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Abstract. Probabilistic timed automata are an extension of timed au-
tomata with discrete probability distributions. Simulation and bisimula-
tion relations are widely-studied in the context of the analysis of system
models, with applications in the stepwise development of systems and in
model reduction. In this paper, we study probabilistic timed simulation
and bisimulation relations for probabilistic timed automata. We present
an EXPTIME algorithm for deciding whether two probabilistic timed
automata are probabilistically timed similar or bisimilar. Furthermore,
we consider a logical characterization of probabilistic timed bisimulation.

1 Introduction

The increasing complexity of embedded and networked technologies has lead to a
growing demand for formal techniques to reason about their safety, reliability and
efficiency. In particular, formal modelling languages for describing systems have
been developed, together with associated automatic verification techniques. We
consider the case of real-time systems, in which timing information is associated
with system behaviour, which can be reflected in system choices (for example,
the system times-out if a response has not been received within 30ns) and in
measures such as timeliness and efficiency (for example, a system is regarded as
being timely if a leader is elected within 1s after a new node joins the network).
A widespread example of a system description formalism for real-time systems
is timed automata [1]. We also consider probabilistic systems, in which system
behaviour is associated with a quantity representing its relative likelihood (for
example, a message is lost with probability 0.01). When modelling probabilis-
tic systems, it is often convenient, for representing interleaving between parallel
components or for abstraction, to consider formalisms which include both non-
deterministic and probabilistic choice, such as those based on Markov decision
processes [2] or Segala’s probabilistic automata [3, 4]. In certain cases, our aim is
to model probabilistic real-time systems, for which it is important to model both
timed and probabilistic behaviour within the same system model. An example
of a formalism for such systems, based on a combination of timed automata
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and Segala’s probabilistic automata, is probabilistic timed automata [5]. Prob-
abilistic timed automata have been used previously to model systems such as
the IEEE 1394 root contention protocol, the backoff procedure in IEEE 802.11
Wireless LANs, and the IPv4 Zeroconf protocol [6, 7].

In the field of formal modelling of systems, reasoning about the same system
at different levels of detail using the notions of refinement and abstraction is
well-established. Both notions involve the use of a relation between two system
models A and B: the relation establishes that A refines B, or, equivalently, that B
is an abstraction of A. These notions can be used in two different ways. Firstly,
they offer mechanisms for the stepwise development of system models. That
is, the system modeller starts from an abstract description of the system, then
refines successively this description to obtain a detailed system model. Secondly,
abstraction can be used in the context of system analysis: a system model may
be too large to allow its analysis within the resources available, and therefore a
smaller model which abstracts the original one can be constructed and analyzed.

An example of a relation for refinement and abstraction of system models is
simulation [8]. This relation is defined on the states of the two models A and B.
If state sB of B simulates state sA of A, then any single transition from sA can
be mimicked from sB, and the states reached by these transitions are also in the
simulation relation. If the converse also holds (that is, also any single transition
from sB can be mimicked from sA), then the relation is a bisimulation [9, 10].
Simulation and bisimulation relations have been considered for real-time sys-
tems: in this paper we consider timed (rather than time-abstract) versions of
these relations. Deciding timed simulation and bisimulation for timed systems
is in EXPTIME [11, 12]. Similarly, deciding timed alternating (bi)simulation for
timed games, which can be used to model real-time controller synthesis prob-
lems, is also in EXPTIME [13]. Simulation and bisimulation have also been
considered for Markov decision processes or probabilistic automata models: de-
ciding simulation and bisimulation can be done in polynomial time [14, 15]. The
relations can also be accompanied by a logical characterization: in the case of
bisimulation, this concerns in identifying a logic such that, whenever two states
satisfy the same formulas of the logic, then the two states are bisimilar. The log-
ical characterization of timed bisimulation for a subclass of timed systems has
been considered in [16], whereas the logical characterization of timed alternating
simulation for timed games has been presented in [13] (this result also provides
a logical characterization for simulation and bisimulation for timed automata).
In both cases a timed modal logic, based on Hennessy-Milner logic [17], or on
temporal logic without the until operator, is considered. Instead, for probabilis-
tic automata, a logical characterization of bisimulation has been presented in
terms of a probabilistic extension of Hennessy-Milner logic [18].

In this paper we consider timed simulation and bisimulation relations for
probabilistic timed automata, both in terms of algorithms for deciding such re-
lations and in terms of a logical characterization of bisimulation. Such timed sim-
ulation and bisimulation relations for Segala’s probabilistic automata enriched
with timing durations have been presented in [4]. Given that probabilistic timed



automata are a generalization of both timed automata and Segala’s probabilistic
automata, our algorithm is inspired by [12, 13] for timing aspects, and by [14, 15]
for probabilistic aspects. More precisely, a variant of the classical region graph is
constructed from two probabilistic timed automata, on which an operator, which
can determine whether sets of states are related using certain sub-procedures
taken from [14, 15], is iterated. We show that, as for timed automata, decid-
ing whether two probabilistic timed automata are related by (bi)simulation is
EXPTIME-complete. The logical characterization that we present considers a
logic in which the classical diamond operator is replaced with a diamond opera-
tor with a time constraint, as in [13], and which features probability thresholds,
as in [18]. We also treat probabilistic timed (bi)simulation relations in the sense
of [3, 4], which consider convex combinations of identically labelled transitions
in order to represent randomized choice between nondeterministic alternatives.

We briefly discuss related work. Jensen and Gregersen [19, 20] presented a
model similar to probabilistic timed automata, but which cannot have nonde-
terministic choice between transitions labelled with the same action. They con-
sidered a logical characterization of timed bisimulation for their formalism, and
showed that timed bisimulation between acyclic versions of their models is de-
cidable. Yamane [21] studied timed simulation on probabilistic timed automata.
However, although introducing a region-graph construction, the possibility of ob-
taining an algorithm was mentioned only briefly. In particular, the key concept
of a finite sampling of timing durations [11, 12] was missing, and the definition of
how to relate probability distributions at the region-graph level was incomplete.
Instead we provide a detailed description of an algorithm. Furthermore, we also
establish that our algorithm matches the known lower bound, and consider also
probabilistic timed (bi)simulation. Time-abstract bisimulation for probabilistic
timed automata was considered in [22].

2 Probabilistic Timed Automata

Notation. We use R≥0 to denote the set of non-negative real numbers and N

to denote the set of natural numbers. A discrete probability distribution over a
countable set Q is a function µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. For a

function µ : Q → R≥0 we define support(µ) = {q ∈ Q | µ(q) > 0}. Then for an
uncountable setQ we define Dist(Q) to be the set of functions µ : Q→ [0, 1], such
that support(µ) is a countable set and µ restricted to support(µ) is a distribution.
For q ∈ Q, let {q �→ 1} be the point distribution at q which assigns probability 1
to q. Let {µ1, ..., µk} be a finite set of distributions over Q, and let c1, ..., ck be
a sequence of real numbers in [0, 1] such that

∑
1≤i≤k ci = 1. Then the convex

combination
∑

1≤i≤k ciµi is the distribution µ defined by µ(q) =
∑

1≤i≤k ciµi(q)
for each q ∈ Q.

Probabilistic Timed Labelled Transition Systems. A probabilistic timed
labelled transition system (PTLTS) P = (S, S̄,Act ,→) comprises the following
components:



– A possibly uncountable set of states S with initial states S̄ ⊆ S.
– A finite set Act of actions.
– A possibly uncountable timed, probabilistic, nondeterministic transition re-

lation →⊆ S × R≥0 × Act × Dist(S).

The transitions from state to state of a PTLTS are performed in two steps: given
that the current state is s, the first step concerns a nondeterministic selection of
(s, d, a, µ) ∈→, where d and a are the duration and the action of the transition,
respectively; the second step comprises a probabilistic choice, made according to
the distribution µ, as to which state to make the transition to (that is, we make
a transition to a state s′ ∈ S with probability µ(s′)).

Syntax of Probabilistic Timed Automata. Let X be a finite set of real-
valued variables called clocks, the values of which increase at the same rate as
real-time. The set CC (X ) of clock constraints over X is defined as the set of
conjunctions over atomic formulas of the form x ∼ c, where x, y ∈ X , ∼∈ {<,≤,
>,≥,=}, and c ∈ N.

A probabilistic timed automaton (PTA) A = (L, L̄,Act ,X , inv , prob) is a
tuple consisting of the following components:

– A finite set L of locations with the initial locations L̄ ⊆ L.
– A finite set X of clocks.
– A finite set Act of actions.
– A function inv : L → CC (X ) associating an invariant condition with each

location.
– A finite set prob ⊆ L× CC (X ) × Act × Dist(2X × L) of probabilistic edges.

A probabilistic edge (l, g, a, p) ∈ prob is a tuple containing (1) a source location
l, (2) a clock constraint g, called a guard, (3) an action a, and (4) a probability
distribution p which assigns probability to pairs of the form (X, l′), where X is
a set of clocks to be reset and l′ is a location. The behaviour of a PTA takes a
similar form to that of a timed automaton [1]: in any location time can advance
as long as the invariant holds, and a probabilistic edge can be taken if its guard
is satisfied by the current values of the clocks. PTA generalize timed automata in
the sense that, once a probabilistic edge is nondeterministically selected, then the
choice of which clocks to reset and which target location to make the transition
to is probabilistic.

The size |A| of the PTA A is |L|+ |X |+ |inv|+ |prob|, where |inv | represents
the size of the binary encoding of the constants used in the invariant condition,
and |prob| includes the size of the binary encoding of the constants used in guards
and the probabilities used in probabilistic edges (probabilities are expressed as
a ratio between two natural numbers, each written in binary).

Semantics of Probabilistic Timed Automata. We refer to a mapping v :
X → R≥0 as a clock valuation. Let RX

≥0 denote the set of clock valuations. Let
0 ∈ RX

≥0 be the clock valuation which assigns 0 to all clocks in X . For a clock



valuation v ∈ RX
≥0 and a value d ∈ R≥0, we use v+d to denote the clock valuation

obtained by letting (v + d)(x) = v(x) + d for all clocks x ∈ X . For a clock set
X ⊆ X , we let v[X := 0] be the clock valuation obtained from v by resetting
all clocks in X to 0; formally, we let v[X := 0](x) = 0 for all x ∈ X , and let
v[X := 0](x) = v(x) for all x ∈ X \X . The clock valuation v satisfies the clock
constraint ϕ ∈ CC (X ), written v |= ϕ, if and only if ϕ resolves to true after
substituting each clock x ∈ X with the corresponding clock value v(x).

The semantics of the PTA A = (L, L̄,Act ,X , inv , prob) is the PTLTS [[A]] =
(S, S̄,Act ,→) where:

– S = {(l, v) | l ∈ L and v ∈ RX
≥0 s.t. v |= inv (l)} and S̄ = {(l,0) | l ∈ L̄};

– → is the smallest set such that ((l, v), d, a, µ) ∈→ if there exist d ∈ R≥0 and
a probabilistic edge (l, g, a, p) ∈ prob such that:
1. v + d |= g, and v + d′ |= inv(l) for all 0 ≤ d′ ≤ d;
2. for any (X, l′) ∈ 2X × L, if p(X, l′) > 0 then (v + d)[X := 0] |= inv(l′);
3. for any (l′, v′) ∈ S, we have that µ(l′, v′) =

∑
X∈Reset(v,d,v′) p(X, l′),

where Reset(v, d, v′) = {X ⊆ X | (v + d)[X := 0] = v′}.
Given the state (l, v) and the duration d ∈ R≥0 such that v + d′ |= inv(l)

for all 0 ≤ d′ ≤ d, in the sequel we often write (l, v) + d to denote the state
(l, v + d). By abuse of notation, we also write ((l, v), d, a, p) ∈→ to denote the
existence of ((l, v), d, a, µ) ∈→ such that a probabilistic edge (l, , , p) ∈ prob is
used to define ((l, v), d, a, µ) according to the second point in the definition of
the semantic PTLTS of the PTA.

Composition of Probabilistic Timed Automata. To aid higher-level mod-
elling, it is often useful to define complex systems as the parallel composition of
a number of interacting sub-components. The definition of the parallel compo-
sition operator ‖ of PTA uses ideas from the theory of (untimed) probabilistic
automata [3] and classical timed automata [1], and was presented in [6]. Let
Ai = (Li, L̄i,Act i,Xi, inv i, probi) for i ∈ {1, 2} and assume that X1 ∩ X2 = ∅.
Given p1 ∈ Dist(2X1 × L1) and p2 ∈ Dist(2X2 × L2), we define the distribu-
tion p1⊗p2 ∈ Dist(2X1∪X2 × (L1 × L2)) in the following way: for each X1 ⊆ X1,
X2 ⊆ X2, l1 ∈ L1 and l2 ∈ L2, let p1⊗p2(X1∪X2, (l1, l2)) = p1(X1, l1)·p2(X2, l2).
The parallel composition of two PTA A1 and A2 is the PTA

A1‖A2 = (L1 × L2, L̄1 × L̄2,Act1 ∪ Act2,X1 ∪ X2, inv , prob)

such that

– inv(l1, l2) = inv1(l1) ∧ inv2(l2) for all (l1, l2) ∈ L1 × L2;
– ((l1, l2), g, a, p) ∈ prob if and only if one of the following conditions holds:

1. a ∈ Act1 \ Act2 and there exists (l1, g, a, p1) ∈ prob1 such that p =
p1⊗{(∅, l2) �→ 1};

2. a ∈ Act2 \ Act1 and there exists (l2, g, a, p2) ∈ prob2 such that p =
{(∅, l1) �→ 1}⊗p2;

3. a ∈ Act1 ∩ Act2 and there exists (li, gi, a, pi) ∈ probi for i = 1, 2 such
that g = g1 ∧ g2 and p = p1⊗p2.



3 Algorithms for Timed Simulation and Bisimulation

Timed Simulation and Bisimulation. We now define probabilistic timed
simulation in the manner of [4, 21]. Given two sets Q1 and Q2, let R ⊆ Q1 ×Q2

be a binary relation. Let µ1 ∈ Dist(Q1) and µ2 ∈ Dist(Q2) be distributions on
Q1 and Q2, respectively. A weight function [23] for (µ1, µ2) with respect to R is
a function ∆ : Q1 ×Q2 → [0, 1] such that:

1. ∆(q1, q2) > 0 implies (q1, q2) ∈ R;
2.

∑
q2∈Q2

∆(q1, q2) = µ1(q1) for each q1 ∈ Q1;
3.

∑
q1∈Q1

∆(q1, q2) = µ2(q2) for each q2 ∈ Q2.

The lifting of R is a relation L(R) ⊆ Dist(Q1) × Dist(Q2) such that µ1L(R)µ2

if there exists a weight function for (µ1, µ2) with respect to R. When clear from
the context, we use R also to refer to the lifting L(R).

Let P = (S, S̄,Act ,→) be a PTLTS. A binary relation R ⊆ S × S is a
timed simulation if s1Rs2 implies that, for each (s1, d, a, µ1) ∈→, there exists
(s2, d, a, µ2) ∈→ such that µ1Rµ2. Given two states s1, s2 ∈ S, we write s1 � s2
if there exists a timed simulation R such that s1Rs2. A timed bisimulation is
a symmetric timed simulation. Given two states s1, s2 ∈ S, we write s1 ≈ s2 if
there exists a timed bisimulation R such that s1Rs2.

Let s ∈ S, d ∈ R≥0 and a ∈ Act . Consider the largest set {µ1, ..., µk} of
distributions over S such that (s, d, a, µi) ∈→ for 1 ≤ i ≤ k. Then the tu-
ple (s, d, a, µ) is a combined transition if there exists a sequence c1, ..., ck of
real numbers in [0, 1] such that

∑
1≤i≤k ci = 1 where µ =

∑
1≤i≤k ciµi. We

let Combined(s, d, a) denote the set of combined transitions associated with s,
d and a. A binary relation R ⊆ S × S is a probabilistic timed simulation if
s1Rs2 implies that, for each (s1, d, a, µ1) ∈→, there exists a combined transition
(s2, d, a, µ2) ∈ Combined(s2, d, a) such that µ1Rµ2. Given two states s1, s2 ∈ S,
we write s1 �p s2 if there exists a probabilistic timed simulation R such that
s1Rs2. A probabilistic timed bisimulation is a symmetric probabilistic timed
simulation. Given two states s1, s2 ∈ S, we write s1 ≈p s2 if there exists a
probabilistic timed bisimulation R such that s1Rs2.

Let A = (LA, L̄A,ActA,XA, invA, probA) and B = (LB, L̄B,ActB,XB, invB,
probB) be two PTA. The disjoint composition of A and B is the PTA A � B =
(LA � LB, L̄A � L̄B,ActA � ActB,XA � XB, inv , probA � probB), where inv (l) =
invA(l) if l ∈ LA, and inv (l) = invB(l) if l ∈ LB. Given A � B, a (probabilistic)
timed simulation relation R on [[A � B]] is initialized if and only if, for every
lA ∈ L̄A, there exists some lB ∈ L̄B such that (lA,0)R(lB,0). We write A � B
if there exists an initialized (probabilistic) timed simulation relation on [[A � B]].
It follows from [4] that � and �p are preorders, and, together with [12], that �
and �p are compositional in the following sense: given the PTA A, B and C, if
A � B then A‖C � B‖C, and if A �p B then A‖C �p B‖C.

Example 1. Consider the two PTA fragments A (left) and B (right) in Figure 1.
We write the invariant conditions within the locations they refer to and we omit
them when they are true. A probabilistic edge (l, g, a, p) is represented as an



l0A
x ≤ 1

l1A l2A l3A

a
x = 1

1
3

2
3

b
x ≤ 1

l0B
y ≤ 2

l1B l2B l3B

a
1 ≤ y ≤ 2

1
2

1
2

b
y ≤ 1

Fig. 1. An example of timed simulation.

arc exiting location l, labeled with the action a and guard g. The distribution
p is represented by connecting the location l to a dot from which arcs, labeled
with a probability, reach the locations indicated by the elements of support(p).
For simplicity, when p(∅, l′) = 1, we draw a direct arc from l to l′. The initial
locations of A and B are l0A and l0B, respectively. Assume that there is subsequent
behaviour from the bottom line of locations in the figure such that, for all clock
valuations v ∈ R

{x}
≥0 and v′ ∈ R

{y}
≥0 , we have (l1A, v) � (l1B, v

′), (l2A, v) � (l1B, v
′),

(l2A, v) � (l2B, v
′) and (l3A, v) � (l3B, v

′) (states in � are indicated by locations of
the same color and shape, except for states with the gray location, which are
timed simulated by the states of the short and long dashed shape). From (l0A,0),
there exist transitions ((l0A,0), d, b, {(l3A, vd) �→ 1}) ∈→A, which can be mim-
icked by transitions ((l0B,0), d, b, {(l3B, v′d) �→ 1}) ∈→B from (l0B,0), where d ≤ 1
and vd(x) = v′d(y) = d. From (l0A,0), there exists the single a-labelled transition
((l0A,0), 1, a, µA) ∈→A such that µA(l1A, v1) = 1

3 and µA(l2A, v1) = 2
3 . This tran-

sition can be mimicked from (l0B,0) by the transition ((l0B,0), 1, a, µB) ∈→B such
that µB(l1B, v

′
1) = 1

2 and µB(l2B, v
′
1) = 1

2 . Furthermore, there exists a weight func-
tion ∆ for (µA, µB) with respect to �: we can consider ∆((l1A, v1), (l

1
B, v1)) = 1

3 ,
∆((l2A, v1), (l

1
B, v1)) = 1

6 and ∆((l2A, v1), (l
2
B, v1)) = 1

2 . It can be verified that ∆
satisfies the conditions of a weight function for (µA, µB) with respect to �. Hence
we have (l0A,0) � (l0B,0). From this, we conclude that A � B.

Example 2. Consider the two PTA fragments A (left) and B (right) in Figure 2.
Here we suppose that, for all clock valuations v ∈ R

{x}
≥0 and v′ ∈ R

{y}
≥0 , we have

(l1A, v) � (l1B, v
′), (l2A, v) � (l2B, v

′), (l1A, v) � (l3B, v
′) and (l2A, v) � (l4B, v

′). It
holds that A �� B, because A can reach a location l1A in a single step with prob-
ability 1

2 , while B can reach a related location (l1B or l3B) either with probability
1
3 or 2

3 , but not with probability 1
2 . However, there exists a combined transition

for B obtained by assigning 1
2 to the two illustrated probabilistic edges from l0B,

and for which it is possible to reach l1B or l3B with probability 1
2 . Continuing this

reasoning also for l2A, we can verify that A �p B.

We now present an algorithm for deciding whether a PTA (probabilistically)
timed simulates another PTA. Our approach is to extend the techniques of [12,
13], which were applied to non-probabilistic timed automata/timed games, to the
case of PTA. We focus our attention on the case of timed simulation. Formally,
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a
x ≤ 3

a
x ≤ 2

1
3

2
3

2
3

1
3

Fig. 2. An example of probabilistic timed simulation.

for two PTA A and B, our aim is to decide whether A � B. We comment
briefly on how to extend the algorithm to the case of timed bisimulation, and to
probabilistic timed (bi)simulation, at the end of this section.

Region Equivalence. We begin by recalling the standard definition of region
equivalence [1]. For r ∈ R≥0, we let frac(r) = r−�r�. Let A = (L, L̄,Act ,X , inv ,
prob) be a PTA, and let cmax be the maximal constant to which a clock is
compared in any of the guards of probabilistic edges or invariants of A. Two
clock valuations v, v′ ∈ RX

≥0 are clock equivalent if the following conditions are
satisfied: (1) for all clocks x ∈ X , we have v(x) ≤ cmax if and only if v′(x) ≤ cmax ;
(2) for all clocks x ∈ X with v(x) ≤ cmax , we have �v(x)� = �v′(x)�; (3) for all
clocks x, y ∈ X with v(x) ≤ cmax and v(y) ≤ cmax , we have frac(v(x)) ≤
frac(v(y)) if and only if frac(v′(x)) ≤ frac(v′(y)); and (4) for all clocks x ∈ X with
v(x) ≤ cmax , we have frac(v(x)) = 0 if and only if frac(v′(x)) = 0. Two states
(l, v), (l′, v′) of [[A]] are region equivalent, written (l, v) ≡ (l′, v′), if (1) l = l′,
and (2) v and v′ are clock equivalent. A region is an equivalence class of region
equivalence, and let RegionsA be the set of regions of A. Given a state (l, v), we
use [(l, v)] to denote the region to which (l, v) belongs. The number of regions
corresponding to the PTA A is bounded by |L| · (2cmax + 2)|X | · |X |! · 2|X |.

For deciding timed simulation on two PTA, we consider region equivalence
over the state space of the parallel composition of the PTA. The subsequent
algorithm for deciding whether A � B operates on the set of regions RegionsA‖B.
In the following, given two states (lA, vA) of A and (lB, vB) of B, the unique
state of A‖B corresponding to these states is written ((lA, lB), vA‖B), where
vA‖B(x) = vA(x) if x ∈ XA, and vA‖B(x) = vB(x) if x ∈ XB (note that it
is possible that vA‖B �|= invA‖B(lA, lB), where invA‖B denotes the invariant
condition of A‖B; it is trivial to decide timed simulation on such states, and
henceforth we do not consider states of this form).

Restriction to a Finite Set of Time Durations. Let ((lA, vA), (lB, vB)) ∈
SA × SB. Let x1, ..., xn ⊆ XA ∪ XB be the clocks such that vA‖B(xi) < cmax for
each 1 ≤ i ≤ n, ordered such that τ1 ≤ τ2 ≤ · · · ≤ τn, where τi = frac(vA‖B(xi))
for each 1 ≤ i ≤ n. Furthermore, let τ0 = 0 and τn+1 = 1. We also define
min(vA, vB) = min{�vA‖B(x1)�, · · · , �vA‖B(xn)�}. We now recall the definition



of a finite set Times((lA, vA), (lB, vB)) of time durations from [12, 13]; it will
suffice to consider only the time durations in this set in the subsequent algorithm.

Times((lA, vA), (lB, vB)) =
{c− 1

2 (τi + τi+1) | c ∈ N and 0 ≤ i ≤ n and 1 ≤ c ≤ cmax − min(vA, vB)}∪
{c− τi | c ∈ N and 1 ≤ i ≤ n and 1 ≤ c ≤ cmax − min(vA, vB)}∪
{c | c ∈ N and 0 ≤ c ≤ cmax + 1 − min(vA, vB)} .

Let I = {c | c ∈ N and 1 ≤ c ≤ cmax − min(vA, vB)}. The finite set of durations
Times((lA, vA), (lB, vB)) contains: (1) the distances between the mid-points of
the intervals (τi, τi+1) and the integers in I, (2) the distances between τi and the
integers in I, (3) the set of integers in {c | c ∈ N and 1 ≤ c ≤ cmax−min(vA, vB)}.
Following [12, 13], the distance d ∈ Times((lA, vA), (lB, vB)) between the mid-
point 1

2 (τi + τi+1) and an integer c ∈ I can be used as a representative for all
the time delays between c− τi+1 and c− τi.

One-Step Goodness. We now define two notions of “goodness”, which we will
use subsequently to refer to a single transition step from each of the PTA A
and B. This notion will be presented in two versions: a concrete version, defined
on the states of A and B, and a symbolic version, defined on RegionsA‖B and
using time durations taken from Times( , ). Analogues of these notions, and
their associated results, can be found in [12, 13].

Let R ⊆ SA × SB, and let (sA, sB) ∈ SA × SB. Then (sA, sB) is concretely
good in R if, for each (sA, d, a, µA) ∈→A, there exists (sB, d, a, µB) ∈→B such
that µARµB. The following lemma states that concrete goodness, with respect
to a relation described as a union of regions, is invariant over regions.

Lemma 1. Let Γ ⊆ RegionsA‖B, and let R ∈ RegionsA‖B be such that there
exists (sA, sB) ∈ R which is concretely good in

⋃
R′∈Γ R

′. Then each (s′A, s
′
B) ∈ R

is concretely good in
⋃

R′∈Γ R
′.

Given a relation R ⊆ SA × SB, we let ΓR = {R ∈ RegionsA‖B | R ∩R �= ∅}.
Proposition 1. If R ⊆ SA × SB is a timed simulation, then

⋃
R′∈ΓR R

′ is a
timed simulation.

Let R ∈ RegionsA‖B. Let XA ⊆ XA, XB ⊆ XB, lA ∈ LA and lB ∈ LB.
Then we write R[XA∪XB := 0, loc := lA, lB] to denote the region which has the
location components lA and lB, and the clock equivalence class equal to R except
that the clocks in XA and XB are reset to 0. Now let Γ ⊆ RegionsA‖B. Let pA ∈
Dist(2XA×LA) and pB ∈ Dist(2XB×LB). Then RR,Γ ⊆ support(pA)×support(pB)
is defined as follows: for each (XA, lA) ∈ support(pA) and (XB, lB) ∈ support(pB),
we have (XA, lA)RR,Γ (XB, lB) if and only if R[XA ∪XB := 0, loc := lA, lB] ∈ Γ .

The region R is symbolically good in Γ if there exists (sA, sB) ∈ R such
that, for each (sA, d, a, pA) ∈→A with d ∈ Times(sA, sB), there exists a tran-
sition (sB, d, a, pB) ∈→B such that pARR′,Γ pB, where R′ = [sA + d, sB + d].
The following lemma establishes a connection between symbolic and concrete
goodness.



Lemma 2. Let Γ ⊆ RegionsA‖B, and let R ∈ RegionsA‖B be symbolically good
in Γ . Then each (sA, sB) ∈ R is concretely good in

⋃
R′∈Γ R

′.

The proof of Lemma 2 relies on first showing that a state pair (sA, sB) in R
which witnesses symbolic goodness in Γ is also concretely good in

⋃
R′∈Γ R

′,
which then, by Lemma 1, implies concrete goodness in

⋃
R′∈Γ R

′ for all state
pairs in R.

Algorithm. Let Ω : 2RegionsA‖B → 2RegionsA‖B be the monotone operator defined
by Ω(Γ ) = {R ∈ Γ | R is symbolically good in Γ}. By Lemma 2, to decide
whether a regionR ∈ Γ is such that R ∈ Ω(Γ ), the choice of which representative
state pair to consider for R is not significant: hence, an arbitrary state pair
can be considered. Note also that |Times(sA, sB)|, for any (sA, sB) ∈ SA ×
SB, is exponential in the sizes of A and B, as is |RegionsA‖B|. By the results
of [14], we have that, for any pA ∈ Dist(2XA × LA), pB ∈ Dist(2XB × LB), it is
possible to decide pARR,Γ pB in polynomial time. Hence, we can compute Ω(Γ )
in exponential time in the sizes of A and B.

Lemma 3. If R ⊆ SA × SB is a timed simulation, then ΓR is a fixpoint of Ω.

Proposition 2. Let Γ ⊆ RegionsA‖B be a set of regions. Then Γ is a fixpoint
of Ω if and only if

⋃
R∈Γ R is a timed simulation.

The operator Ω provides the basis of the algorithm for deciding whether
A � B. Our aim is to compute its greatest fixpoint Γmax . Let Γ0 = RegionsA‖B,
and let Γi+1 = Ω(Γi) for each i ≥ 0. From the monotonicity of Ω, for some
i ≤ |RegionsA‖B|, we have Γi = Ω(Γi). Hence it suffices to apply Ω at most
|RegionsA‖B| times, and therefore Γmax can be computed in exponential time in
the sizes of A and B.

Let Rmax be the maximal timed simulation relation from A to B. By Propo-
sition 1, we have that Rmax is a union of regions. Given the computation of
Γmax , by Proposition 2 we have that Rmax =

⋃
R∈Γmax

R. We then have that the
following are equivalent:

– A � B;
– for every lA ∈ L̄A, there exists some lB ∈ L̄B such that (lA,0)Rmax (lB,0);
– for every lA ∈ L̄A, there exists some lB ∈ L̄B such that [((lA, lB),0)] ∈ Γmax .

We can adapt the algorithm above to obtain an algorithm for deciding
whether two PTA A and B are timed bisimilar. First, we note that concrete
and symbolic goodness are required to be redefined to obtain symmetric ver-
sions; furthermore, concrete goodness is defined with respect to an equivalence
relation R, and symbolic goodness is defined with respect to a set Γ of regions
which induces an equivalence relation (that is,

⋃
R∈Γ R is an equivalence rela-

tion). Then it is possible to define a version of the operator Ω which makes
reference to the new, symmetric notion of symbolic goodness.

From the results of [24], we have that deciding timed simulation or timed
bisimulation is EXPTIME-hard. In combination with the above, this gives us
the following theorem.



Theorem 1. Given two PTA A and B, the following two problems are EXPTIME-
complete: (1) checking whether A � B; (2) checking whether A ≈ B.

Probabilistic Timed Simulation. The results of the previous subsection can
be adapted to the case of probabilistic timed simulation and bisimulation. As in
the previous section, we can obtain an algorithm for probabilistic timed bisimula-
tion from an algorithm for probabilistic timed simulation, and hence we consider
the latter. Formally, for two PTA A and B, our aim is to decide whether A �p B.

Firstly, we extend the notions of concrete and symbolic goodness to ac-
commodate the possibility of B choosing combined transitions. For concrete
goodness, this is done simply by replacing the condition (sB, d, a, µB) ∈→B
with (sB, d, a, µB) ∈ Combined(sB, d, a). For symbolic goodness, we first ap-
ply the notion of combined transition to the case of distributions featured in
probabilistic edges: given the largest set {p1, ..., pk} of distributions such that
(sB, d, a, pi) ∈→B for 1 ≤ i ≤ k, we then write Combinedp(sB, d, a) for the set of
all tuples (sB, d, a, p) such that there exists a sequence c1, ..., ck of real numbers
in [0, 1] with

∑
1≤i≤k ci = 1 and p =

∑
1≤i≤k cipi. Then, to obtain the new

notion of symbolic goodness, we replace the condition (sB, d, a, pB) ∈→B with
(sB, d, a, pB) ∈ Combinedp(sB, d, a). Then the operator Ω is adapted to take into
account the new notion of symbolic goodness. Using the results of [15], for a
given Γ ⊆ RegionsA‖B, it is possible to compute Ω(Γ ) in exponential time in the
sizes of A and B. This reasoning, combined with that concerning the exponential
number of iterations of Ω given for timed simulation, then can be used to obtain
the following result.

Theorem 2. Given two PTA A and B, the following two problems are EXPTIME-
complete: (1) checking whether A �p B; (2) checking whether A ≈p B.

4 Logical Characterization of Bisimulation

In this section we give a logical characterization of our timed bisimulation and
probabilistic timed bisimulation relations. Recall that [18] presents an extension
of Hennessy-Milner logic [17] for probabilistic automata. The principal novelty
of the logic of [18] is that its semantics is defined over distributions on states,
rather than over states. Here we extend the logic of [18] with constraints on the
duration of transitions, similarly to [16, 13].

We now present the syntax of the logic. The logic PTLogic is syntactically
defined by the following formulas:

ψ ::= true | ¬ψ | ψ ∧ ψ | 〈a,∼ c〉ψ | [ψ]p

where a ∈ Act is an action, c ∈ R≥0 is a constant, and p ∈ [0, 1] is a probability.
Note that we will discuss the sub-logic of PTLogic in which c ∈ Q≥0 (where Q≥0

denotes the set of non-negative rationals) at the end of this section.
Let P be a PTLTS. Given a distribution µ ∈ Dist(S) and a set S′ ⊆ S of

states, we let µ(S′) =
∑

s∈S′ µ(s). Let ψ be a formula in PTLogic and µ be



a distribution over the set of states of a PTLTS P. We say that µ satisfies ψ,
written µ |= ψ, according to the following:

µ |= true
µ |= ¬ψ iff µ �|= ψ
µ |= ψ1 ∧ ψ2 iff both µ |= ψ1 and µ |= ψ2

µ |= 〈a,∼ c〉ψ iff for all s ∈ support(µ) there exists (s, d, a, µ′) ∈→ such that
d ∼ c and µ′ |= ψ

µ |= [ψ]p iff µ({[ψ]}) ≥ p

where {[ψ]} = {s ∈ S | s |= ψ} denotes the set of all states of P that satisfy the
PTLogic formula ψ, and where s |= ψ if and only if {s �→ 1} |= ψ.

We now show that timed bisimilar states of the semantic PTLTS [[A]] =
(S, S̄,Act ,→) resulting from a PTA A satisfy the same formulas of PTLogic
and, conversely, if there exists a formula of PTLogic that is satisfied in one state
and not another, then these two states are not timed bisimilar. We introduce the
following notation. Let F be the set of all PTLogic formulas. Given a set F ′ ⊆ F
of PTLogic formulas, we use F ′(s) and F ′(µ) to denote the subset of formulas of
F ′ that are satisfied at state s ∈ S and by distribution µ ∈ Dist(S), respectively.
The depth of a PTLogic formula ψ is defined as the maximum number of nested
〈a,∼ c〉ψ′ operators that occur in ψ. Let Fn be the set of PTLogic formulas of
depth n, and let ��n⊆ S × S be the relation such that s ��n s′ if and only if
Fn(s) = Fn(s′). Then, as in [18], we have the following results.

Lemma 4. 1. For each pair s, s′ ∈ S of states, if F(s) �= F(s′) then F(s) �⊆
F(s′).

2. For each pair s, s′ ∈ S of states, F0(s) = F0(s′).
3. Let R ⊆��n for some n ∈ N. Then, for each pair µ, µ′ ∈ Dist(S), we have

that µRµ′ implies Fn(µ) = Fn(µ′).

The first two points of Lemma 4 follow from the definitions in a straightforward
manner. The third point can be shown in a manner similar to the analogous
result of [18].

Let ≈0= S × S (that is, the relation ≈0 relates all states). For n ∈ N, let
≈n+1⊆ S × S be the equivalence relation defined as follows: for each s, s′ ∈ S,
s ≈n+1 s

′ implies that, for each (s, d, a, µ) ∈→, there exists (s′, d, a, µ′) ∈→ such
that µ ≈n µ

′. On semantic PTLTS of PTAs, we have that ≈=
⋂

n∈N ≈n.

Theorem 3. Let [[A]] = (S, S̄,Act ,→) be the semantic PTLTS of the PTA A.
For each pair s, s′ ∈ S of states, we have s ≈ s′ if and only if F(s) = F(s′).

Proof. The proof proceeds along the same lines as that of Theorem 1 of [18];
for completeness, we present the overall structure of the proof. We proceed by
induction on n ∈ N, and show that s ≈n s′ if and only if Fn(s) = Fn(s′). The
base case follows from point 2 of Lemma 4 and the definition of ≈0. We now
consider both directions of the inductive step.

(⇒) Let s ≈n+1 s′. We require that Fn+1(s) = Fn+1(s′), which requires
showing that, for all ψ ∈ Fn+1, we have s |= ψ if and only if s′ |= ψ. The



cases of the Boolean combinators and probabilistic operator [ψ]p are similar to
the analogous cases in [18]. Consider the case of ψ = 〈a,∼ c〉φ. Then, by the
semantics of PTLogic, there exists (s, d, a, µ) ∈→ such that d ∼ c and µ |= φ.
From s ≈n+1 s

′, there exists (s′, d, a, µ′) ∈→ such that µ ≈n µ
′. From µ ≈n µ

′

and point 3 of Lemma 4, we have that Fn(µ) = Fn(µ′). Noting that φ ∈ Fn,
then from µ |= φ we have µ′ |= φ. From this fact, and the observation that d ∼ c,
we have that s′ |= 〈a,∼ c〉φ.

(⇐) We proceed by showing that s �≈n+1 s
′ implies Fn+1(s) �= Fn+1(s′). Let

{[ti]n}i∈I be an enumeration of the equivalence classes of ≈n (there will be a
finite number of such classes by the results of Section 3, in contrast to possibly
countably infinite number in [18]). For each i ∈ I, by induction and point 1
of Lemma 4, we can construct a formula φi which is satisfied only by states
in [ti]n. We then select some (s, d, a, µ) ∈→ such that there does not exist any
(s′, d, a, µ′) ∈→ for which µ ≈n µ′. Such (s, d, a, µ) exists because s �≈n+1 s

′.
Let φ =

∧
i∈I [φi]µ([ti]n). Clearly µ |= φ, and hence s |= 〈a,= d〉φ. Aiming for

a contradiction, assume that Fn+1(s) = Fn+1(s′). Then s′ |= 〈a,= d〉φ. This
implies the existence of (s′, d, a, µ′′) ∈→ such that µ′′ |= φ. This is turn implies
that µ′′([ti]n) = µ([ti]n) for each i ∈ I, which implies that µ ≈n µ

′′, contradicting
s �≈n+1 s

′. ��

Probabilistic Timed Bisimulation. As in [18], the above material can be
adapted to the case of probabilistic timed bisimulation in the following way. First
we replace the operator 〈a,∼ c〉ψ in PTLogic with the operator 〈·a,∼ c·〉ψ, which
has the following semantics: given a distribution µ, we have µ |= 〈·a,∼ c·〉ψ if
and only if for all s ∈ support(µ) there exists (s, d, a, µ′) ∈ Combined(s, d, a) such
that d ∼ c and µ′ |= ψ. Let F• denote the set of formulas of the resulting logic.
The proof of Theorem 3 can be adapted to the new logic by changing references
to transitions to references to combined transitions as necessary, because timing
issues are independent of issues concerning combined transitions. This leads to
the following result.

Theorem 4. Let [[A]] = (S, S̄,Act ,→) be the semantic PTLTS of the PTA A.
For each pair s, s′ ∈ S of states, we have s ≈p s′ if and only if F•(s) = F•(s′).

Restriction to Rational Timing Bounds. The logic PTLogic features real
values in constraints on timing bounds in order to provide a logical characteriza-
tion of timed bisimulation for all states of a PTA. However, inspired by [13], we
note that a version of PTLogic restricted to non-negative rationals Q≥0 provides
a logical characterization of timed bisimulation for those states of a PTA with ra-
tional values of clocks. Let FQ≥0 denote the set of formulas of the logic obtained
from PTLogic by restricting formulas of 〈a,∼ c〉ψ to the case of c ∈ Q≥0.

Theorem 5. Let [[A]] = (S, S̄,Act ,→) be the semantic PTLTS of the PTA A
with the set X of clocks. For each pair (l, v), (l′, v′) ∈ S of states such that
v(x) ∈ Q≥0 and v′(x) ∈ Q≥0 for all clocks x ∈ X , FQ≥0(s) = FQ≥0(s

′) implies
(l, v) ≈ (l′, v′).



The proof of Theorem 5 follows that of direction (⇐) of Theorem 3, except that,
as in [13], and without loss of generality, only transitions with durations taken
from Times(s, s′) are considered.

The converse of Theorem 5 (that is, that (l, v) ≈ (l′, v′) implies FQ≥0(s) =
FQ≥0(s

′)) follows trivially from Theorem 3, because FQ≥0 ⊆ F . Theorem 5 can
also be extended to the case of probabilistic timed bisimulation.

Note that, to decide A ≈ B, we consider whether the initial states of the PTA
are related by ≈; as all clocks have to value 0 initially, clearly the above PTLogic
with time constraints restricted to Q≥0 characterizes bisimulation between PTA.
Finally, we observe that formulas of PTLogic with time constraints restricted to
Q≥0 can be expressed in the timed modal logic of [25, 26] extended with the
probabilistic operator of [ψ]p. Hence, such a logic can also provide a logical
characterization of states with rational clock values.

5 Conclusions

In this paper we have presented a framework for reasoning about simulation and
bisimulation relations for PTA. On the one hand, we have presented an EX-
PTIME algorithm for deciding such relations, and on the other hand we have
shown how a timed extension of the probabilistic model logic of [18] provides a
logical characterization of bisimulation. To our knowledge a logical characteriza-
tion of simulation for Segala’s probabilistic automata does not yet exist: if such
a characterization is found, it is likely that it can be adapted also to the case of
PTA. For specifying properties of probabilistic timed automata, temporal logics
such as Ptctl [5], which include constraints on time and probability, have been
introduced: we note that timed bisimulation preserves Ptctl properties, and
that, for a negation-free fragment of Ptctl, a state s that is timed simulated
by another state s′ satisfies at least the same properties as s′ [3, 4, 27].

For future work, we intend to study weak extensions of the considered rela-
tions, which abstract from non-observable computation (see [28]), and to develop
quantitative versions of simulation and bisimulation for PTA, which can quantify
how closely two PTA resemble each other.
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