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Abstract. Context-awareness is becoming a first class attribute of software sys-
tems. In fact, applications for mobile devices need to be aware of their context
in order to adapt their structure and behavior and offer the best quality of service
even in case the (software and hardware) resources are limited. Although perfor-
mance is a key non-functional property for such applications, existing approaches
for performance modeling and analysis fail to capture the characteristics related
to the context, thus resulting not suited for this domain.

In this paper we introduce a framework for modeling and analyzing the per-
formance of context-aware mobile software systems. The framework allows to
model: the software architecture, the context management, the adaptable behav-
iors and the performance parameters. Such models can then be transformed into
performance models for analysis purposes. We tailor an integrated environment
for modeling these elements in UML, and we show how to use it for performance
analysis purposes. The modeling environment description and the performance
analysis are driven by an example in the eHealth domain.

1 Introduction

The rapid evolution of portable devices and their increasing pervasiveness in everyday
life have motivated, in the last few years, a growing interest for methodologies, tech-
niques and tools that allow to effectively develop and analyze software systems running
on such devices.

The main characteristics of portable devices are: mobility and limitation of hard-
ware resources. Both features obviously claim for specific requirements of the deployed
software systems that have to be taken into account along the whole software lifecycle.

Mobility can either physical or logical [18]. Physical mobility regards the transfers
of a portable device among a certain number of physical locations. Logical mobility
takes into account the re-deployment actions that certain software components can be
subject to.

The limitation of hardware resources has brought to develop specific releases of
software products for portable devices that require limited amounts of resources. How-
ever, some resources not only are limited, but their available amounts can change during
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the device usage. Hence, more recently this limitation has been tackled by providing to
software the ability of adapting to changes in the environment.

Mobility and context-awareness (and, as a consequence, adaptation) obviously have
a large impact on the performance of software systems. Their bad effects on perfor-
mance are today passively accepted as unavoidable fees to pay in the domain of ad-
vanced portable systems. As opposite, if opportunely managed, they can become pow-
erful instruments in the hands of software developers to maintain an acceptable level of
user-perceived performance even in presence of changes and degradations in the sur-
rounding environment [16].

Goal of this paper is to introduce a framework to model and analyze performance
of context-aware mobile software systems. The framework is aimed at producing UML
models that embed, besides mobility and context-awareness facets, the parameters that
allow an automated model-based performance analysis of the system. The elements that
build up a context-aware mobile software system model are: the software architecture,
the context management, the adaptable behaviors and the performance parameters.

Within this framework different types of mobility and context-awareness can be
modeled and, if needed, combined. The rationale behind an uniform modeling of such
aspects is that the runtime behavior of a mobile/adaptable software system can be driven
both by a mobility event and a change in its computational environment that lead to
changes in the software itself, namely adaptation actions. However, besides the specific
characteristics of mobility and context-awareness, the interdependencies between them
can be captured, and the cross-effects on the system performance can be taken into
account. Thus certain types of analysis that were not feasible with specific models (for
mobility or context-awareness) can be carried out in our integrated framework. The
framework is based on an existing UML tool (i.e. MagicDraw) and on existing UML
profiles, such as the UML profile for Modeling and Analyzing Real-Time Embedded
Systems (MARTE) [17].

The paper is organized as follows: Section 2 introduces some related work and
places our contribution with respect to the existing literature, in Section 3 we present
our framework under the guideline of a reference example in the eHealth domain, in
Section 4 we show how different types of awareness can be merged together into an
unique model, Section 5 shows the results of performance analysis experiments and
highlights the potential of our approach, and finally in Section 6 we conclude the paper
and discuss possible future work.

2 Related work

Several approaches have been introduced in the last few years to manage mobility and
adaptation at the middleware level. Among these, very relevant work has been done
within the framework of the MUSIC project [13]. The MUSIC middleware monitors
the context and the resources to catch their changes and adapts the application to fulfill
the users’ QoS requirements. The approach uses QoS predictors and utility functions
to support the adaptation process. The adaptation is based on the concept of service
plan [15], i.e. a platform-independent specification containing information on service
configurations, its dependencies on the environment and its QoS.



All the MUSIC contributions can be used at run time given that the application
has been developed to be context-aware and QoS validated. As assessed in [15], the
information the MUSIC middleware needs is specified in the service plan, but such
information is collected at the design time. As opposite to MUSIC project, we provide
a support to model and analyze performance properties of such systems before their
implementation and deployment. For example, with our framework it would be possible
to automatically generate the (MUSIC) service plan and provide the QoS models that
work as predictors in the MUSIC adaptation process.

Another interesting project is DiVA [2], which aims at providing an integrated
framework for managing dynamic variability in adaptive systems. DiVA exploits both
Model-Driven and Aspect-Oriented technologies to define an architectural model (in-
cluding base, variant and adaptation models) at design time. The composition and vali-
dation at runtime of alternative models allow: (i) the choice of the system configuration
that best adapts to the changed execution context, and (ii) the deployment and execu-
tion of the chosen configuration supported by a reflective middleware. However, such
approach does not provide any support for non-functional analysis.

Grassi et al. in [8] have proposed a modeling framework for QoS-aware self-adaptive
software applications that present several similarities with our framework. Such frame-
work, based on the definition of an intermediate pivot language (i.e. D-KLAPER), is
aimed at providing instruments to transform software models into non-functional mod-
els and analyze QoS characteristics while changes in the application and/or its environ-
ment may occur.

Our work improves the approach in [8] for several aspects: (i) context-awareness
and mobility are based in our approach on a set of attributes whose evolution is mod-
eled through Statecharts, whereas in [8] a set of triggers has to be specified in isolation;
(i) the previous difference allows us to introduce dependencies among events that can-
not apparently modeled with D-KLAPER; (iii) we have implemented our approach in
UML, so to prove that such language has the potential to represent triggers and (simple)
adaptation mechanisms, whereas this part of D-KLAPER still does not find any corre-
spondence in UML. However, on the other side, the work in [8] also presents some
advantages, such as: (i) to explicit represent adaptation actions, (ii) to take into account
the non-functional costs of such actions, (iii) to generate a Markov Reward Model that
allows to study non-functional properties even in non steady states of the system.

Finally, our idea of managing all context- and mobility-related aspects with state-
charts is very close to the concept of modes. Modes has been proposed in [11] to extend
the Darwin ADL for modeling Service Oriented Computing systems. Modes are also
language primitives in the Architecture& Analysis Description Language (AADL) [1]
for modeling Real-Time&Embedded Systems. In both cases they can be used to model
the structural evolution of software architecture at runtime. Besides components, AADL
allows the modal specification of all its modeling elements like system, connectors and
properties. Thus, our logical mobility and hardware managers can be modeled as AADL
component’s modes whereas the overall context manager as system’s modes. In AADL,
it is also possible to model the physical mobility by means of system’s modes. However,
in this case, it can’t be associated to a system user as we do associating the manager
to UML Actors. Therefore, differently to AADL, our UML-based modeling approach



can be (i) ’sized” for different definitions of context and (ii) used as a general "modal-
based” modeling approach for software system of multiple domain.

3 Modeling Performance-annotated Context-aware Software
Systems

In this section we describe our approach for designing UML models of context-aware
software systems that embed performance annotations. The description is driven by
a reference example in the eHealth domain. In [4] an extended description of our ap-
proach has been reported, where more technical details are provided and a general scope
of the approach is illustrated.

The envisaged eHealth service supports the doctor’s everyday activities, such as the
retrieval of mixed media information on his patients that combines text with or without
different kinds of images referring to their personal data, their medical histories and
patient-related diseases. The results can be displayed on the doctor’s handheld device.

The UML model we devise is organized in three views:

The Service View (SV) represents the services provided by the software system as
perceived and used by external actors (Use Case Diagram, UCD) along with their be-
havioral specifications (Sequence Diagram, SD). A Physical Mobility Manager (Stat-
echart, SC) is assigned to each nomadic user that exploits the system services while
moving with his mobile device [9][6].

The Component View (CV) represents a software architecture (Component Dia-
gram, CD) integrated with mobility annotations that allow to distinguish logically mo-
bile from fixed software artifacts. A Logical Mobility Manager is associated to each
component whose implementation is (even partially) mobile [9] .

The Deployment View (DV) represents: (i) the current/allowed allocation of soft-
ware artifacts on execution environments (e.g. handheld devices) that can physically
move across different places (Dynamic Deployment Diagram, dynDD), and (ii) several
detailed hardware device specifications (Hardware Deployment Diagram, hwDD). A
Hardware Configuration Manager is associated to each resource whose state (that may
represent its current amount) may vary at runtime.

To enable model-based performance analysis the UML model has to be annotated
with additional information coming from several profiles. We have adopted the UML
Profile for Modeling and Analysis of Real-Time Embedded Systems (MARTE) [17]
and the UML Profile for Mobile Systems [9]. In addition, we have defined a Context
Modeling profile to model the managers that handle the different types of awareness.
The driving criterion in our profiling task has been to re-use existing profiles wherever
possible!.

! Hereafter we denote with typewritten words model variables whereas with the irali-
cized ones the stereotypes of profiles. Note, however, that the UML diagrams have been
suitably tailored to fit the page limitation and to preserve their readability, whereas a
machine-readable complete UML model of our eHelath example can be downloaded at
http://www.di.univagq.it/cortelle/docs/eHealthSystemModelASE.rar.
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Fig. 1. The Dynamic Deployment Diagram.

3.1 Modeling the Software Architecture

The retrieval of patient related information (that hereafter we refer as RequestPatientIn-
foPages) is supposed to be the most frequently invoked service (basing on the user
profile). In our modeling approach, each service is provided by a component-based sys-
tem whose architectural description is given by a Component Diagram (CD). The CD
identifies the software components, their interconnections and the executable artifacts
implementing them. Moreover, it specifies which component is mobile and the perfor-
mance parameters needed for the analysis.

In Figure 1 the dynamic DD of the application is shown. It is inspired by the diagram
introduced in [9], as it basically contains two types of information: (i) the allocation of
the software artifacts (SchedulableResources) on the execution environments (GaEx-
ecHost) through deployment relationships (CurrentDeployment, AllowedDeployment)
that go from the Software Artifact level to the Hosts level, and (ii) the positioning of
the execution hosts (e.g. PDA) on different physical locations using associations (Cur-
rentLocation, AllowedLocation) that go from the Hosts level to the Physical Locations
level. The dynamic nature of dynDD derives from the need to change the current and
allowed relationships between levels whenever logical and/or physical mobility events
take place.

Looking at Figure 1 we deduce that the RequestPatientInfoPages service is avail-
able if the user PDA is able to connect to a WAN network (hwMedia). Different Places
can provide different types of network connections (i.e. typed Ports of Places), but
some of them might not be exploitable by the service (such as the white-colored port
802.11n:LAN at Doctor’s Home) due to particular design choices and/or hardware lim-
itations.



3.2 Modeling the Context-Awareness

In this section we model the context-awareness of the eHealth application, whereas in
Section 3.3 we describe how this awareness can influence the service behavior. Each
type of awareness is handled by a manager modeled as an UML Statechart.

Physical Location-Awareness -

The modeling of the Physical Location Awareness takes inspiration from previous
works [6][9]. We define a Physical Mobility Manager for each nomadic user (i.e. the
doctor in our case).

An UML Statechart is defined for each manager, where a state represents the current
physical location and the resources in the surroundings (together referred as physical
configuration, PhyConfig) at the time when users demand for services. The transitions
are triggered either by physical moves of the nomadic users or by changes in physi-
cal resources in the surroundings. Figure 2(a) shows the doctor mobility pattern (i.e.
the one of his PDA) where the physical transfer from his home to the patient’s one is
highlighted along with the probabilities of the moves?). Hence each PhyConfig refers
to some platform device (in this case the PDA), and to the deployment diagram that
embeds it. A PhyConfig state determines the ends of the Current- and AllowedNode-
Locations relationships among mobile execution hosts and places on dynDD (Figure
1.

Logical Location-Awareness -

Logical mobility is informally defined as the capability to dynamically change the
bindings between code fragments and the location where they are executed [7]. We
adopt the solution proposed in [9] that is based on an UML Statechart called Logical
Mobility Manager. In a Logical Mobility Manager a state corresponds to the current al-
location (CurrentDeployment) of the software components (MobileCode) to the proper
execution platforms (GaExecHost in Figure 1). State transitions represent the possi-
ble re-deployments of mobile software artifacts through the communication channels
(HwMedia in Figure 1) to other platform devices (AllowedDeployment).

For example, when the client artifact (i.e. client.exe in Figure 1) actually runs on the
PDA, it can migrate back and forth to the application host due to some design reason
(e.g. performing heavy tasks on the server side when resources on the PDA are scarce).
Hardware Platform Awareness - The third dimension of the context-awareness, as
defined in this paper, takes into account the detailed hardware specification of the ex-
ecution environment. We illustrate in Figure 2 the Hardware Configuration Managers
for hardware resources whose internal configuration HwConfig can influence the service
behavior (see [4] for a detail of these resources).

Figure 2(b) illustrates the CPU, BATTERY and DISPLAY managers as separate
UML Statecharts that model the states and transitions of corresponding hardware com-
ponents. Each state specifies a set of nfpConstraints (based on variables defined on the
configured hardware component) [17] to be held in the current configuration HwConfig.

In addition, a remote firing transition (i.e. BATTERY2LowPowerDowngrade) is il-
lustrated to highlight how the remaining BATTERY capacity (currCapacity) can

2 For each state the probabilities of the outgoing transitions at most sum to 1, where the gap to
1 implicitly corresponds to the probability of the self-transition.



influence the configuration of the CPU by firing a remote transition that limits its clock
frequency (currFrequency).
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Fig. 2. Physical and Hardware Configuration Managers.

3.3 Modeling the Service Behaviors

The eHealth modeling is completed by the specification of service’s behaviors.

The left side of Figure 3 shows an UML Sequence Diagram associated to the Re-
questPatientInfoPages service. When the doctor, once logged in, invokes the distributed
service, the server-side components are in charge of retrieving data from a local (i.e.
connected by LAN) database and, if suited, from a remote (i.e. connected by WAN) im-
age server for patients’ x-rays or disease-related images. Finally the result is displayed
on the client.

The service behavior can be determined by the current context conditions defined
by the values of the managers’ model variables. Figure 3 represents indeed an Interac-
tion Overview Diagram (IOD) that models the behavior alternatives and the conditions
that determine the current behavior, as expressed at the topmost branching point of the
figure. Hence, the same service can have multiple implemented behaviors whose acti-
vation is driven by the logics expressed within the managers.

Besides the StandardBehavior described above, the right side of Figure 3 reports
a box for a ResourceConstrained behavior that will be executed in case of scarce re-
sources and that excludes the interactions with the image server (i.e. the white lifeline
and the bold labeled messages in Figure 3)3.

3 For sake of readability, in Section 5 we simplify the conditions for the activation of Resource-
Constrained behavior by basing only on the display characteristics.
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Fig. 3. The context-aware RequestPatientInfoPages service behavior.

3.4 Adding Performance Annotations

The eHealth model described so far also contains additional information related to per-
formance. Such information is necessary to obtain performance models through au-
tomated model-to-model transformations [5]. In particular, the previously illustrated
diagrams include:

— The workload (GaWorkloadEvent) for each service (Figure 3).

— The resource demand vector (GaAcgStep) that represents the amount of resources
that an operational step needs to be completed (Figure 3); in particular, a resource
demand vector provides values (i.e.resUnits tag of GaAcqStep *) for the ordered list
(acqRes) of available logical resources (i.e. Instr, DbAx, and Msg ResourceUsage
in Figure 3) necessary to execute the step.

— The multiplicity, service time and scheduling policy of each hardware resource
such as CPUs, DISKs and NETWORKS (e.g. wanBandwidth in Figure 1).

Resource demand vectors represent the platform-independent annotations related to
performance, in that they are abstract quantifications of resource consumption. In order
to associate these annotations to platform specifications and build a solvable perfor-
mance model (following the approach in [19]), the characteristics of platform devices
have to be also specified (see [4]).

4 We assume that the resource units are implicitly released at the end of each step.



In a context-aware domain the platform device characteristics can change depend-
ing on the context. In our case, for example, the available network connections can
have different non functional properties that affect the quality of the service provision.
In particular, the RequestPatientInfoPages performance can be affected by the network
bandwidth wanBandwidth (Figure 1) whose value is bound to the CurrentNodeLo-
cation association and varies when the doctor moves across the other allowed physical
locations (i.e. AllowedNodeLocation).

4 An unique model for mobility and context-awareness

On the basis of the modeling approach introduced above, all considered awareness
(in this paper the physical location-, the logical location- and the hardware platform-
awareness) must be properly combined. Each of them can be defined in isolation or,
through remote firing, can affect the other ones. For sake of performance analysis they
can be considered together or in isolation, depending on the facets of interest of the
software system. For example, one can investigate only the performance degradation
due to an extremely high physical mobility of users without considering at all the states
of resources on portable devices.

Therefore the types of statecharts that model the evolution of context dimensions,
as the ones described in Section 3, can be lumped when necessary for analysis purposes
in one statechart that models the runtime evolution of a mobile context-aware software
system.

Each state of such statechart (that we call superstate) represents a possible context,
and it is obtained from the combination of a certain number of states (in this paper three
states), one for each statechart modeling a context dimension evolution (in this paper
physical mobility, logical mobility, hardware platform evolution). Obviously not all the
combinations are allowed, for example a certain configuration of hardware devices can-
not allow a certain deployment of software components to devices. Therefore, in order
to build a consistent unique model, only superstates that are feasible combinations of
states have to be considered.

Once this set of superstates has been defined, a list of provided services and their
corresponding behaviors have to be associated to each state. In fact, if multiple behav-
iors for some services are available, then the behavior to be adopted must be specified in
each superstate where the service can be provided. We remark that this type of associa-
tion does not need human processing, as it can be automated by parsing an Interaction
Overview Diagram (see Figure 3). The latter, in fact, represents the behavior alternatives
guarded by predicates over model variables. A superstate is uniquely characterized by
the values assumed from model variables. Hence, the model variable values that deter-
mine a certain superstate drives the choice towards the appropriate behavior alternative
among the ones modeled in the Interaction Overview Diagram.

Transitions have to be defined in this unifying statechart. Being each superstate ob-
tained by lumping a certain number of states of respective statecharts, the transitions
outgoing these latter states have to be opportunely combined (along with their probabil-
ities) to build up transitions outgoing the superstate. The Harel’s theory on statecharts



[10], along with the Hermanns et al.’s work on stochastic statecharts [14], provide suf-
ficient results to automate this step in most cases.

In Figure 4 we report the unifying statechart obtained by lumping some of the
awareness managers introduced in Section 3.2. In particular, we have considered the
doctor’s Physical Mobility Manager and the PDA Display Hardware Configuration
Manager (Figure 2). This choice allows, on one end to keep the example as simple
as possible, and on the other end to keep into account two different types of awareness,
as we will show in Section 5.

The Ilumping process of
these two managers brings to
an unifying statechart where all
eight potential superstates are
feasible (i.e. the cartesian prod-
uct of the manager state spaces).
In Figure 4 each superstate is a
different context CtxConfig, and
is labeled with two letters: the
first one recalls the state of the
Physical Mobility Manager it
comes from (i.e. H for Home, O
for OpenAir, S for Surgery and
P for PatientHome), the second
one recalls the behavior adopted
in the state as a consequence of the Display state (i.e. S means StandardBehavior, that is
adopted when the display is in Color state, whereas R means ResourceConstrainedBe-
havior, adopted when the display is in B/W). For sake of illustration the SR superstate
has been completely represented, along with example probabilities on its outgoing tran-
sitions.

{hwConfigs = B/W,
phyConfig = Surgery}

{prob = "0.1"} {prob = "0.4"}

Fig. 4. The eHealth system unifying statechart.

5 Performance analysis

Several interesting experiments can be conducted on the model that we have built to
study the system performance vs different model parameters. For example, the utiliza-
tion of a certain platform device can be analyzed while varying the intensity of traffic
due to user mobility, or the response time of a certain service can be analyzed in differ-
ent superstates (or across superstates).

In fact, as outlined in Section 3.4, our model embeds all the performance parameters
necessary to apply an automated transformation that generates a performance model,
such as a Stochastic Petri Net or a Queueing Network. In this specific case we have
used the approach illustrated in [5] >.

In Figure 5 an Execution Graph [19] of the RequestPatientInfoPages service has
been reported as obtained through a model transformation of the Sequence Diagram
in Figure 3. An Execution Graph is a platform-independent model that represents the

> For sake of space we do not enter into technical details of such transformations; readers inter-
ested can refer to [3] for a recent survey on this topic.



Client App Server Database System Image Server

INIT )
racion | (201 1 1]
T Interaction
Request Instr  DbAX  Msg ¢
Patient 10| o |4 et
InfoPage R N getPatien
\&: e Data [5 [4 [uek ]
GetPatient
[o] o4 | :
InfoPage getMedical 5 T ok
Histories --

Standard Behavior getXRay
Resource Constrained Behavior

getDisease

L

Standard Behavior | getDisease
12 12k
[ s b

Resource Constrained
Behavior

(= InfoPage
0 0| X

Fig. 5. Execution Graph of RequestPatientInfoPages service.

software dynamics along with its requests of resources. In Figure 5 square blocks rep-
resent the basic operations that the components perform to provide the service. Beside
each block a demand vector is shown that reports (from the annotations of the Sequence
Diagram) the amount of logical resources that are required to complete the block (see
Section 3.4). In particular: (i) Instr represents the number of high-level instructions to
be executed from a CPU, (ii) DbAx represents the number of mass memory blocks to
be acceded on DISK (each block is sized 32 bytes), and (iii) Msg represents the number
of bytes to be exchanged on the network (i.e. WAN/LAN).

Decision points have been generated in Figure 5 to embed the (bold labeled) blocks
that are executed only in the StandardBehavior (similar labeling of the Sequence Di-
agram). The topmost labels indicates the names of the components that execute the
underlying blocks.

The last block before the end of the graph represents the return of patient data to the
doctor’s PDA. The demand vector of such block cannot be uniquely identified, in that
it brings over the WAN (connecting PDA and AppHost) the data retrieved. These data
are different depending on the behavior executed. Therefore an X value is placed in the
Msg field of this block demand vector, and X holds either 272kB or 1.772MB in case
of, respectively, Resource Constrained and Standard Behavior®.

The platform characteristics that we have considered in all experiments are reported
in [4].

We have considered three scenarios for our software system, namely: Basic, High
Mobility and Powerful Display. In the Basic scenario we devise a low mobility of the
doctor (and hence of his PDA) that for most of time operates in the Surgery room, and

® These X values are obtained by summing up the amount of bytes of Msg fields of blocks
executed in the two different behaviors.



an equal probability for the display to be color or b/w (i.e. equal probability for the
two service behaviors). In the High Mobility scenario we introduce frequent doctor’s
relocations with respect to the Basic scenario. In the Powerful Display scenario, re-
ported in [4], we instead introduce, with respect to the Basic scenario, a much higher
probability for the Display to be in Color state (i.e. higher probability of adopting a
StandardBehavior).

5.1 A Basic scenario

The transition probabilities for the Physical Mobility Manager and the Display Hard-
ware Configuration Manager in the Basic scenario are annotated in Figure 2.

In consequence of the lumping operation, the transition probabilities of the unifying
statechart of Figure 4 for the Basic scenario are the ones reported in Table 1. It is easy to
observe that each probability has been obtained by multiplying the probabilities of the
corresponding transitions in the original manager statecharts, following the canonical
theory of merging probabilistic statecharts [14].

The statechart shown in Figure 4 can
be interpreted as a Markov Model that de-
scribes the stochastic behavior of a soft-
ware system with respect to its mobility Table 1. Transition probabilities for the
and context-awareness. Hence, the solu- unifying statechart in the Basic scenario.

tion of such model provides, among other, [ JJHS OS] SS|PS [HR]JOR]| SR [ PR ||
the steady-state probabilities of each su- HS1/0.050.45 0.05]0.45

. 05]]0-05]0.05[0-35[0.05/0.05]0.05|0.35[0.05
perstate [20]. This result represents a S 5051045 0051045
measure of how often the system will be PS 0.45 0.05 0.45 0.05
. . I HR[[0.05[0.45 0.05]0.45
ina f:ertaln superstate, and it is therefore a ORT0-0510-05 103510051008 100510351005
crucial parameter for many types of non- SR 0.05]0.45 0.05[0.45
functional analysis. The solution of such PR 0.45 0.05 0.45 0.05

Markov Model in the Basic scenario leads » ilities of
to the steady-state probabilities reported Table 2. 'Steady-sta'lte P roba.blhtles of su-
in Table 2. perstates in the Basic scenario.

: : [HS | OS | SS | PS |
We have considered the response time [5:0067[0-0608]0-4250[0.0067]

of the RequestPatientInfoPages service as HR | OR | SR [ PR |

the performance index of interest in our [0.0067]0.0608[0.4250]0.0067
experiments. Minimum, maximum and

average values of such index are evaluated overall the superstates for each scenario.
Note, however, that since scenarios differ from each other only for transition proba-
bilities (while keeping software and platform characteristics unchanged), the minimum
and maximum response times are invariant across scenarios. As opposite, the average
response time is computed as the weighted sum of response time in each superstate,
where the weights are the steady-state probabilities. Therefore different values of aver-
age response time are obtained in different scenarios.

In order to obtain the response time in each superstate the Execution Graph shown
in Figure 5 has to be synthesized to obtain an unique demand vector for each Execution
Host [19]. For example, the demand vectors of the four blocks executed by Database
System in Figure 5 have to be summed up to obtain the demand of resources addressed




to DbHost where Database System is deployed. Thereafter, each synthesized demand
vector has to be combined with the corresponding platform characteristics specified in
[4] to obtain the amount of time spent in each platform device to complete the service.

Summarizing, on the basis of the Steady-state probabilities of superstates (Table 2),
the Demand vectors synthesized from the Execution Graph (Figure 5), and the Platform
characteristics (see [4]), the response time values of RequestPatientInfoPages service in
the Basic scenario are reported in Table 3, where values are expressed in seconds.

Since minimum and maximum values are in-
variant with respect to the scenario, the two left-
most values reported in Table 3 also hold for the
other two scenarios. For these values we have Table 3. Response time values in
reported in the bottommost row of Table 3 the the Basic scenario. ‘
superstate name where this value is achieved. A Rewpoms T 83/.13’(‘59 ivli'; Alvz.rgge
maximum response time of 82.069 seconds is ob- Superstate OS [SR| -
tained when the doctor’s PDA is in OpenAir and
its display works in color (i.e. OS state), whereas a minimum response time of 1.17
seconds is obtained when the doctor’s PDA is in Surgery and its display works in black
and white (i.e. SR state).

The average response time obviously depends on the steady-state probabilities. In
particular, as it can be observed in Table 2, in this case most of time is spent in Surgery
(i.e. either SS or SR state) where the network bandwidth is quite large ([4]). Therefore
the average response time is much closer to its lower bound than its upper bound.

5.2 High Mobility scenario

The transition probabilities of the Phys-
ical Mobility Manager in the High Mo-
bility scenario are reported in Table 4,
Table 4. Transition probabilities for Physi-  whereas the probabilities for the Display
cal Mobility Manager in the High Mobility  Hardware Configuration Manager are the
scenario. ones adopted in the Basic scenario.
I [[Home[OpenAir[Surgery[PatientHome] Similarly to the Basic scenario, after
O};:;“:ir S NP R N E— the lumping operation and the solution
Surgery 0.5 | 0.5 of the corresponding Markov Model, the
PatientHome 0.5 0.5 steady-state probabilities of the High Mo-
bility scenario are reported in Table 5.

For this scenario we have obtained
an average response time of RequestPati-
entInfoPages service of RT' = 26.32 sec-
onds.

This value of the response time is quite larger than the one obtained in the Basic
scenario, and this is mainly due to the following reason. In this scenario the doctor
moves more often than in the Basic scenario, and therefore it experiences very different
network bandwidths in a quite homogeneous distribution.

From a qualitative viewpoint this result is quite obvious, but we like to remark that
our approach allows to quantify such differences among performance indices, and hence

Table 5. Steady-state probabilities of su-
perstates in the High Mobility scenario.

[HSTOS[SS[PS[HR|OR[SR|PR]|
[0.1]0.2]0.1]0.1]0.1]0.2]0.1]0.1]




it represents a powerful instrument in the hands of software designers to support their
decisions. For example, sensitivity analysis can be conducted on response time while
varying the probability of moving among pairs of locations.

6 Conclusions

We have introduced a framework for modeling and analyzing the performance of context-
aware mobile software systems. Context-awareness is intended to be a composite con-
cept, with different types of awareness concurring to its definition. No assumption
underlies our framework about the types of awareness that can be modeled, as each
awareness is simply represented by a statechart whose states and transitions are based
on model variables.

Three main aspects represent the potential of our framework: (i) the rigorous def-
inition in UML 2 of all necessary instruments to build a model of such an application
is mostly based on reusing existing profiling, thus it does not represent “’yet another
profile” for context, but a promising approach to the modeling of context-related con-
cepts, (ii) the process of lumping statecharts together in an unique stochastic model for
context-awareness and mobility represents a powerful unifying approach to the more
general modeling and analysis of non-functional properties, (iii) the existing mature
approaches for automation in the performance model generation and solution allow to
conceive, even in this specific domain, the performance analysis a viable and effective
activity in the daily practice of software designers. Besides, our definition of context is
extensible and/or shrinkable because any set of system attributes can enter the context
as long as a manager statechart is defined for it.

This work opens the view on a plethora of problems that can be faced and solved on
the basis of the promising results shown here.

First of all the validation of such approach against real case studies would lead
feedback on its actual usability and effectiveness to capture performance issues.

Performance models that represent the resource contention should be addressed
(possibly using existing model transformation approaches) in order to conduct a sen-
sitivity study of such models vs. increases of system workload (i.e. a large number of
users). Yet other types of performance indices could be useful in this domain, such as
the utilization of certain devices across contexts.

However our models at the moment have some limitations on which we are working.
First, certain scenarios involving remote firing transitions are complex to be managed in
the lumping operation. We are working on parallel compositions of stochastic processes
to remove this complexity. Besides, due to intrinsic constraints of UML 2, in our models
the managers cannot change state during the execution of a service, but only between
one invocation and another. We are trying to introduce this characteristic in our frame-
work without needing a heavyweight extension of the UML metamodel. Moreover we
are looking at more complex forms of adaptation that, for example, completely replace
the internal structure and behavior of a certain component if needed [12].

We retain that such type of analysis, as well as the analysis of other non-functional
attributes like reliability, can be of great support to the decision of system modelers. As
shown also in our example, the validation of certain non-functional properties over a



system model allows not only to qualitatively validate possible modelers’ intuitions, but
also to quantitatively study the trends of non-functional metrics depending on context
changes.
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