maintenance plan that still minimizes the costs while
satisfying the reliability constraints.

Finally, in order to open the solution space to additional
possibilities, our model allows to combine maintenance
plans with additional unit replacement actions. In other
words, in the optimization model we leave to the solver
the possibility to choose additional replacement actions that
have not been embedded in any selected plan.

A. Model Parameters

- Parameters of (Existing and New) Software Units -
The parameters that we define for an existing software

unit ui (1 ≤ i ≤ n) are:
• the number bpki of busy periods that it shows in the

Sequence Diagram k;
• the cost cij of its j-th instance available uij ∈ Availi;
• the probability of failure on demand θij of its j-th

instance available uij ∈ Availi.
bpki is the number of invocations of ui within a certain

SD, and it can be easily estimated by parsing the diagram
and counting the number of activations along its lifeline.

Although the estimate of cij is outside the scope of our
work, we remark that it could be estimated as a function of

4Note that such type of action has to be associated to another action
that indicates how this software unit interacts with existing units, therefore
it modifies the interactions within certain functionalities (see last type of
action).

the cost for acquiring a new version for the unit i (e.g. the
purchase cost of a COTS component or the cost for upgrad-
ing a web service) and the one for integrating (adapting) the
instance j into the system. About the latter, Yakimovich et
al. have suggested guidelines for estimating the cost to adapt
the architectural style of a COTS component to the one of
a software architecture [32] 5

In case of an in-house developed component, it can be
estimated as a function of the per-day cost of a software
developer for developing it. In this case it may also depend
on the development process adopted (see, for example,
[20], where a list of software cost estimation approaches
is provided).

θij represents the probability for uij to fail in one invoca-
tion [30]. As remarked in [11], a rough upper bound 1/Nnf

of the probability θij of a component can be obtained when
observed that uij has been invoked for a Nnf number of
times with no failures. However, several empirical methods
to estimate failure rates of components can be found in [22].

If uij is an existing unit, then its parameters have to be
estimated by considering that it is already into the system.
Its purchase cost will be equal to 0, whereas its probability
of failure on demand can be collected by monitoring the
unit.

Finally, the parameters that we define for a new software
unit newunh ∈ NewS are:

• the cost c̄h;
• the probability of failure on demand θ̄h.
They can be estimated using the same techniques

described for existing units.

- Parameters of Maintenance Plans -
The parameters that we define for a maintenance plan

p ∈ MPr are:
• the new unit parameters (NSp, BPp);
• the variations in the busy periods of existing units

V BPp;
• the instances used for replacing existing units V ERSp;
NSp is the (possibly empty) set of new units to be in-

troduced due to some maintenance action (NSp ⊆ NewS).
BPp is a |NSp| × K matrix, where an element BPp(h, k)
represents the number of busy periods of the h-th new unit
in the k-th functionality (as represented in the related SD).

V BPp is a n×K matrix, where an element V BPp(i, k)
represents the variation of the number of busy periods of
the i-th existing unit in the k-th functionality. Note that
if p suggests to remove interactions then V BPp(i, k) is a
negative number.

5Note that the introduction of integration/adaptation costs, although
increasing the model complexity, would relax our assumption that the
instances available for a software are functionally equivalent to each
other. Besides, it could be exploited for supporting corrective maintenance
activities (e.g. bugfixing or exception handling).

V ERSp is a n×maxi|Availi| matrix, where an element
V ERSp(i, j) (also called [vij]p here below for sake of
readability) is equal to 1 if the maintenance plan p suggests
to update the existing unit i with its j-th available instance,
and it is equal to 0 otherwise 6.

B. Model Variables and Elementary Constraints

We introduce the following variables to select a mainte-
nance plan for each requirement of a change scenario.

yrp =

 1 if p is the plan chosen for requirement r
(p ∈ MPr)

0 otherwise

For each requirement r, exactly one plan must be chosen.
The following equation represents this constraint:∑

p∈MPr

yrp = 1, ∀r = 1 . . .m (1)

We introduce the following variables to select an instance
available for the i-th existing software unit.

xij =

 1 if the instance j is chosen for the unit i
(j ∈ Availi)

0 otherwise

For each existing unit i, exactly one instance must be
selected. The following equation represents this constraint:

|Availi|∑
j=1

xij = 1, ∀i = 1 . . . n (2)

If there are no available instances, we assume that Availi
includes the element i itself. 7

If a plan is part of the model solution then all instances
that it suggests for the existing units have to belong to the
solution. The following equation represents this constraint:

[vij]p · yrp ≤ xij ∀r = 1 . . .m,∀p = 1 . . . |MPr| (3)
∀i = 1 . . . n, ∀j = 1 . . . |Availi|

We introduce the following variables to select the new
software units to be introduced.

zh =
{

1 if the element h is chosen (h ∈ NewS)
0 otherwise

If a plan is part of the model solution then all new units
that it suggests to introduce have to belong to the solution.
The following equation represents this constraint:

6It obviously holds: ∀j > |Availi| [vij]p = 0
7Note that this equation holds if all existing units are still used after the

maintenance phase, whereas equation (2) should be appropriately modified
if this assumption is relaxed.

yrp ≤ zh, ∀r = 1 . . .m,∀p = 1 . . . |MPr| (4)
∀h ∈ NSp

C. Cost Objective Function (COF)

The objective function to be minimized, as the sum of the
costs of all the instances selected for the existing units and
the ones for introducing new elementary units is given by:

COF =
n∑

i=1

|Availi|∑
j=1

cijxij +
|NewS|∑

h=1

c̄hzh (5)

D. Reliability Constraint (REL)

We consider systems that may incur only in crash failures,
that are failures that (immediately and irreversibly) compro-
mise the behavior of the whole system. In order to relax
such assumption a closed formulation the error propagation
property [3] should be formulated as a closed equation.

A minimum threshold R is given on the reliability on
demand [30] of the whole system.

Since we assume that for each functionality provided by
the system we dispose of a Sequence Diagram, the reliability
of the k-th functionality Relk can be expressed as follows:

Relk =
n∏

i=1

(
|Availi|∑

j=1

xij(1− θij)newbpexki) · (6)

·
|NewS|∏

h=1

(1− θ̄hzh)newbpnkh

where newbpexki is the number of busy periods that the
existing unit i shows in the Sequence Diagram k after the
maintenance phase (i.e. after the application of the set of
maintenance plans), and newbpnkh is the number of busy
periods that the new unit h shows in the Sequence Diagram
k after the maintenance phase.

The parameter newbpexki can be expressed as follows:

newbpexki = bpki +
m∑

r=1

∑
p∈MPr

V BPp(i, k) · yrp (7)

newbpexki depends, in fact, on the added/canceled busy
periods V BPp(i, k) that the chosen maintenance plans for
the change requirements suggest for the unit i within the
k-th functionality.

The parameter newbpnkh can be expressed as follows:

newbpnkh =
m∑

r=1

∑
p∈MPr

BPp(h, k) · yrp (8)

newbpnkh depends, in fact, on the number of busy periods
BPp(h, k) that the chosen maintenance plans for the change

requirements suggest for the h-th new unit within the k-th
functionality.

In a worst case setting all functionalities provided by the
system should satisfy the reliability constraint, therefore the
latter can be formulated as follows:

min
k=1...|K|

(Relk) ≥ R (9)

As opposite, in an average case setting the reliability
constraint can be formulated as follows:∑

k∈K

pexeck ·Relk ≥ R (10)

In [12] we have summarized the model formulation and
the main assumptions underlying the model.

III. A RUNNING EXAMPLE: SMARTPHONE MOBILE
APPLICATION

In this section we describe an example that we use for
showing the practical usage of our optimization model.

In the service-oriented domain, we have been inspired by
the example used in [5]. Shortly, a smartphone user can
require the latest news from a service provider (here called
Multimedia Service). The news includes text and topical
videos available in MPEG2 format. Besides, we assume
that the smartphone can require to the Multimedia Service a
geographical map showing its locations.

Figure 1 illustrates the software architecture of the system.
It is a client/server system, where the Client is connected via
a wireless network to the Multimedia Service. The latter uses
other services for sending news to the client. In particular,
the service Trancoding that adapts the video content for the
smartphone format, the service Compression that adapts the
news content to the wireless link, the service Translation
that adapts the text for the smartphone format and draws the
geographical map, and the service Merging that integrates
the text with the video stream for the limited smartphone
display. In order to provide a map showing the user location,
the Multimedia Service also interacts with the Locations
Database to collect information about the localization of
cells.

We consider three functionalities of the system, whose
Sequence Diagrams are represented in Figures 2, 3 and 4 (8).
Figure 2 describes the system behavior while the Multimedia
Service provides news in textual format, Figure 3 describes
the system behavior while the Multimedia Service provides
news with both textual and video content, whereas Figure 4
describes the system behavior while the Multimedia Service
generates a geographical map with the user location.

In Table I we illustrate the change scenario that we
have considered for this example. It is composed by three
new requirements to be satisfied. In Table II, for each

8An extensive experimentation on such example can be found in [12].

Figure 1. Software Architecture of the Smartphone application example.

Figure 2. Requiring news in textual format.

requirement, we provide a set of maintenance plans that can
be adopted to satisfy the requirement.

We have associated the IDs to the services as follows:
u1 to Client, u2 to Multimedia Service, u3 to Locations
Database, u4 to Trancoding, u5 to Translation, u6 to Merg-
ing and u7 to Compression.

We have parameterized the optimization model with the
values reported in [12].

In Figure 5 we report the results obtained from solving the
optimization model for multiple values of the probability of
failure on demand of new units newun1 and newun4 and
of the reliability bound R. We have varied the reliability
bound R from 0.92 to 0.99 in four steps. All bars in Figure
5 having the same color refer to the same value of R. We
have varied the probability of failure on demand of newun1

from 0.0003 to 0.005 and the one of newun4 from 0.00002
to 0.005. Each group of four bars refers to the same pair of
values assigned to these probabilities of failure.

The length of each bar, along the y-axis, represents the
optimal value of the objective function of our model, that is
the minimum cost of maintenance for the considered change
scenario. For instance, if we consider the pair [θ̄1 = 0.0003,
θ̄4 = 0.005] on the x-axis, then the minimum cost to maintain

Requirement ID Requirement Specification
req1 The compression should be performed also in a different way
req2 The video should be provided also in AVI format
req3 The map should provide additional information such as a list of the closer hotels or restaurants

Table I
CHANGE SCENARIO.

Requirement Maintenance Maintenance
ID Plan ID Plan Description
req1 mp11 Adding a new service newun1 that interacts with the service Compression (i.e. u7)

mp12 Adding a new service newun4 that interacts both with Compression and Client
AND Replacing Client (i.e. u1) with its second instance available

req2 mp21 Replacing the service Trancoding (i.e. u4) with its second instance available

mp22 Adding a new service newun3

mp23 Adding a new service newun4
req3 mp31 Adding a new service newun2

mp32 Adding a new service newun1
AND Replacing Locations Database (i.e. u3) with its first instance available

mp33 Replacing Multimedia Service (i.e. u2) with its second instance available

Table II
MAINTENANCE PLANS AVAILABLE FOR SATISFYING THE REQUIREMENTS OF THE CHANGE SCENARIO.

Figure 3. Requiring news with text and video.

the system is 46 if we intend to guarantee a minimum system
reliability equal to R = 0.92. In the same group of bars, the
optimal solution cost obviously increases (up to 59) while
raising the reliability threshold (up to R = 0.99).

By looking at the detail of the solution, for example we
observe that for the entry ([θ̄1 = 0.0003, θ̄4 = 0.005], R =
0.92) the solution tuple is: [u11, u21, u31, u42, u51, u61, u71]
[newun1] [mp11,mp21,mp32]. This means that, in order
to achieve the optimal cost of maintenance the following
plans have to be adopted: the maintenance plan mp11 for the
first requirement, the maintenance plan mp21 for the second
requirement, and the maintenance plan mp32 for the third

Figure 4. Requiring a map of location.

requirement. In addition, all the replacements of existing
units (i.e. uij) are specified, as well as the adoption of the
new unit newun1 is claimed.

As expected, for a given value of the probability of failure
on demand of the new units newun1 and newun4 the total
cost of maintenance always does not increase while raising
the reliability threshold R.

On the other hand, for a given value of the probability of
failure on demand of newun1 (i.e. 0.0003 or 0.005), the cost
does not increase while decreasing the probability of failure
of newun4. In particular such cost sensibly decreases for
the case R = 0.99.

Figure 5. Objective function values for different cases.

In [12] we report the detailed results of all experiments
that we have conducted. They highlight, in general, that the
maintenance cost increases when higher reliability thresh-
olds have to be guaranteed. For example, once fixed the
probability of failure of newun1 and newun4 to 0.0003
and 0.005, respectively, the model provides two different
solutions for R = 0.95 and R = 0.97. Such solutions differ
for the instance selected for u7. In fact, in order to satisfy the
reliability constraint for R = 0.97 a more reliable version,
which is also more expensive, is suggested for it.

Besides, once fixed a reliability threshold, the mainte-
nance actions could be not different while varying the
probability of failure of a new unit. For example, once
fixed the probability of failure of newun4 to 0.00002 and
R = 0.99, the model suggests exactly the same solution
when the probability of failure of newun1 is equal to 0.0003
and when it is equal to 0.005. In both cases it suggests to
add to the system the new unit newun4.

On the other hand, while varying the probability of failure
of a new unit, once fixed the reliability threshold, different
actions could be suggested. For example, once fixed the
probability of failure of newun1 to 0.0003 and R = 0.99,
if newun4 is equal to 0.005 the model suggests to include
newun1, whereas if the probability of failure of newun4

is equal to 0.00002 the model suggests to include newun4.
The introduction of either newun1 or newun4, following
the plans suggested by the solutions, would involve different
modifications to the structure and behavior of the system.
The two solutions differ also for the instances selected for
the existing units. The solution given for the probability
of failure of newun4 equal to 0.00002, which is also less
expensive than the other one, is not a good solution if
newun4 is equal to 0.005 because the reliability constraint
would be not satisfied. In fact, the reliability of the system
would be equal to 0.9804258. In [12] we show how the
static and dynamic structure of the system changes after the

application of the maintenance actions suggested by the two
solutions.

Changing the maintenance plans for a requirement
The model may obviously suggest different actions while

changing the maintenance plans for a change requirement.
For example, once fixed the probabilities of failure to
0.0003 and 0.005, respectively, of newun1 and newun4,
if R = 0.97 and we assume that the first maintenance
plan available for the first change requirement (i.e. mp11) is
Replacing the service Compression with its second instance
available instead of Adding a new service newun1 that
interacts with the service Compression, we get the following
solution: [u11, u21, u31, u42, u51, u61, u72] [newun2],
[mp11,mp21,mp31]. The cost is equal to 51, while the
system reliability is equal to 0.9762613. Figures 6 and 7,
respectively, show how the static and dynamic structure of
the system change after the application of the maintenance
actions suggested by the solution (9). In the figures we
have marked as bold the modifications brought after the
application of the plans and we have put a cross on the
interactions (i.e. messages in the Sequence Diagram) that
are removed.

Figure 6. Resulting static structure of the system after the application of
mp11, mp21 and mp31.

If we raise R to 0.99 the model suggests the solution:
[u13, u22, u31, u42, u53, u61, u72] [mp11,mp21,mp33].
The cost increases from 51 to 59, but the system reliability
achieves the value of R = 0.9966600. In this case the model
does not suggest to add new units, but instead to maintain
the system by only replacing the initial units, as opposite to
the previous solution.

This highlights that sometimes, to maintain a system, it
is convenient to embed new units rather than replacing the
existing units with available instances.

Removing a requirement from a change scenario
Starting from the initial values of the model parameters

described in [12], let us assume that the change scenario in
Table I does not include the first requirement req1.

9Note that Figure 7 shows only the third Sequence Diagram because the
other functionalities do not change.

Figure 7. Resulting Sequence Diagram of Figure 4 after applying mp11,
mp21 and mp31.

In this case, for R = 0.99 we get the following solution:
[u11, u22, u31, u42, u51, u61, u71] [mp21, mp33]. The
cost is equal to 46, while the system reliability is equal to
0.9910393.

Moving from such a solution, if we apply the first plan
mp11 for the first requirement then the system reliability
decreases from 0.9910393 to 0.9877697, whereas the cost
increases from 46 to 53. If, instead, we apply the second plan
mp12 for the first requirement then the system reliability
decreases from 0.9910393 to 0.9779168, while the cost
increases from 46 to 55.

This highlights that it may be necessary to not fully main-
tain the system (i.e. to fully implement a change scenario)
to keep the cost under a certain threshold.

In [12] we report a more detailed description of this
sensitivity analysis, and we show other aspects that our
model is able to capture and quantify. In particular, we show
how it can support the choice to either keeping or replacing
an unit and how it helps to combine (and, in general, to
reason about) the decisions to be taken for each change
requirement. Besides, we highlight how the model helps to
analyze the maintenance cost and the system reliability while
changing the interactions between units.

IV. RELATED WORK

As already outlined the topic of trade-off analysis be-
tween quality attributes and cost plays a key role during
the whole software development. For example, several ap-
proaches have been introduced to explicitly analyze the
impact of architectural decisions on system quality. For
example, in [16] a method based on the definition of a multi-
objective optimization model is proposed to allow the best
architectural decisions maximizing the satisfaction of the
quality attributes of the system under some constraints, such
as related to budget limitations. Different kind of methods

mainly based on the use of qualitative approaches have been
proposed (see for example, [7], [21]), among which the
well-known Architecture Tradeoff Analysis Method (ATAM)
[21].

Another area quite close to our research concerns the
software project planning where project managers construct
their plans in a way that would be able to deal also with
uncertainty [4], [6], [18], [17], [28], [33]. For example, in
[6] the authors investigate the use of search-based software
engineering techniques to solve the problem of resource
allocations for different project planning solutions. Another
interesting study can be found in [17], where search-based
techniques, and specifically a multi-objective genetic al-
gorithm, have been introduced to devise project planning
solutions balancing two key objectives such as robustness
and early completion time.

Hereafter, we focus on approaches specifically designed
to support the maintenance of a system. To this end different
maintenance actions are considered, such as the replacement
of existing services or components through a selection
process based on simple optimization models [2], [11], [13]
or on multi-objective optimization models returning a Pareto
solution maximizing a set of objectives (e.g. functional-
ity,usability) under some constraints [10], [19], [26], [31].

Different kind of maintenance actions based on reconfigu-
rations such as replacing, adding and/or deleting components
in an architecture have been discussed in [14], [15] where
methods verifying the soundness of a reconfiguration with
respect to the system architecture are proposed.

Other challenges related to the maintenance phase are
represented by the construction of the set of architectural al-
ternatives for each change requirement (initial solution based
on the use of meta-heuristic techniques can be found in [23]),
and the detection and resolution of mismatches between
requirements and existing elementary services/components
([24]) or between different services/components [29].

With respect to existing approaches, the following major
aspects characterize the novelty of the proposed method:

• This is the first paper (to the best of our knowledge)
supporting the transformation of the system architecture
(including both static and dynamic models) using an
optimization model that suggests how to implement
some of the required changes (i.e. introduction of
new functional requirements or changing of already
implemented system functionalities) while minimizing
the cost and assuring a certain system reliability.

• The proposed approach is general and does not rely
on specific architectural style, development process or
application domain (e.g. component and service). It
could be specialized, with respect to the application
domain chosen. For example, it could be enhanced
to support the adaptation of elementary services at
runtime.

• In this paper we have instantiated the optimization

model for the maintenance phase, but it could be
adopted in another phase of the software life-cycle. This
adoption may require to specialize the model in order to
capture typical aspects of the new phase. For example,
in the architectural design phase the structure of model
would not have to be changed, but it would be sufficient
to estimate the model parameters in a different way.

• The proposed optimization model is independent from
the methodology adopted to represent the scenarios and
from the strategy used to generate the maintenance
plans for each change requirement, we only need the
number of busy periods of an elementary element.

• The defined model can facilitate the work of a software
engineer (i.e. maintainer). In fact, in our model it is
not necessary to insert as input value architectures sat-
isfying all changes required, but possible architectures
for each change requirement. When the computation
time becomes too big, e.g. while increasing the number
of maintenance plans, the adoption of metaheuristic
techniques possibly combined with the introductions of
dependencies between maintenance plans of different
change requirements could allow to reduce the research
space.

V. CONCLUSIONS

In this paper we have defined an optimization model that
supports the choice of the best set of maintenance actions
that address certain additional system requirements. The so-
lution of such model, as shown in this paper on a smartphone
mobile application, provides the set of actions that minimize
the maintenance cost while guaranteeing a certain level of
software reliability. The usage of this instrument to perform
a sensitivity analysis of maintenance plans vs cost/reliability
tradeoff is also illustrated through the example.

We intend to apply our approach on realistic examples in
order to validate it and to study its scalability. To this end
we intend to investigate the use of meta-heuristic techniques
(e.g. the tabu-search algorithm) to improve the overall model
complexity and scalability.

Other interesting research directions we intend to in-
vestigate concern the introduction/evaluation of risk fac-
tors associated to change requirements, the evaluation of
dependencies among different requirements, the extension
of our optimization model by introducing other quality
constraints (e.g. security or performance constraints) using
multi-optimization models, and its application to support the
adaptation of software units at runtime.

Finally, we are designing a tool that automatically gener-
ates the optimization model starting from system models
(such as UML diagrams) annotated with the appropriate
parameters.

ACKNOWLEDGMENT

This research has been partially funded by the European
Commission, Programme IDEAS-ERC, Project 227077-
SMScom, the project Q-ImPrESS (215013) funded under
the European Unions Seventh Framework Programme (FP7)
and the project PACO (Performability-Aware Computing:
Logics, Models, and Languages) funded by MIUR.

REFERENCES

[1] Wosp : Proceedings of the international workshop on software
and performance, 1998-2007.

[2] M. Abdallah, R. Guenther, and E. Armin. Cots Selection:
Past, Present, and Future. In ECBS ’07: Proceedings of the
14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, pages 103–
114, 2007.

[3] W. Abdelmoez, D. M. Nassar, M. Shereshevsky, N. Gradetsky,
R. Gunnalan, H. H. Ammar, B. Yu, and A. Mili. Error
Propagation In Software Architectures. Software Metrics,
IEEE International Symposium on, pages 384–393, 2004.

[4] E. Alba and J. F. Chicano. Software project management with
GAs. Inf. Sci., 177(11):2380–2401, 2007.

[5] M. Alrifai and T. Risse. Combining global optimization with
local selection for efficient QoS-aware service composition.
In WWW, pages 881–890, 2009.

[6] G. Antoniol, M. D. Penta, and M. Harman. Search-Based
Techniques Applied to Optimization of Project Planning for
a Massive Maintenance Project. In ICSM, pages 240–249.
IEEE Computer Society, 2005.

[7] M. Babar, L. Zhu, and D. Jeffery. A Framework for Classify-
ing and Comparing Software Architecture Evaluation Meth-
ods. In Proc. of Australian Software Engineering Conference,
pages 309–319, 2004.

[8] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni.
Model-Based Performance Prediction in Software Develop-
ment: A Survey. IEEE Trans. Software Eng., 30(5):295–310,
2004.

[9] S. Becker, L. Grunske, R. Mirandola, and S. Overhage.
Performance Prediction of Component-Based Systems - A
Survey from an Engineering Perspective. In Architecting
Systems with Trustworthy Components, pages 169–192, 2004.

[10] E. Bondarev, M. Chaudron, and P. de With. A Process
for Resolving Performance Trade-Offs in Component-Based
Architectures. In CBSE, pages 254–269, 2006.

[11] V. Cortellessa, F. Marinelli, and P. Potena. Automated
Selection of Software Components Based on Cost/Reliability
Tradeoff. In EWSA, pages 66–81, 2006.

[12] V. Cortellessa, R. Mirandola, and P. Potena. Selecting Op-
timal Maintenance Plans based on Cost/Reliability Tradeoffs
for Software Subject to Structural and Behavioral Changes:
Model Summary and Sensitivity Analysis. Technical re-
port, Dip. Informatica, Università de L’Aquila, [Online].
Available: http://www.di.univaq.it/cortelle/docs/maintenance-
techrep.pdf.

[13] V. Cortellessa and P. Potena. How Can Optimization Models
Support the Maintenance of Component-Based Software?
Search Based Software Engineering, International Symposium
on, pages 97–100, 2009.

[14] P. David, M. Léger, H. Grall, T. Ledoux, and T. Coupaye. A
Multi-stage Approach for Reliable Dynamic Reconfigurations
of Component-Based Systems, booktitle = DAIS, year =
2008, pages = 106-111.

[15] V. Grassi, R. Mirandola, and A. Sabetta. A model-driven
approach to performability analysis of dynamically reconfig-
urable component-based systems. In WOSP, pages 103–114,
2007.

[16] L. Grunske. Identifying ”good” architectural design alterna-
tives with multi-objective optimization strategies. In ICSE,
pages 849–852, 2006.

[17] S. Gueorguiev, M. Harman, and G. Antoniol. Software project
planning for robustness and completion time in the presence
of uncertainty using multi objective search based software
engineering. In GECCO, pages 1673–1680. ACM, 2009.

[18] M. Harman. The Current State and Future of Search Based
Software Engineering. In FOSE, pages 342–357, 2007.

[19] M. Harman and L. Tratt. Pareto optimal search based refactor-
ing at the design level. In Proc. of the 9th annual conference
on Genetic and evolutionary computation (GECCO 2007),
2007.

[20] M. Jorgensen and M. Shepperd. A Systematic Review of
Software Development Cost Estimation Studies. IEEE Trans.
Softw. Eng., 33(1):33–53, 2007.

[21] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and S. Carrière. The Architecture Tradeoff Analysis Method.
In ICECCS, pages 68–78, 1998.

[22] J. Li, F. O. Bjoernson, R. Conradi, and V. Kampenes. An
Empirical Study of Variations in COTS-based Software De-
velopment Processes in Norwegian IT Industry. Software
Metrics, IEEE International Symposium on, pages 72–83,
2004.

[23] A. Martens and H. Koziolek. Performance-oriented Design
Space Exploration. In Proceedings of the 13th Int. Workshop
on Component Oriented Programming (WCOP08), 2008.

[24] A. Mohamed, G. Ruhe, and A. Eberlein. Sensitivity analysis
in the process of COTS mismatch-handling. Requir. Eng.,
13(2):147–165, 2008.

[25] J. Musa. Operational profiles in software-reliability engineer-
ing. Software, IEEE, 10(2):14–32, Mar 1993.

[26] T. Neubauer and C. Stummer. Interactive Decision Support
for Multiobjective COTS Selection. pages 283b–283b, Jan.
2007.

[27] R. Roshandel, N. Medvidovic, and L. Golubchik. A Bayesian
Model for Predicting Reliability of Software Systems at the
Architectural Level. In QoSA, pages 108–126, 2007.

[28] M. O. Saliu and G. Ruhe. Bi-objective release planning for
evolving software systems. In ESEC/SIGSOFT FSE, pages
105–114. ACM, 2007.

[29] S. Tang, X. Peng, Y. Lau, W. Zhao, and Z. Jiang. An
Adaptive Software Architecture Model Based on Component-
Mismatches Detection and Elimination. In COMPSAC ’08:
Proceedings of the 2008 32nd Annual IEEE International
Computer Software and Applications Conference, pages 369–
372, 2008.

[30] K. Trivedi. Probability and Statistics with Reliability, Queue-
ing, and Computer Science Applications, 2nd Edition. Wiley-
Interscience, 2001.

[31] A. Vescan. Pareto Dominance-Based Approach for the
Component Selection Problem. Computer Modeling and
Simulation, UKSIM European Symposium on, pages 58–63,
2008.

[32] D. Yakimovich, J. Bieman, and V. Basili. Software architec-
ture classification for estimating the cost of COTS integration.
In ICSE ’99: Proceedings of the 21st international conference
on Software engineering, pages 296–302, 1999.

[33] Y. Zhang, M. Harman, and S. A. Mansouri. The multi-
objective next release problem. In GECCO, pages 1129–1137.
ACM, 2007.

