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DI, Università del Piemonte Orientale
Via T. Michel, 11. Alessandria, Italy�

beccuti, giuliana, raiteri � @mfn.unipmn.it

Serge Haddad
LSV, ENS Cachan, CNRS

61, avenue du Président Wilson. Cachan, France
haddad@lsv.ens-cachan.fr

Abstract

Non deterministic Repairable Fault Trees (NdRFT) are a
recently proposed modeling formalism for the study of opti-
mal repair strategies: they are based on the widely adopted
Fault Tree formalism, but in addition to the failure modes,
NdRFTs allow to define possible repair actions. In a previ-
ous paper the formalism has been introduced together with
an analysis method and a tool allowing to automatically de-
rive the best repair strategy to be applied in each state. The
analysis technique is based on the generation and solution
of a Markov Decision Process. In this paper we present an
extension, ParNdRFT, that allows to exploit the presence of
redundancy to reduce the complexity of the model and of
the analysis. It is based on the translation of the ParNdRFT
into a Markov Decision Well-Formed Net, i.e. a model spec-
ified by means of an High Level Petri Net formalism. The
translated model can be efficiently solved thanks to existing
algorithms that generate a reduced state space automati-
cally exploiting the model symmetries.

Keywords: Fault Trees, Optimal repair strategy, Markov
Decision Process, Symmetries, Well-Formed Nets

1 Introduction

The Fault Trees (FT) [15] are a well-known formalism
for the evaluation of dependability of complex systems.
They provide an intuitive representation of the system in
terms of its faults, modeling how the combinations of failure
events relative to the components of the system, can cause
the failure of the subsystems or of the whole system.

Recently an extension to FTs called Non deterministic
Repairable Fault Tree (NdRFT) has been proposed [3]; it is
oriented to the study of optimal repair strategies. NdRFT
models are based on the widely adopted Fault Tree formal-
ism, but in addition to the failure modes, NdRFTs allow to
define possible repair actions. Given the failure modes and
the possible repair actions in the system, the optimal repair

strategy can be determined, using the analysis method and
tool presented in [3, 4]. The analysis technique is based
on the generation and solution of a Markov Decision Pro-
cess (MDP) [12]. In this paper we present an extension to
NdRFT called Parametric NdRFT (ParNdRFT) which al-
lows to model in a compact way the redundancies in the
system, as well as the available repair actions. The goal is
the same as in the NdRFT formalism: computing the opti-
mal repair strategy. This means determining what it the set
of repair actions to activate in each state of the system in
order to minimize the system unavailability.

The advantage of ParNdRFT is not limited to the com-
pact modeling of the system: the presence of redundancy
expressed in parametric form is exploited in order to reduce
the complexity of the model analysis. Actually the Para-
metric NdRFT analysis is based on the translation of the
model into a Markov Decision Well-Formed Net (MDWN),
i.e. a model specified by means of an High Level Petri
Nets formalism. From the MDWN model a MDP charac-
terized by a reduced state space can be obtained. This is
achieved by means of efficient existing algorithms to gen-
erate and analyze the reduced state space automatically ex-
ploiting the model symmetries [5]. From such analysis the
best repair strategy is obtained. The paper is structured in
this way: Sec. 2 presents some related work about modeling
repair in FTs; Sec. 3 describes the Parametric NdRFT for-
malism, while in Sec. 4 we show how a ParNdRFT model
can be converted into a MDWN, and provide a sketch of the
proof of the translation correctness. An example applica-
tion is presented in Sec. 5. A comparison of the proposed
approach with respect to other possible approaches is pro-
vided in Sec. 6. Conclusions and perspectives of this work
are presented in Sec. 7.

2 Related work on Fault Trees with repair

The analysis of an FT model returns several dependabil-
ity measures such as the system reliability versus time, and
can be supported by several software tools. Some of them
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Figure 1. Example of Parametric NdRFT.

allow to model the repair of single components, by associ-
ating the repair probability with the basic events (BE). This
is the case for instance of Stars Studio and ASTRA [9].

Other tools allow to model more complicated failure and
repair modes for the components of the system, by means
of hierarchical modeling: the failure and the repair modes
of a component can be modeled by submodels conforming
to other formalisms and combined with the main FT model.
This is the case of HIMAP [10] and SHARPE [14]: HIMAP
allows to edit Continuous Time Markov Chain (CTMC)
submodels, while SHARPE can deal also with Generalized
Stochastic Petri Net (GSPN) [1].

The Repairable Fault Tree (RFT) formalism [8] allows to
model the repair of a subsystem according to a repair policy
specifying several aspects ruling the repair process. In RFT,
a new node called Repair Box (RB) is used to represent the
repair of a subsystem and to set the repair policy. An RFT
model requires the (partial) analysis of its state space, car-
ried out by conversion into a GSPN.

In the NdRFT formalism [3] the repair policy (or strat-
egy) is not predefined, but it is the result of the model anal-
ysis: given the specification in the model of several repair
options, the analysis of the NdRFT model returns the op-
timal repair strategy which indicates for each state of the
system which are the repair options to be activated in order
to minimize the global system failure probability. This is
done by defining the NdRFT semantics in terms of a MDP,
and then solving the optimization problem using the meth-
ods available for MDPs.

The formalism presented in this paper is the Parametric
NdRFT which extends NdRFT by integrating the paramet-
ric form inherited by the Parametric Fault Tree (PFT) [6]
formalism and used to represent in a compact way the sym-
metries in the system.

3 Parametric NdRFT formalism

In this section the Parametric NdRFT formalism is in-
troduced: it is very similar to the NdRFT but it allows to
parametrize models in the same way PFT allows to do so
for the FT; hence in case several copies of the same subtree
are present (at any level of the NdRFT hierarchy) only one
copy is explicitly defined in a parametric way: one index to-
gether with its range are introduced to express the fact that
several replicas of a given event/subtree exist. The repair
actions definition is also adapted to be parametric.

Definition 1 (ParNdRFT) A Parametric NdRFT is a 7-
tuple �������
	��	���	���	��	���	����������
where:�

is a set of finite and not empty sets called  "!$# ��� and de-
noted %'& 	�()�+*,	.-.-�-.	�/ ;�

is a set of typed parameters 021435%6& ;�
is the set of possibly parametric events with associated

the following attributes: #87 � 7,9 �;:<�
, = ��>@?A: #87 � 7B9 � ,��� # 	�C5D@�FEHG  ��IJ�B	�K 7 ?L���,M , K # ��C5D�	�� # ��C5DNEPO Q2	.*.R

,
�  �SEG.TU?VC5D 7 ?�	�?VC�> 7 ?�M , �����WEFX 7 T6YZ�\[ . Parametric events actu-

ally stand for a class of events, and the attributes associated
with an event class are identical for all events in the class.�

is the set of gates;
�^]��_��`

. A gate
T

has a type1 de-
noted

Ta-  "!$# �bEcG�dfehg2	jifk8M ;�
is the set of arcs, a subset of

�mln��o��pl��
. For 0 be-

longing to
�^oq�

, we denote 0arts G !vu Y 0 	 ! [E_�wM andrx0ys G !yu Y ! 	 0 [zE^�wM . � satisfies:
1. { TEt��	 u T r,u �S* and { �bEt��	 u r � u}| *
2. There is exactly one event, denoted ~ and called Top
Event, s.t. ~�r �_` ; all other events satisfy u � rBu}� *
3. The set of events can be partitioned into basic events (BE)� s G�� u r ���F`}M and internal events (IE)

� s G$� u r �
��N`UM
4. The (directed) graph induced by

�
is acyclic.�

is a set of resource types;
�����$�WE�X 7 TaY��\[ is a multi-

set on
�

defining the number of available resources of each
resource type. For each repairable event

�
,
�B- �����4:m����� �

.

Let us describe in more details the attributes associated
with the events (or event classes). If

�,- #87 � 7B9 ����` then
�

represents a single (failure) event; if instead
�B- #87 � 7B9 �
��_` ,

it denotes the set of parameters of event class
�

(the class
with its parameters as well as the generic event in the
class is denoted

�BY 06� 	�-.-�-.	 0J� [ , while
�}Y�� � 	�-.-�-@	�� � [ with� & E % & denotes one event instance in the class). Attribute�B- = ��>@?�:��B- #J7 � 7B9 � is the set of parameters declared in

�
;

each parameter can be declared in one and only one event
(
�_����������B- = ��>@?�]q����- = ��>@?A�P`

). If
�B- = ��>@?y���`

then
�

1Since the proposed optimization method is based on the state space,
other gate types could easily be considered, including dynamic ones: in
this paper only and/or gates are considered for the sake of space.
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is called replicator, meaning that several events in class
�

(differing only for the value of some parameter in
�B- = ��>@? )

are connected to the gates that have
�

as input. A well
defined ParNdRFT must satisfy some further constraints on
the parameters, meant to avoid redundant or inconsistent
failure event specification (the same defined for PFTs [6])
Boolean attribute

C5D@�
is related to the possibility of de-

tecting the corresponding failure (which is a prerequisite
to start a repair).

�B-�K # ��C5D represents the fault probability
of
�
. The attribute

��� # , indicating if
�

is repairable or
not, and if

�B- ��� # �  �$Ia� it also has a repair probability
attribute

�B- � # ��C5D and attribute
�B- �����

, defining how many re-
sources of each type are needed to perform the repair action.

IE that are observable have an associated repair strat-
egy attribute

�  �<E�G.TU?VC5D 7 ?�	�?VC�> 7 ?�M . If
�B-��  ����TU?VC5D 7 ?

then a repair rate attribute
� # ��C5D and a resource re-

quirement
�����

is also associated with
�
. The attribute C���� # instead defines the set of events whose repair is

triggered by event
�
: elements of  C���� # must satisfy that�$�4E+�B-  C���� # �����V- ��� # �  �$Ia� and there is a path from�

to
���

according to
�

; they may be parametric, and the
parameters associated with a given element

� �
appearing

in
�,-  C���� # must be a subset of

�B- #87 � 7,9 �w]����V- #87 � 7B9 � ,
moreover the syntax

���LY�(j	 %81 [ denotes u %81Bu events in class
���

and can be used when
���

is an event in the subtree rooted
in
�
, and has one parameter (the second parameter in the

example) of type %81 which is declared in
���

or in a node on
the path from

���
to
�

(hence all events
���LY�(j	 %21 [ are included

in the
�

subtree).

Let us consider the ParNdRFT submodel of Fig. 1. The
set of types is

���SG %�� 	 %6� 	 %a� M : in the figure each of them
comprise two elements, but this can change (this is exactly
where the parametric nature of the model becomes evident).
The set of parameters is defined as

����G�( 3U%�� 	�� 3U%a� 	�� 3%a� M : even if apparently the three types coincide, it is impor-
tant to keep them separated to express the fact that they can
vary independently. In Sec. 5 we perform a set of experi-
ments for different sizes of % � , % � and % � . In the model there
are nine parametric events (corresponding to nine event
classes) plus one Top Event; among them, three are replica-
tor events (where the three parameters are declared), namely� *

,
�b�

and
���

. Four out of six basic event classes are re-
pairable, two of them (namely � *,Y�(�[ and   *,YV(�[ ) are observ-
able and can trigger immediately a local repair action, more-
over intermediate event class

�4� Yx�}[
can trigger a global re-

pair action involving � � Y¡�}[ and   � Y¡�B[ (as expressed by the
string in curly brackets below node

�b�
). Finally the TE

can trigger a local repair involving the events � *,YV("[ ,   *,YV(�[ ,� � Y¡�}[ ,   � Y¡�}[¢	 { (�E %'� 	L��E %6� (this is expressed in the
picture by the notation

G � *,Y % � [¢	   *,Y % � [¢	 � � Y % � [¢	   � Y % � [jM
appearing next to the TE).

ParNdRFT unfolding. The simplest way of defining ParN-
dRFT semantics is to give the rules for unfolding any ParN-
dRFT model into an equivalent NdRFT. The unfolding pro-
cedure is simple, and consists in substituting each subtree
rooted in a replicator event with one copy for each pos-
sible element of the Cartesian product of the types of pa-
rameters in

�B- = ��>@? : in each replica, all parameters in
�B- = ��>@?

must be substituted in each parametric event of the subtree
with the values associated with that replica. The procedure
must start with the innermost subtrees rooted in a replicator
event, and proceed with the subtrees containing them until
the top event is reached. The unfolding procedure however
is not applied in practice because the main benefits of ParN-
dRFTs, from the point of view of efficient analysis, would
be lost. The unfolding of the example in Fig. 1 consists in
doubling each subtree

��£ 	j¤m�P*f	�-.-.-.	 �
instantiating their

parameters so that the AND gate in the final model has six
inputs (three pairs of similar subtrees). In the next section
we show how a ParNdRFT can be directly translated into
a Markov Decision Well-Formed Net (MDWN) and how
a MDP can be derived from the MDWN: such MDP can
be considerably smaller than the MDP corresponding to the
unfolded NdRFT. Despite the MDP reduction, no approx-
imations are introduced: this is due to the homogeneous
behavior of all the events in each event class, which induces
a symmetric structure in the underlying MDP that can be
exploited to lump equivalent states.

4 Translation of ParNdRFT into MDWNs

Markov Decision Well-Formed Nets. An MDWN is a
high level formalism introduced in [5] to specify Markov
Decision Processes (MDP). Its definition is based on Well-
Formed Nets, an high level Petri net formalism that com-
bines a powerful modeling language with the possibility
to implicitly express in the model the behavioral symme-
tries, which are reflected also at the level of the state space
and can be automatically exploited to reduce the state space
size, by means of an algorithm for the construction of the
so-called Symbolic Reachability Graph (SRG) [7].

The main features of MDWNs are the possibility to spec-
ify the general behavior as a composition of several compo-
nents, that may have similar behavior, and some of which
are controllable; moreover each MDP non deterministic or
probabilistic transition can be composed by a set of non
deterministic or probabilistic steps, each one involving a
subset of components. MDWNs allow to exploit the sym-
metries (due to the presence of similarly behaving compo-
nents) by deriving from the SRG a MDP of reduced size
w.r.t. the original one, on which the same results can be
computed more efficiently.

An MDWN model is composed of two parts, both spec-
ified using the WN formalism: the ¥+¦ �f§ subnet and the
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¥+¦y¨.© subnet (describing the non deterministic (ND) and
probabilistic (PR) behavior respectively); the two subnets
share the color classes definition and the set of places, while
transition sets are disjoint. A subset of the color classes may
be used to identify (sets of similarly behaving) system com-
ponents. In both subnets the transitions are partitioned into
“run” and “stop” subsets, and each transition has an associ-
ated set of components involved in its firing (possibly spec-
ified in a parametric way on the transition color). “Run”
transition firings represent intermediate steps in a ND/PR
transition at the MDP level, while “stop” transitions rep-
resent the final step in a ND/PR transition, for all compo-
nents involved in it. Transitions in ¥+¦ ¨.© have a “weight”
attribute, used to compute the probability of each firing se-
quence. An MDWN model behavior alternates between ND
transition sequences and PR transition sequences, initially
starting from a ND state. The PR sequences are determined
according to the ¥+¦t¨@© structure, and include exactly one
stop transition for each component; the ND sequences are
determined by the ¥+¦ �f§ structure, and include exactly one
stop transition for each controllable component plus a stop
“global” transition.

The generation of the (reduced) MDP corresponding to
a given MDWN consists of (1) a composition step, merging
the two sub-nets in a single net, (2) the generation of the
(S)RG of the composed net, (3) two reduction steps trans-
forming each PR and ND sequence of the (S)RG into a sin-
gle (reduced) MDP transition.
Translating a ParNdRFT into a MDWN. The translation
of a ParNdRFT into a MDWN has been defined by integrat-
ing the translation of a NdRFT into a MDPN [4] and the
translation of a PFT in a SWN [6]. The translation is de-
scribed here in an intuitive way through the introduction of
template submodels corresponding to the different elements
appearing in the ParNdRFT and composition rules to obtain
the whole MDWN model from the submodels.
Color classes and components. A preliminary step in
defining a MDWN is the color classes setup: each parameter
type % £ in the ParNdRFT corresponds to a basic color classª £

in the MDWN. Each place and transition in MDWN
models have a color domain: the template submodels de-
scribed in next sections correspond to the translation of each
(class)event in the ParNdRFT, hence the color domain of
the places representing the state of a given event class

�
can

be derived from the attribute
�B- #87 � 7,9 (Cartesian product

of the color classes corresponding to its parameter types).
The functions

� 06� 	.-�-.-.	 08� � appearing on the arcs can be
interpreted as parameter tuples: the meaning is that each
transition withdraw or generate ”colored” tokens (i.e. to-
kens carrying some information), and the color represents
the identity of a specific event within a given event class.

MDWN definition includes a set of components, and
among these a subset of controllable components. There

is one component for each event in the ParNdRFT. Con-
trollable components are all basic events that can undergo
a local repair and all global repair trigger events. Compo-
nents corresponding to parametric events can be identified
by composing the event class name and the a set of parame-
ter values (hence we can call them parametric components).
Probabilistic subnet. Fig. 2 shows how each basic event
class

�
can be translated in a ¥+¦^¨.© submodel accord-

ing to its
��� # attribute: each non repairable event class is

translated into subnet A while each repairable event class is
translated into subnet B. Observe that all the places in the
subnets are annotated with a color domain

ª � l«-.-.-6l ª �
derived from the definition of

�B- #87 � 7B9 � . Places
�  )¬ ,¯® ¥+¦�¬ and

� / = �$��°�� #J7 (�� ¬ model the state of each (ba-
sic) event in the class

�
. “Run” and “stop” transitions

have different icons, so that they can be easily recognized.
For instance ¥ C����h° ¬ is a run transition for component�}Y 0a� 	.-�-.-.	 08� [ , while ¥ C����2± ¬ is a stop transition for the
same component.

At each probabilistic step an
� # component can either

remain
� # (stop transition ¥ C��5� ¬ ) or go

 C�²³/
(sequence´ 7 (�?�° ¬ , ´ 7 ("?�± ¬ ). A

 C�²³/
component can either remain C�²³/

(stop transition
´ 7 ("?�± ¬ ) or start its repair (run transi-

tion
°�� #87 (�� , either followed by stop transition

ª C�/  °�� #6¬ ,
meaning that the repair has not completed in the current
time unit, or by the sequence µ / = °�� # ° ¬ , µ / = °�� # ± ¬ if the
repair completes). Observe that all these transitions have
an associated set of variables, corresponding to the set of
parameters of the events; this is reflected also in the tuple� 0 � 	�-.-.-.	 0 � � appearing on the arcs. The firing of these tran-
sitions (representing a state change of one event) requires
the instantiation of the parameters to a specific value within
their color class (i.e. within their ParNdRFT type). Place� ����(LTB/'� = ¬ is set by the ¥+¦ �,§ when a decision to repair a
given

�BYV� � 	.-.-�-.	�� � [ within class
�

is taken (represented by
the presence of a token of color

�V� � 	.-�-.-@	�� � � in the marking9 Y � ����(LTB/'� =}¬ [ of such place). Places ��¶ ° µ ± & represent
the resources, and they become available as the repair ends.
The

� # ��C5D and
K # ��C5D attributes associated with the events

are used to properly weight the transitions representing fail-
ure and end/continuation of repair actions.

The conversion rule for an AND or OR gate
T

and its
output event

�
is shown in Fig. 3. We emphasize that the

WN models in Fig. 3 are templates that must be instanti-
ated according to the set and type of input events of each
gate. Subnets C and E simply model the propagation of the
faults from the input events of the gate to its output event.
IE that are not observable or have local repair strategy are
translated into these simple subnets. Those with a global
repair strategy have an additional subnet (common to both
gate types) shown on the right: this subnet represents the
corresponding global repair process. Observe that the anno-
tations appearing on the arcs of the AND gates may differ
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Figure 2. Translation of the BEs ( ¥+¦y¨.© sub-
model).

depending whether the input parametric event
�5�

is a repli-
cator or not. If the input event is a replicator, then all the
occurrences of the parameters in

� � - = ��>@? must be substituted
by the synchronization function

± & which is a constant func-
tion which evaluates to the color class

ª & : this allows to
model the ”and” semantics of the gate taking into account
the set of subtrees represented by each replicator (thinking
in terms of the unfolding may help understanding).

Algorithm 1 is used to generate the ¥+¦^¨.© submodel:
it first instantiates an appropriate template submodel for
each event (and corresponding gate, for IE) according to its
type and attributes; the instantiation is performed by func-
tion ¥+¦ YV�$�B�$/  	  � 9·# ? 7B ��[ and requires to appropriately
rename the places and transitions and to assign proper color
domain and arc functions depending on the involved event
parameters; then it merges all submodels into a unique net
by means of method Compose() that performs a composi-
tion by superposition of places with equal label, moreover it
generates the color class definition for the whole net (which
coincides with the ParNdRFT parameters type definition).
Non deterministic subnet. The ¥+¦ �f§ subnet is built ac-
cording to the templates depicted in Fig. 4. The basic idea is
that the ¥+¦ �f§ submodel represents the decision whether a
repair action must be started for any down BE and for any
down IE with global repair strategy. Firing of stop transition

Algorithm 1: Algorithm generating ¥+¦^¨@©
Class WN ¸�¹ GenerateWN ¸�¹ (Class ParNdRFT º )
Input: º is a ParNdRFT model
Output: A WN ¸�¹ model
set WNet= » ;
set Events= insert events( º );
while Events ¼½ » do¬ =Events.extract();

if ( ¬�¾ ¿ ) À ½�Á ¬ ;
then switch e do

case ( ¬�¾�¿ Â�¿ Ã ) WNet.insert ÄÆÅ
ÇÈÄ ¬�É�Ê6Ë�Ë ;
case ( ¬�¾�¿ Ã ) WNet.insert ÄÆÅwÇÌÄ ¬�É�Í�Ë�Ë ;
case ( ¬�¾ ¿ÏÎ À$Ð Ñ�Ò ¨ ¬ ½ Ê ÇÔÓ )

if ( ¬ Ð Õ�Ö�× ½Ø�ÙjÚ × ¬8Û�¬ Ð ×�Ñ © ½wÚ Õ�Ü ÙjÚ ) then
WNet.insert ÄÆÅwÇÌÄ ¬�É�ÝÞË�Ë ;
else WNet.insert ÄÆÅwÇÌÄ ¬�É�Ý�ß Ó Ë�Ë ;

end
case ( ¬�¾ ¿ÏÎ À$Ð Ñ�Ò ¨ ¬ ½
à�á )

if ( ¬ Ð Õ�Ö�× ½Ø�ÙjÚ × ¬8Û�¬ Ð ×�Ñ © ½wÚ Õ�Ü ÙjÚ ) then
WNet.insert ÄÆÅwÇÌÄ ¬�É�âÞË�Ë ;
else WNet.insert ÄÆÅwÇÌÄ ¬�É�â�ß Ó Ë�Ë ;

end
end

end
WNet.Compose();
return WNet.extract();

¦ C � ����(LTB/ ¬ means that a no repair decision has been taken
for event

�
, while firing of stop transition � ����(LTB/ ¬ corre-

sponds to the opposite decision: observe that the second
decision can be taken only if the needed resources are avail-
able (input places �Ì¶ ° µ ± & ) and the BE is not involved
in some global repair (input place ¦ C  �ã /6�BC�?V�B� =U¬ ). Start of
a local repair action triggered by observable BEs is repre-
sented by subnet G. Start of local repair actions triggered by
observable internal events are represented by subnet L, start
of global repair actions are represented by subnet I. Subnet
H instead is needed for technical reasons: it is used to clear
the state of the IE which must be recomputed at the end of
each probabilistic step (after all fail/repair steps have been
taken for basic events). Notice that all these transitions are
parameterized as the corresponding event: each transition¦ C � ����(LTB/ ¬ or � �$��(LT}/ ¬ must be fired for all possible in-
stances of their parameters (appearing in the tuples labeling
the arcs).

Algorithm 2 generates the ¥+¦ �f§ submodel of the
MDWN. Similarly to Algorithm 1, it first instantiates the
appropriate template for each event that can trigger a repair
(these are the controllable components of the MDWN) plus
the template used to clear the IE status so that they can be
set again in the next probabilistic step, and a stop transition
(not shown in the figures) that concludes this global clear
process. Finally the subnets are composed by places super-
position.
An example of MDWN corresponding to the subtree rooted
in
� � in Fig. 1 is shown in Fig. 5. The ¥+¦t¨.© is obtained

by the instantiation of two templates
X

corresponding to the
BEs � * and   * and one template µ corresponding to the
OR gate of IE

� *
. Instead, the ¥+¦ �,§ is obtained by the

instantiation of two templates ä modeling the repair deci-
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AND gate: { �LK � 	�-.-�-@	�K � ��å�K & � 08& iff 08& Et�B- #J7 � 9<æ �B- = ��>@? otherwise
K & �F± &

Figure 3. Translation of the AND/OR gates and the corresponding output event ( ¥+¦t¨.© submodel).

Template I: { � 1 YZT � 	.-.-�-.	�T � [�Ey�B-  C���� #^3 K & � 0 & if
T & � 0 & otherwise

K & �N± &
Figure 4. Translation of the BEs, the AND/OR gates and the corresponding output event ( ¥+¦ �f§
submodel).

Figure 5. An example of MDWN considering only the subtree
� *BY�(�[

in Fig. 1.
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Algorithm 2: Algorithm generating ¥+¦ �f§
Class WN ç�è GenerateWN ç$è (Class ParNdRFT º )
Input: º is a ParNdRFT model
Output: A WN ç$è model
set WNet= » ;
set Events=insert events( º );
while Events ¼½ » do¬ =Events.extract();

switch e do
case ( ¬Þ¾³¿ Ã Î ÄZé ¬ Ð Õ�Ö�× Ë ) WNet.insert ÄZÅwÇÌÄ ¬�É�ê'ËVË ;
case ( ¬Þ¾³¿ Ã Î�¬ Ð Õ�Ö�× ) WNet.insert ÄÆÅ
ÇÈÄ ¬�É�ë�ËVË ;
case ( ¬Þ¾ ¿ÏÎ ÄÆé ¬ Ð Õ�ÖL× Ë ) WNet.insert ÄÆÅwÇÌÄ ¬�ÉLì�Ë�Ë ;
case ( ¬Þ¾ ¿ÏÎ�¬ Ð Õ�ÖL× )

if ( ¬ Ð Õ�ÖL× and ¬ Ð ×�Ñ © ½ À Ú Õ�Ö ÙjÚ ) then
WNet.insert ÄZÅwÇÌÄ ¬�É�íjË�Ë ;
else WNet.insert ÄZÅwÇÌÄ ¬�É�îhËVË ;

end
end

end
WNet.insert ÄÆÅwÇÌÄxÇ³ï îhîaÉ�ðBñ à�ò ëÞîhË�Ë ;
WNet.Compose();
return WNet.extract();

sions for � * and   * and one template ó used to clear
� *

.
The reward function. In order to analyze the MDWN
model the reward function to be optimized must be spec-
ified. One simple example of such function, suitable if the
objective is to have a low probability of finding the whole
system down is:

��õôb*
if 9 Y ®4� % ª ®bö  �ñJâ [Ì�÷*

oth-
erwise 0 associated with the model state.

This means that a negative reward (corresponding to a
penalty) is associated with each state where the TE failure
is true. All other states and all actions have reward of

Q
.

Hence, every time unit spent in a state with a TE failure
produces a penalty of -1. The optimization problem consists
in finding the strategy that maximizes the reward (i.e. that
minimizes the penalty).

More complex reward structures can be devised to take
into account the cost of repair actions, as well as the penal-
ties when the system is in a degraded state (some subsystem
down while the global fault tolerant system is still up, caus-
ing the system to work with degraded performance).
Correctness of translation. Let us discuss the correct-
ness of the proposed translation. In [4] it has been
proven that the MDP semantics of a NdRFT corresponds
to the MDP derived from the MDPN obtained by auto-
matic translation. A similar argument could be used to
prove the correctness of the translation proposed in this
paper, however a simpler argument can be used in this
case: in Sec. 3 the semantics of a ParNdRFT has been de-
fined in terms of its unfolding into a NdRFT (that we de-
note unfold ê'ñ (ParNdRFT)). A simple proof of correctness
consists in showing that unfold ÅwÇ Y transl(ParNdRFT)) =
transl(unfold ê'ñ (ParNdRFT)), where unfold ÅwÇ is the clas-
sical unfolding function for WNs. The correctness then fol-
lows directly from that of the NdRFT translation.

Let us give a sketch of proof for the above statement:
observe that the ParNdRFT unfolding corresponds to repli-

cating all event class nodes (and the associated gates, for
IE) in the model as many times as the possible instantia-
tions of their parameters. The arcs must then connect the
nodes with corresponding parameter values. In case of a
replicator event

�
, several instances of the same event class

may be input to the same gate (namely those which differ
only for the value of some parameter in

�B- = ��>@? ).
Considering the MDWN obtained from the ParNdRFT

translation, first of all observe that the net structure trans-
lating a BE is isomorphic to the corresponding net struc-
ture translating a single event in transl(NdRFT), the only
difference being the color annotations. The places corre-
sponding to the possible states of each event

�
have color

domain % � ln-.-�-2l % � where %6& is the type of parameter 0J&
of
�
; hence in the MDWN unfolding these places are repli-

cated as many times as the corresponding event class in the
ParNdRFT unfolding. Similarly for transitions: in fact, the
functions appearing on arcs are

KF�ø� 0'� 	.-.-�-@	 0J� � so that
the possible color instances of the transition are the same
as those of the connected places, moreover function

K
cor-

responds to an identity function so that the unfolded arcs
will connect places and transition replicas obtained with the
same instantiation of parameters. The same argument ap-
plies to the translation of the repair process submodels as
well as the resource assignment actions for BEs (the latter
are in the non deterministic part).

The translation of gates and of resource assignment
for IE is slightly more complex: first of all, the output
event of a gate may have different parameters than its in-
put events (it is a possibly empty subset of the union of
the parameters of all input events). Different sets of pa-
rameters can also occur in the submodels of resource as-
signment for IEs. The arc functions appearing on the
arcs of the gate subnets can be either simple projections� 06� 	�-.-.-.	 08� � , or they may include also a synchronization
function

� 06� 	.-�-.-�	�± & 	.-�-.-@	 08� � : the latter case happens only
in the translation of the AND gate (see Fig. 3.C). The syn-
chronization function is used in the translation of the AND
gate when it has input replicator events: in this case in
fact the presence of the synchronization causes the unfold-
ing to include several instances of the input place corre-
sponding to the replicator event, in input to the same AND
gate transition instance: this is consistent with several in-
stances of a given replicator event class being input to the
same gate in the unfold ê�ñ (ParNdRFT). Similar functions
appear in the global repair resource assignment submodel
when sets of events (denoted

�}Y 0'� 	.-.-�-.	 % & 	.-�-.-.	 08� [ ) appear
in attribute  C���� # . The use of such function in the case of
the OR gate is not necessary because in the OR translation
there is one separate transition for each input event of the
gate: the convergence of several event instances towards the
same gate is reflected in the different color domain of the
place corresponding to the output event of the gate (place
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®4� % ª ®bö  ù¬ in Fig. 3.E) that has fewer parameters than
the places corresponding to input replicator events (i.e. the
parameters introduced by the replicator are not present in
the color domain of

®4� % ª ®bö   ¬ and several instances
of
®4� % ª ®bö   ¬"ú or

¯® ¥+¦ ¬�û differing only in the value
of the parameters not shared with

®4� % ª ®bö   ¬ are con-
nected through a transition to the latter place.). This com-
pletes the proof sketch.

Let us remark that the ParNdRFT analysis method pro-
posed in this paper does not apply the unfolding of the
MDWN, but rather the MDWN properties are exploited to
build a lumped

° ä (the
±)° ä ) and, as a consequence, a

smaller (lumped) MDP. The equivalence (in terms of com-
puted optimal strategy) between the lumped MDP generated
from the SRG of the MDWN and the MDP of the MDPN
obtained by unfolding the MDWN has been proved in [5].

5 An example of application

Fig. 1 shows an example of Parametric NdRFT which
extends the NdRFT model presented in [3] by maintaining
the graph structure and introducing parameters. The model
in [3] represented a system composed by three subsystems
corresponding to the events

� *
,
�4�

,
���

, while the paramet-
ric version represents six subsystems, grouped in the repli-
cator events

� *,Y�(�[
,
�b� Y¡�}[

,
�b� Y��2[

(surrounded by a dashed
rectangle), each representing two subsystems sharing the
same repair options. According to the gates in the model,
all the subsystems include two basic components (A and P)
and fail if at least one of the components fails. The system
fails ( %Èµ ) if all the subsystems fail. The failure ( ü ) and
repair ( ý ) probability of each BE are shown in Fig. 1.

The following repair processes can be activated in the
Parametric NdRFT in Fig. 1: 1) a global repair process
in case of failure of subsystem

�b� Yx�}[
involving compo-

nents � � Yx�}[ and   � Y¡�B[ ; 2) a local repair process in case of
the system failure ( %Èµ ) involving the components � *,YV(�[ ,  *,Y�(�[ , � � Yx�}[ and   � Y¡�}[ , { ()E %�� 	��
E %a� .

In case of global repair, one repair resource is used to
repair the subsystem; in case of local repair, one resource
has to be dedicated to the repair of each BE. In our case
example, two repair resources are available (Fig. 1), so that
only two repair processes (one global and one local repair
or two local repairs) can be performed in parallel.

We will discuss some experiments performed on this ex-
ample. In particular we will discuss the state space explo-
sion problem showing how the SRG can mitigate it; more-
over we will show how the repair strategy may change in
different situations.

Tab. 1 shows some experiments and allows to compare
the complexity of the parametric model (SRG) versus the
unfolded one (RG). The first column shows the model size
(function of u % � u 	 u % � u and u % � u ), the second, the third, the

þ ÿ û þ RG MDP Ã�� Time SRG MDP � Ã�� Time

1,2,3 States States RG+MDP States States RG+MDP

Same repair policy of Fig. 1
1,1,1 3,1E+3 389 � 1s 3,1E+3 389 � 1s
2,1,1 3,5E+4 937 12s 1,5E+4 579 � 1s
2,2,1 4,5E+5 7.754 32m 2,2E+5 3.143 119s
2,2,2 2,9E+6 32.558 236m 7,8E+5 16.222 23m
2,2,3 8,3E+7 — — 1E+7 52.271 13h

Without the repair processes triggered by TE
2,2,1 3,8E+5 483 30m 1,9E+5 161 816s
2,2,2 1,7E+6 2.567 2h 6,5E+5 341 16m
2,2,3 5,9E+7 — — 7,4E+6 401 10h

Without global repair processes triggered by ï �
2,2,1 2,5E+5 633 16m 1,2E+5 211 678s
2,2,2 7,5E+5 3.005 1h 2,8E+5 392 16m
2,2,3 2,1E+7 — — 2,6E+6 575 4h
2,3,2 1,6E+8 — — 1,2E+7 1.167 7h

Table 1. Experimental results

fourth are related to the RG approach, while the others
to the SRG one. In particular the second column shows
the RG size (number of states), the third column the MDP
size and the fourth one the global computation time (RG +
MDP). The fifth, sixth and seventh columns show the SRG
and MDP sizes, and the global computation time. The re-
sults were computed on an INTEL Centrino DUO 2.7, 2Gb
RAM.

These results show that state space grows very fast when
redundancy is increased, so that the model becomes quickly
intractable. Moreover, the state space growth depends on
the repair policies applied in the model as shown in Tab. 1.
For instance if we remove the global repair process trig-
gered by

�b�
we observe that the state space size decreases

sensibly, allowing to solve the case
� 	 � 	 �

.
It is possible to see that the parametric model needs less

memory and time w.r.t the unfolded one. For instance, for� 	 � 	 �
the memory reduction factor is

� 	�� �
, and the time

reduction factor is �
*�Q

, while for
� 	 � 	 �

and
� 	 � 	 �

the RG
cannot be computed (size inferred from SRG).

For this model, we can compute the average reward and
the optimal strategy of the underlying MDP at infinite hori-
zon. Observe that defining the optimal strategy for this
model is not trivial: for instance when all the basic events
are down then the optimal strategy suggests us to repair   * &
with a local repair action, and � � 1 	   � 1 with a global repair
action. This is justified by the fact that the global repair
action of � � 1 	   � 1 needs only one resource. Instead when� * � 	   * � 	   � � and   � � are down, it suggests to repair   * &
and   � 1 with a local repair action. The choice to repair
locally   � 1 is justified by the fact that in this case the prob-
ability to repair the component (

*�ô   � 1 - � # ��C5D ) in one time
unit is greater than that associated with the global repair ac-
tion (

*Ôô �b� 1 - � # ��C5D ).
We have computed the %Èµ probability in steady state,

solving the DTMC obtained from the MDP fixing the ac-
tions according to the optimal strategy. For instance the%Èµ probability for cases (1,1,1), (1,2,1) and (2,2,2) are
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Qh- Qh*	�h*�
� �
,
Qh- QfQ����� � �

and
Qh- QfQ,Q
�� ��

, respectively.

6 Comparing several approaches about Fault
Trees with repair

We discuss here the main differences among the for-
malisms cited in Sec. 2 and the ParNdRFT.

Several software tools, such as Stars Studio and ASTRA
[9], extend the FT formalism by allowing to model the re-
pair of single components (BEs). Usually the user can as-
sociate with a BE, besides the failure probability, also the
repair probability of the corresponding component in some
form (e.g. repair time or rate). So, the behaviour of the com-
ponent can be modeled with a Markov chain (MC) com-
posed by two states: working and failed.

In SHARPE [14] the probability of a BE failure can be set
equal to some measure computed on another kind of model
designed by the user, for instance a CTMC or a GSPN. In
this way, the failure and repair mode of a component may
be more complex than a simple transition from the work-
ing state to the failure state and vice-versa. The HIMAP
tool [10] allows to deal with FTs with repair, according to
two approaches [2]: 1) the modeler can design a FT model
and the tool automatically converts it into the equivalent
MC; then, the modeler can edit the MC in order to represent
and analyze the presence of repair. 2) the modeler can de-
sign a FT model where some BEs are declared as repairable.
The tool allows to convert the FT modules [2] including the
repair in MC, and to analyze them in this form.

All the approaches described so far consider the repair
limited to single components. The RFT formalism [8] in-
stead, allows to model the repair of subsystems. The re-
pair of a subsystem is a more complex process than the re-
pair of a single component, so in RFT, the repair is char-
acterized by several parameters collected in a repair pol-
icy. They can be the event triggering the repair process,
the mean time to detect the failure of the subsystem, the set
of repairable components in the subsystem, the mean time
to repair a single component, the number of repair facili-
ties, the order of repair of the components, etc. The repair
of a subsystem establishes several dependencies among the
events in the RFT. This determines the need to analyze the
model by generating its state space. The state space based
analysis is typically more expensive in computational terms
than the combinatorial analysis used for standards FTs, and
usually performed by conversion into Binary Decision Dia-
gram (BDD) [13]. According to the approach proposed in
[2], the state space based analysis (performed by conversion
into GSPN) can be limited to the parts of the RFT (modules)
that contain dependencies. The rest of the model has to be
solved resorting to the combinatorial analysis.

In the RFT formalism, the repair policy is not the re-
sult of the model analysis: it is pre-defined by the modeler

and is associated with the RB node before that the model
is analyzed. In the NdRFT formalism [3] instead, the re-
pair policy (or strategy) is the result of the model analysis.
The NdRFT formalism allows to express several possible
start repair options based on: 1) the concept of “observ-
ability” of events (repair actions can only be triggered by
observable failures), 2) the notion of local versus global re-
pair action, 3) the notion of repair supervisor component,
in case of global repair, 4) the notion of resource require-
ments for each type of repair action. Very few restrictions
are imposed on the scope of repair actions (so that the repair
of each basic component can start based on observations
made on different failure events). Given this information,
the analysis of the NdRFT models returns the optimal re-
pair strategy. This is done by generating a MDP from the
NdRFT, through an intermediate translation of the NdRFT
model into a Markov Decision Petri Net (MDPN) [5]: this
allows to reuse the efficient algorithms devised to derive an
MDP from an MDPN.

The ParNdRFT can be useful when the system has a
high level of redundancy of the critical components or sub-
systems: the parts of the model characterized by the same
structure can be folded to a single parametric subtree. In
this way, only one representative of the several replicas is
present, while the identity of each replica is maintained
through the values that the parameters can assume. As
shown in Sec. 5 this has a relevant impact on the complex-
ity of the analysis since symmetries can reduce dramatically
the state space size and then the MDP derived from it.

The possibility of decomposing the analysis of a
(Par)NdRFT by exploiting modules have not yet been pur-
sued. Actually the possibility to specify several repair op-
tions and in particular to share repair resources among dif-
ferent repair actions, introduces strong dependencies among
the events that cause state changes in the model. There-
fore its not so frequent that independent subtrees (modules)
are present in the model. Anyway a subtree sharing no
events with other subtrees can be a module in a (Paramet-
ric) NdRFT model, in (at least) two particular situations:
1) the subtree contains no repairable components; 2) the
subtree includes a global repair process and no other re-
pair options. In these cases, such modules can be solved in
isolation with the proper technique: combinatorial or state
space analysis respectively. Then, they can be replaced by
a BE with a properly computed failure and repair proba-
bility: the MDP can then be generated from the simplified
(Par)NdRFT model.

7 Conclusion and future work

We have presented an extension to FT that allows to
model failure modes of complex systems as well as their
repair processes in parametric form. With respect to other
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existing approaches, this formalism allows to consider re-
pair of whole subsystems rather than repair of BE, with a
variety of repair start options and taking into account repair
resources requirements and resource limitations. Moreover
it allows to face repair strategy optimization problems rather
than evaluating a strategy provided by the modeler. This is
done by defining the ParNdRFT semantics in terms of an
MDWN and then deriving an MDP from the SRG of the
MDWN and by using the techniques available for MDPs.

The originality of this formalism with respect to the
NdRFT is that it allows to exploit the presence of redun-
dancy to reduce the complexity of the model and of the
analysis. It is based on the translation of the parametric
NdRFT into a MDWN, so that SRG technique can be used
to produce a reduced MDP w.r.t. the original one, on which
the analysis may be performed more efficiently.

A foreseeable future work is extending the ParNdRFT,
so that the modeler can directly define more complex re-
ward functions, for instance considering the cost of repair
actions, or the penalties due to the fact that the system is in
a degraded state (the system is up, but some subsystem is
down, e.g. corresponding to a system with degraded per-
formance): this requires to extend the formalism to specify
the function to be optimized, and the translation to derive
the corresponding MDP reward function. Another possi-
ble extension of ParNdRFT could be to consider dynamic
gates [11], which allow to express functional and temporal
dependencies among component failures, as well as repair
resources preemption.
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