
QFM 2009
EPTCS ??, 2009, pp. 1–39, doi:10.4204/EPTCS.??.??

c© M. Bernardo

Markovian Testing Equivalence and
Exponentially Timed Internal Actions

Marco Bernardo
Universit̀a di Urbino “Carlo Bo” – Italy

Istituto di Scienze e Tecnologie dell’Informazione

In the theory of testing for Markovian processes developed so far, exponentially timed internal actions
are not admitted within processes. When present, these actions cannot be abstracted away, because
their execution takes a nonzero amount of time and hence can be observed. On the other hand,
they must be carefully taken into account, in order not to equate processes that are distinguishable
from a timing viewpoint. In this paper, we recast the definition of Markovian testing equivalence
in the framework of a Markovian process calculus including exponentially timed internal actions.
Then, we show that the resulting behavioral equivalence is a congruence, has a sound and complete
axiomatization, has a modal logic characterization, and can be decided in polynomial time.

1 Introduction

Markovian behavioral equivalences are a means to relate and manipulate formal models with an underly-
ing continuous-time Markov chain (CTMC) semantics. Various proposals have appeared in the literature,
which are extensions of the traditional approaches to the definition of behavioral equivalences. Marko-
vian bisimilarity [14, 13, 5] considers two processes to be equivalent whenever they are able to mimic
each other’s functional and performance behavior stepwise. Markovian testing equivalence [2] considers
two processes to be equivalent whenever an external observer is not able to distinguish between them
from a functional or performance viewpoint by interacting with them by means of tests and comparing
their reactions. Markovian trace equivalence [19] considers two processes to be equivalent whenever
they are able to perform computations with the same functional and performance characteristics.

The three Markovian behavioral equivalences mentioned above have different discriminating powers
as a consequence of their different definitions. However, they are all meaningful not only from a func-
tional standpoint [17, 11, 7], but also from a performance standpoint. In fact, Markovian bisimilarity is
known to be in agreement with an exact CTMC-level aggregation called ordinary lumpability [14, 8],
while Markovian testing and trace equivalences are known to be consistent with a coarser exact CTMC-
level aggregation called T-lumpability [2, 3].

In this paper, we focus on the treatment of internal actions – denoted byτ as usual – that are ex-
ponentially timed. Unlike internal actions of nondeterministic processes, exponentially timed internal
actions cannot be abstracted away, because their execution takes a nonzero amount of time and hence
can be observed. To be precise, in [14, 6, 1] the issue of abstracting from them has been addressed, but it
remains unclear whether and to what extent abstraction is possible, especially if we want to end up with
a weak Markovian behavioral equivalence that induces a nontrivial, exact CTMC-level aggregation.

The definition of Markovian bisimilarity smoothly includes exponentially timed internal actions, by
applying to them the same exit rate equality check that is applied to exponentially timed visible actions.
Unfortunately, this is not the case with Markovian testing and trace equivalences as witnessed by the
theory developed for them, which does not admit exponentially timed internal actions within processes.
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When present, these actions must be carefully taken into account in order not to equate processes that
are distinguishable from a timing viewpoint. As an example, givenλ ,µ ∈ R>0, processes “<τ,λ>.0”
– which can only execute an exponentially timed internal action whose average duration is1/λ – and
“<τ ,µ>.0” – which can only execute an exponentially timed internal action whose average duration
is 1/µ – should not be considered equivalent ifλ > µ, as the durations of their actions are sampled
from different exponential probability distributions. Moreover, if they were considered equivalent, then
congruence with respect to alternative and parallel composition would not hold.

With the definition of Markovian testing equivalence given in [2] – which compares the probabilities
of passing the same test within the same average time upper bound – there is no way to distinguish
between the two processes above, as they pass with probability 1 the test comprising only the success
state and with probability 0 any other test, independent of the fixed average time upper bound. In this
paper, we show that a simple way to distinguish between the two processes above consists of imposing
an additional constraint on the length of the successful computations to take into account.

For instance, if we take a test comprising only the success state, the two processes above pass the test
with probability 1 for every average time upper bound if we restrict ourselves to successful computations
of length 0. However, if we move to successful computations of length 1 and we use1/λ as average time
upper bound, it turns out that<τ ,λ>.0 reaches success with probability 1 – as it has enough time on
average to perform its only action – whereas<τ ,µ>.0 does not – as it has not enough time on average
to perform its only action by the deadline. A similar idea applies to Markovian trace equivalence.

After introducing a Markovian process calculus that includes exponentially timed internal actions
(Sect.2), we present a new definition of Markovian testing equivalence that embodies the idea illustrated
above (Sect.3). Then, we show that(i) it coincides with the equivalence defined in [2] when exponen-
tially timed internal actions are absent,(ii) its discriminating power does not change if we introduce
exponentially timed internal actions within tests, and(iii ) it inherits the fully abstract characterization
studied in [2] (Sect.4). Furthemore, we show that it is a congruence with respect to typical dynamic
and static operators (Sect.5) and has a sound and complete axiomatization for nonrecursive processes
(Sect.6), thus overcoming the limitation to dynamic operators of analogous results contained in [2]. Fi-
nally, we show that it has a modal logic characterization (Sect.7), which is based on the same modal
language as [4], and that it can be decided in polynomial time (Sect.8).

2 Markovian Process Calculus

In this section, we present a process calculus in which every action has associated with it a rate that
uniquely identifies its exponentially distributed duration. The definition of the syntax and of the seman-
tics for the resulting Markovian process calculus – MPC for short – is followed by the introduction of
some notations related to process terms and their computations that will be used in the rest of the paper.

2.1 Durational Actions and Behavioral Operators

In MPC, an exponentially timed action is represented as a pair<a,λ>. The first element,a, is the name
of the action, which isτ in the case that the action is internal, otherwise it belongs to a setNamev of
visible action names. The second element,λ ∈ R>0, is the rate of the exponentially distributed random
variableRV quantifying the duration of the action, i.e.,Pr{RV≤ t}= 1−e−λ ·t for t ∈R>0. The average
duration of the action is equal to the reciprocal of its rate, i.e.,1/λ . If several exponentially timed actions
are enabled, the race policy is adopted: the action that is executed is the fastest one.
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The sojourn time associated with a process termP is thus the minimum of the random variables
quantifying the durations of the exponentially timed actions enabled byP. Since the minimum of several
exponentially distributed random variables is exponentially distributed and its rate is the sum of the rates
of the original variables, the sojourn time associated withP is exponentially distributed with rate equal
to the sum of the rates of the actions enabled byP. Therefore, the average sojourn time associated with
P is the reciprocal of the sum of the rates of the actions it enables. The probability of executing one of
those actions is given by the action rate divided by the sum of the rates of all the considered actions.

Passive actions of the form<a,∗w> are also included in MPC, wherew∈ R>0 is the weight of the
action. The duration of a passive action is undefined. When several passive actions are enabled, the re-
active preselection policy is adopted. This means that, within every set of enabled passive actions having
the same name, each such action is given an execution probability equal to the action weight divided by
the sum of the weights of all the actions in the set. Instead, the choice among passive actions having
different names is nondeterministic. Likewise, the choice between a passive action and an exponentially
timed action is nondeterministic.

MPC comprises a CSP-like parallel composition operator [7] relying on an asymmetric synchroniza-
tion discipline [5], according to which an exponentially timed action can synchronize only with a passive
action having the same name. In other words, the synchronization between two exponentially timed
actions is forbidden. Following the terminology of [12], the adopted synchronization discipline mixes
generative and reactive probabilistic aspects. Firstly, among all the enabled exponentially timed actions,
the proposal of an action name is generated after a selection based on the rates of those actions. Secondly,
the enabled passive actions that have the same name as the proposed one react by means of a selection
based on their weights. Thirdly, the exponentially timed action winning the generative selection and the
passive action winning the reactive selection synchronize with each other. The rate of the synchroniza-
tion is given by the rate of the selected exponentially timed action multiplied by the execution probability
of the selected passive action, thus complying with the bounded capacity assumption [14].

We denote byAct= Name×Ratethe set of actions of MPC, whereName= Namev∪{τ} is the set of
action names – ranged over bya,b – andRate=R>0∪{∗w |w∈R>0} is the set of action rates – ranged
over by λ̃ , µ̃ . We then denote byRelaba set of relabeling functionsϕ : Name→ Namethat preserve
action visibility, i.e., such thatϕ−1(τ) = {τ}. Finally, we denote byVar a set of process variables ranged
over byX,Y.

Definition 2.1 The set of process terms of the process languagePL is generated by the following
syntax:

P ::= 0 inactive process
| <a,λ>.P exponentially timed action prefix
| <a,∗w>.P passive action prefix
| P+P alternative composition
| P‖SP parallel composition
| P/H hiding
| P[ϕ ] relabeling
| X process variable
| recX : P recursion

wherea∈ Name, λ ,w∈ R>0, S,H ⊆ Namev, ϕ ∈ Relab, andX ∈ Var. We denote byP the set of closed
and guarded process terms ofPL .
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2.2 Operational Semantics

The semantics for MPC can be defined in the usual operational style, with an important difference with
respect to the nondeterministic case. A process term like<a,λ>.0+ <a,λ>.0 is not the same as
<a,λ>.0, because the average sojourn time associated with the latter, i.e.,1/λ , is twice the average
sojourn time associated with the former, i.e.,1/(λ + λ ). In order to assign distinct semantic models to
terms like the two considered above, we have to take into account the multiplicity of each transition,
intended as the number of different proofs for the transition derivation. The semantic model[[P]] for a
process termP∈ P is thus a labeled multitransition system, whose multitransition relation is contained
in the smallest multiset of elements ofP×Act×P satisfying the operational semantic rules of Table1
({ ↪→ } denotes syntactical replacement;{| , |} are multiset parentheses).

We observe that exponential distributions fit well with the interleaving view of parallel composition.
Due to their memoryless property, the execution of an exponentially timed action can be thought of as
being started in the last state in which the action is enabled. Due to their infinite support, the probability
that two concurrent exponentially timed actions terminate simultaneously is zero.

The CTMC underlying a process termP∈ P can be derived from[[P]] iff this labeled multitransition
system has no passive transitions, in which case we say thatP is performance closed. We denote byPpc

the set of performance closed process terms ofP.

2.3 Exit Rates of Process Terms

The exit rate of a process termP∈P is the rate at whichP can execute actions of a certain namea∈Name
that lead to a certain destinationD ⊆ P and is given by the sum of the rates of those actions due to the
race policy. We consider a two-level definition of exit rate, with level0 corresponding to exponentially
timed actions and level−1 corresponding to passive actions:

ratee(P,a, l ,D) =





∑{|λ ∈ R>0 | ∃P′ ∈ D.P
a,λ−−−→P′ |} if l = 0

∑{|w∈ R>0 | ∃P′ ∈ D.P
a,∗w−−−→P′ |} if l =−1

where each summation is taken to be zero whenever its multiset is empty.
By summing up the rates of all the actions of a certain levell thatP can execute, we obtain the total

exit rate ofP at levell :
ratet(P, l) = ∑

a∈Name
rateo(P,a, l)

where:
rateo(P,a, l) = ratee(P,a, l ,P)

is the overall exit rate ofP with respect toa at levell .
If P is performance closed, thenratet(P,0) coincides with the reciprocal of the average sojourn time

associated withP. Instead,rateo(P,a,−1) coincides withweight(P,a).

2.4 Probability and Duration of Computations

A computation of a process termP∈ P is a sequence of transitions that can be executed starting fromP.
The length of a computation is given by the number of transitions occurring in it. We denote byCf(P)
the multiset of finite-length computations ofP. We say that two distinct computations are independent
of each other if neither is a proper prefix of the other one. In the following, we concentrate on finite
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(PRE1)
<a,λ>.P

a,λ−−−→P
(PRE2)

<a,∗w>.P
a,∗w−−−→P

(ALT1)
P1

a,λ̃−−−→P′

P1 +P2
a,λ̃−−−→P′

(ALT2)
P2

a,λ̃−−−→P′

P1 +P2
a,λ̃−−−→P′

(PAR1)
P1

a,λ̃−−−→P′1 a /∈ S

P1‖SP2
a,λ̃−−−→P′1‖SP2

(PAR2)
P2

a,λ̃−−−→P′2 a /∈ S

P1‖SP2
a,λ̃−−−→P1‖SP′2

(SYN1)
P1

a,λ−−−→P′1 P2
a,∗w−−−→P′2 a∈ S

P1‖SP2

a,λ · w
weight(P2,a)

−−−−−−−−−−−−−−−→P′1‖SP′2

(SYN2)
P1

a,∗w−−−→P′1 P2
a,λ−−−→P′2 a∈ S

P1‖SP2

a,λ · w
weight(P1,a)

−−−−−−−−−−−−−−−→P′1‖SP′2

(SYN3)
P1

a,∗w1−−−→P′1 P2

a,∗w2−−−→P′2 a∈ S

P1‖SP2

a,∗norm(w1,w2,a,P1,P2)

−−−−−−−−−−−−−−−−−−→P′1‖SP′2

(HID1)
P

a,λ̃−−−→P′ a∈ H

P/H
τ,λ̃−−−→P′/H

(HID2)
P

a,λ̃−−−→P′ a /∈ H

P/H
a,λ̃−−−→P′/H

(REL)
P

a,λ̃−−−→P′

P[ϕ]
ϕ(a),λ̃
−−−→P′[ϕ]

(REC)
P{recX : P ↪→ X} a,λ̃−−−→P′

recX : P
a,λ̃−−−→P′

weight(P,a) = ∑{|w∈ R>0 | ∃P′ ∈ P.P a,∗w−−−→P′ |}
norm(w1,w2,a,P1,P2) = w1

weight(P1,a) · w2
weight(P2,a) · (weight(P1,a)+weight(P2,a))

Table 1:Operational semantic rules for MPC
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multisets of independent, finite-length computations. Below we define the probability and the duration
of a computationc∈Cf(P) for P∈ Ppc, using ◦ for sequence concatenation and| | for sequence length.

The probability of executingc is the product of the execution probabilities of the transitions ofc:

prob(c) =

{
1 if |c|= 0

λ
ratet(P,0) ·prob(c′) if c≡ P

a,λ−−−→ c′

We also define the probability of executing a computation inC⊆ Cf(P) as:

prob(C) = ∑
c∈C

prob(c)

wheneverC is finite and all of its computations are independent of each other.
The stepwise average duration ofc is the sequence of average sojourn times in the states traversed

by c:

timea(c) =

{
ε if |c|= 0

1
ratet(P,0) ◦ timea(c′) if c≡ P

a,λ−−−→ c′

whereε is the empty stepwise average duration. We also define the multiset of computations inC⊆Cf(P)
whose stepwise average duration is not greater thanθ ∈ (R>0)∗ as:

C≤θ = {|c∈C | |c| ≤ |θ |∧∀i = 1, . . . , |c|. timea(c)[i]≤ θ [i] |}

Moreover, we denote byCl the multiset of computations inC⊆ Cf(P) whose length is equal tol ∈ N.
We conclude by observing that the average duration of a finite-length computation has been defined as

the sequence of average sojourn times in the states traversed by the computation. The same quantity could
have been defined as the sum of the same basic ingredients, but this would not have been appropriate as
explained in [19, 2].

3 Redefining Markovian Testing Equivalence

The basic idea behind testing equivalence is to infer information about the behavior of process terms by
interacting with them by means of tests and comparing their reactions. In a Markovian setting, we are
not only interested in verifying whether tests are passed or not, but also in measuring the probability with
which they are passed and the time taken to pass them. Therefore, we have to restrict ourselves toPpc.

As in the nondeterministic setting, the most convenient way to represent a test is through a process
term, which interacts with any process term under test by means of a parallel composition operator
that enforces synchronization on the setNamev of all visible action names. Due to the adoption of
an asymmetric synchronization discipline, a test can comprise only passive visible actions, so that the
composite term inherits performance closure from the process term under test.

From a testing viewpoint, in any of its states a process term under test generates the proposal of an
action to be executed by means of a race among the exponentially timed actions enabled in that state. If
the name of the proposed action isτ, then the process term advances by itself. Otherwise, the test either
reacts by participating in the interaction with the process term through a passive action having the same
name as the proposed exponentially timed action, or blocks the interaction if it has no passive actions
with the proposed name.
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Markovian testing equivalence relies on comparing the process term probabilities of performing suc-
cessful test-driven computations within arbitrary sequences of average amounts of time. Due to the
presence of these average time upper bounds, for the test representation we can restrict ourselves to
nonrecursive process terms. In other words, the expressiveness provided by finite-state labeled multi-
transition systems with an acyclic structure is enough for tests.

In order not to interfere with the quantitative aspects of the behavior of process terms under test, we
avoid the introduction of a success actionω. The successful completion of a test is formalized in the
text syntax by replacing0 with a zeroary operator s denoting a success state. Ambiguous tests including
several summands among which at least one equal to s are avoided through a two-level syntax.

Definition 3.1 The setTR of reactive tests is generated by the following syntax:

T ::= s | T ′
T ′ ::= <a,∗w>.T | T ′+T ′

wherea∈ Namev andw∈ R>0.

Definition 3.2 Let P∈ Ppc andT ∈ TR. The interaction system ofP andT is process termP‖Namev T ∈
Ppc and we say that:

• A configuration is a state of[[P‖Namev T]], which is formed by a process and a test projection.

• A configuration is successful iff its test projection is s.

• A test-driven computation is a computation of[[P‖Namev T]].

• A test-driven computation is successful iff it traverses a successful configuration.

We denote byS C (P,T) the multiset of successful computations ofP‖Namev T.

If a process termP∈ Ppc under test has no exponentially timedτ-actions as it was in [2], then for
all reactive testsT ∈ TR it turns out that:(i) all the computations inS C (P,T) have a finite length due
to the restrictions imposed on the test syntax;(ii) all the computations inS C (P,T) are independent of
each other because of their maximality;(iii ) the multisetS C (P,T) is finite becauseP andT are finitely
branching. Thus, all definitions of Sect.2.4are applicable toS C (P,T) and also toS C≤θ (P,T) for any
sequenceθ ∈ (R>0)∗ of average amounts of time.

In order to cope with the possible presence of exponentially timedτ-actions withinP in such a
way that all the properties above hold – especially independence – we have to consider subsets of
S C≤θ (P,T) including all successful test-driven computations of the same length. This is also necessary
to distinguish among process terms comprising only exponentially timedτ-actions – like<τ ,λ>.0 and
<τ,µ>.0, with λ > µ, mentioned in Sect.1 – as there is a single test, s, that those process terms can
pass. The only option is to compare them after executing the same number ofτ-actions.

Since no element ofS C≤θ (P,T) can be longer than|θ |, we should consider every possible subset

S C l
≤θ (P,T) for 0≤ l ≤ |θ |. However, it is enough to considerS C

|θ |
≤θ (P,T), as shorter successful

test-driven computations can be taken into account when imposing prefixes ofθ as average time upper
bounds. Therefore, the novelty with respect to [2] is simply the presence of the additional constraint|θ |.
Definition 3.3 Let P1,P2 ∈ Ppc. We say thatP1 is Markovian testing equivalent toP2, writtenP1∼MT P2,
iff for all reactive testsT ∈ TR and sequencesθ ∈ (R>0)∗ of average amounts of time:

prob(S C
|θ |
≤θ (P1,T)) = prob(S C

|θ |
≤θ (P2,T))
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Note that we have not defined a may equivalence and a must equivalence as in the nondeterministic
case [11]. The reason is that in this Markovian framework the possibility and the necessity of passing
a test are not sufficient to discriminate among process terms, as they are qualitative concepts. What we
have considered here is a single quantitative notion given by the probability of passing a test (within
an average time upper bound); hence, the definition of a single equivalence. This quantitative notion
subsumes both the possibility of passing a test – which can be encoded as the probability of passing the
test being greater than zero – and the necessity of passing a test – which can be encoded as the probability
of passing the test being equal to one.

Although we could have defined Markovian testing equivalence as the kernel of a Markovian testing
preorder, this has not been done. The reason is that such a preorder would have boiled down to an
equivalence relation, because for each reactive test passed byP1 within θ with a probability less than the
probability with whichP2 passes the same test withinθ , in general it is possible to find a dual reactive
test for which the relation between the two probabilities is inverted.

Another important difference with respect to the nondeterministic case is that the presence of average
time upper bounds makes it possible to decide whether a test is passed or not even if the process term
under test can execute infinitely many exponentially timedτ-actions. In other words,τ-divergence does
not need to be taken into account.

4 Basic Properties and Characterizations

First of all, we observe that, whenever exponentially timedτ-actions are absent, the new Markovian
testing equivalence∼MT coincides with the old one defined in [2], which we denote by∼MT,old. In the
following, we usePpc,v to refer to the process terms ofPpc that contain no exponentially timedτ-actions.

Proposition 4.1 Let P1,P2 ∈ Ppc,v. ThenP1 ∼MT P2 ⇐⇒ P1 ∼MT,old P2.

Then, we have two alternative characterizations of∼MT , which provide further justifications for the
way in which the equivalence has been defined. The first one establishes that the discriminating power
does not change if we consider a setTR,lib of tests with the following more liberal syntax:

T ::= s |<a,∗w>.T | T +T
provided that by successful configuration we mean a configuration whose test projection includes s as
top-level summand. Let us denote by∼MT,lib the resulting variant of Markovian testing equivalence.

Proposition 4.2 Let P1,P2 ∈ Ppc. ThenP1 ∼MT,lib P2 ⇐⇒ P1 ∼MT P2.

The second characterization establishes that the discriminating power does not change if we consider
a setTR,τ of tests capable of moving autonomously by executing exponentially timedτ-actions:

T ::= s | T ′
T ′ ::= <a,∗w>.T |<τ,λ>.T | T ′+T ′

Let us denote by∼MT,τ the resulting variant of Markovian testing equivalence.

Proposition 4.3 Let P1,P2 ∈ Ppc. ThenP1 ∼MT,τ P2 ⇐⇒ P1 ∼MT P2.

Finally, we have two further alternative characterizations of∼MT coming from [2]. The first one
establishes that the discriminating power does not change if we consider the (more accurate) probability
distribution of passing tests within arbitrary sequences of amounts of time, rather than the (easier to work
with) probability of passing tests within arbitrary sequences of average amounts of time.

The second characterization fully abstracts from comparing process term behavior in response to
tests. This is achieved by considering traces that are extended at each step with the set of visible action
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names permitted by the environment at that step (not to be confused with a ready set). A consequence
of the structure of extended traces is the identification of a setTR,c of canonical reactive tests, which is
generated by the following syntax:

T ::= s |<a,∗1>.T + ∑
b∈E−{a}

<b,∗1>.<z,∗1>.s

wherea ∈ E , E ⊆ Namev finite, the summation is absent wheneverE = {a}, and z is a visible action
name representing failure that can occur within tests but not within process terms under test. Similar
to the case of probabilistic testing equivalence [9, 10], each of these canonical reactive tests admits a
single computation leading to success, whose intermediate states can have additional computations each
leading to failure in one step. We point out that the canonical reactive tests are name deterministic, in the
sense that the names of the passive actions occurring in any of their branches are all distinct.

5 Congruence Property

Markovian testing equivalence is a congruence with respect to all MPC operators. In particular, un-
like [2], we have a full congruence result with respect to parallel composition.

Theorem 5.1 Let P1,P2 ∈ Ppc. WheneverP1 ∼MT P2, then:

1. <a,λ>.P1 ∼MT <a,λ>.P2 for all <a,λ> ∈ Act.

2. P1 +P∼MT P2 +P andP+P1 ∼MT P+P2 for all P∈ Ppc.

3. P1‖SP∼MT P2‖SP andP‖SP1 ∼MT P‖SP2 for all P∈ P andS⊆ Namev s.t.P1‖SP,P2‖SP∈ Ppc.

4. P1/H ∼MT P2/H for all H ⊆ Namev.

5. P1[ϕ]∼MT P2[ϕ] for all ϕ ∈ Relab.

It is worth stressing that the additional constraint on the length of successful test-driven computa-
tions present in Def.3.3 is fundamental for achieving congruence with respect to alternative and paral-
lel composition. As an example, if it were<τ ,λ>.0∼MT <τ,µ>.0 for λ > µ, then we would have
<τ,λ>.0+<a,γ>.0 6∼MT <τ,µ>.0+<a,γ>.0. In fact, when the average time upper bound is high
enough, the probability of passing<a,∗1>.s is γ

λ+γ for the first term, whereas it isγ
µ+γ for the second

term. We also mention that Props.4.2and4.3are exploited in the congruence proof for static operators.

6 Sound and Complete Axiomatization

Markovian testing equivalence has a sound and complete axiomatization over the setPpc,nrec of nonre-
cursive process terms ofPpc, given by the setAMT of equational laws of Table2.

Apart from the usual laws for the alternative composition operator and for the unary static operators,
unlike the axiomatization of [2] we now have laws dealing with concurrency. In particular, axiomAMT,5

concerning the parallel composition ofP≡ ∑i∈I <ai , λ̃i>.Pi andQ≡ ∑ j∈J <b j , µ̃ j>.Q j – whereI andJ
are nonempty finite index sets and each summation on the right-hand side of the axiom is taken to be0
whenever its set of summands is empty – is the expansion law when enforcing generative-reactive and
reactive-reactive synchronizations. This axiom applies to non-performance-closed process terms too;
e.g., the last addendum on its right-hand side is related to reactive-reactive synchronizations.
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(AMT,1) P1 +P2 = P2 +P1

(AMT,2) (P1 +P2)+P3 = P1 +(P2 +P3)
(AMT,3) P+0 = P

(AMT,4) ∑
i∈I

<a,λi>. ∑
j∈Ji

<bi, j ,µi, j>.Pi, j = <a, Σ
k∈I

λk>. ∑
i∈I

∑
j∈Ji

<bi, j ,
λi

Σk∈I λk
·µi, j>.Pi, j

if: I is a finite index set with|I | ≥ 2;
for all i ∈ I , index setJi is finite and its summation is0 if Ji = /0;
for all i1, i2 ∈ I andb∈ Name:

∑
j∈Ji1

{|µi1, j | bi1, j = b|} = ∑
j∈Ji2

{|µi2, j | bi2, j = b|}

(AMT,5) ∑
i∈I

<ai , λ̃i>.Pi ‖S ∑
j∈J

<b j , µ̃ j>.Q j =

∑
k∈I ,ak /∈S

<ak, λ̃k>.

(
Pk ‖S ∑

j∈J
<b j , µ̃ j>.Q j

)
+

∑
h∈J,bh/∈S

<bh, µ̃h>.

(
∑
i∈I

<ai , λ̃i>.Pi ‖S Qh

)
+

∑
k∈I ,ak∈S,λ̃k∈R>0

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, λ̃k · wh
weight(Q,bh)

>.(Pk ‖S Qh) +

∑
h∈J,bh∈S,µ̃h∈R>0

∑
k∈I ,ak=bh,λ̃k=∗vk

<bh, µ̃h · vk
weight(P,ak)

>.(Pk ‖S Qh) +

∑
k∈I ,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,µ̃h=∗wh

<ak,∗norm(vk,wh,ak,P,Q)>.(Pk ‖S Qh)

(AMT,6) ∑
i∈I

<ai , λ̃i>.Pi ‖S 0 = ∑
k∈I ,ak /∈S

<ak, λ̃k>.Pk

(AMT,7) 0 ‖S ∑
j∈J

<b j , µ̃ j>.Q j = ∑
h∈J,bh/∈S

<bh, µ̃h>.Qh

(AMT,8) 0 ‖S 0 = 0

(AMT,9) 0/H = 0
(AMT,10) (<a, λ̃>.P)/H = <τ, λ̃>.(P/H) if a∈ H
(AMT,11) (<a, λ̃>.P)/H = <a, λ̃>.(P/H) if a /∈ H
(AMT,12) (P1 +P2)/H = P1/H +P2/H

(AMT,13) 0[ϕ] = 0
(AMT,14) (<a, λ̃>.P)[ϕ] = <ϕ(a), λ̃>.(P[ϕ])
(AMT,15) (P1 +P2)[ϕ] = P1[ϕ]+P2[ϕ]

Table 2:Equational laws for∼MT
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Like in [2], the law characterizing∼MT is the axiom schemaAMT,4, which in turn subsumes the law
<a,λ1>.P+<a,λ2>.P = <a,λ1+λ2>.P characterizing Markovian bisimilarity. The simplest instance
of axiom schemaAMT,4 is depicted below:

+1λ 2λ

+1λ 2λ
b,_____ µ1λ .

+1λ 2λ
b,_____ µλ2 .

MT~
a, a,

µ µb, b,

a,

P PP

1λ 2λ

1 2 1 P2

As emphasized by the figure above,∼MT allows choices to be deferred in the case of branches that start
with the same action name (see the twoa-branches on the left-hand side) and are followed by sets of
actions having the same names and total rates (see{<b,µ>} after each of the twoa-branches).

Theorem 6.1 Let P1,P2 ∈ Ppc,nrec. ThenAMT ` P1 = P2 ⇐⇒ P1 ∼MT P2.

7 Modal Logic Characterization

Markovian testing equivalence has a modal logic characterization that, as in [4], is based on a modal
language comprising true, disjunction, and diamond. A constraint is imposed on formulas of the form
φ1∨φ2, which does not reduce the expressive power as it is consistent with the name-deterministic nature
of branches within canonical reactive tests (see Sect.4).

Definition 7.1 The set of formulas of the modal languageML MT is generated by the following syntax:

φ ::= true| φ ′
φ ′ ::= 〈a〉φ | φ ′∨φ ′

wherea∈ Namev and each formula of the formφ1∨φ2 satisfies:
init(φ1)∩ init(φ2) = /0

with init(φ) being defined by induction on the syntactical structure ofφ as follows:
init(true) = /0

init(〈a〉φ) = {a}
init(φ1∨φ2) = init(φ1)∪ init(φ2)

Probabilistic and temporal information do not decorate any operator of the modal language, but come
into play through a quantitative interpretation function inspired by [16] that replaces the usual boolean
satisfaction relation. This interpretation function measures the probability that a process term satisfies
a formula quickly enough on average. The constraint imposed by Def.7.1 on disjunctions guarantees
that their subformulas exercise independent computations of the process term, thus ensuring the correct
calculation of the probability of satisfying the overall formula. In order to manage exponentially timed
τ-actions, unlike [4] the length of the computations satisfying the formula has to be taken into account
as well.

Definition 7.2 The interpretation function[[.]].MT of ML MT overPpc× (R>0)∗ is defined by letting:

[[φ ]]|θ |MT(P,θ) =





0 if |θ |= 0∧φ 6≡ true or
|θ |> 0∧ rateo(P, init(φ)∪{τ},0) = 0

1 if |θ |= 0∧φ ≡ true
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otherwise by induction on the syntactical structure ofφ and on the length ofθ as follows:

[[true]]|t◦θ |
MT (P, t ◦θ) =





∑
P

τ,λ−−−→P′

λ
rateo(P,τ,0) · [[true]]|θ |MT(P′,θ) if 1

rateo(P,τ,0) ≤ t

0 if 1
rateo(P,τ,0) > t

[[〈a〉φ ]]|t◦θ |
MT (P, t ◦θ) =





∑
P

a,λ−−−→P′

λ
rateo(P,{a,τ},0) · [[φ ]]|θ |MT(P′,θ) +

∑
P

τ,λ−−−→P′

λ
rateo(P,{a,τ},0) · [[〈a〉φ ]]|θ |MT(P′,θ) if 1

rateo(P,{a,τ},0) ≤ t

0 if 1
rateo(P,{a,τ},0) > t

[[φ1∨φ2]]
|t◦θ |
MT (P, t ◦θ) = p1 · [[φ1]]

|t1◦θ |
MT (Pno-init-τ , t1◦θ)+ p2 · [[φ2]]

|t2◦θ |
MT (Pno-init-τ , t2◦θ)

+ ∑
P

τ,λ−−−→P′

λ
rateo(P,init(φ1∨φ2)∪{τ},0) · [[φ1∨φ2]]

|θ |
MT(P′,θ)

wherePno-init-τ is P devoid of all of its computations starting with aτ-transition – which is assumed to be
0 whenever all the computations ofP start with aτ-transition – and forj ∈ {1,2}:

p j = rateo(P,init(φ j ),0)
rateo(P,init(φ1∨φ2)∪{τ},0) t j = t +( 1

rateo(P,init(φ j ),0) − 1
rateo(P,init(φ1∨φ2)∪{τ},0))

In the definition above,p j represents the probability with whichP performs actions whose name is in
init(φ j) rather than actions whose name is ininit(φk)∪{τ}, k = 3− j, given thatP can perform actions
whose name is ininit(φ1∨φ2)∪{τ}. These probabilities are used as weights for the correct account of
the probabilities with whichP satisfies onlyφ1 or φ2 in the context of the satisfaction ofφ1∨φ2. If such
weights were omitted, then the fact thatφ1∨φ2 offers a set of initial actions at least as large as the ones
offered byφ1 alone and byφ2 alone would be ignored, thus leading to a potential overestimate of the
probability of satisfyingφ1∨φ2.

Similarly, t j represents the extra average time granted toP for satisfying onlyφ j . This extra average
time is equal to the difference between the average sojourn time inP when only actions whose name is in
init(φ j) are enabled and the average sojourn time inP when also actions whose name is ininit(φk)∪{τ},
k = 3− j, are enabled. Since the latter cannot be greater than the former due to the race policy – more
enabled actions means less time spent on average in a state – consideringt instead oft j in the satisfaction
of φ j in isolation would lead to a potential underestimate of the probability of satisfyingφ1∨φ2 within
the given average time upper bound, asP may satisfyφ1∨φ2 within t ◦ θ even ifP satisfies neitherφ1

nor φ2 taken in isolation withint ◦θ .

Theorem 7.3 P1 ∼MT P2 ⇐⇒ ∀φ ∈ML MT .∀θ ∈ (R>0)∗. [[φ ]]|θ |MT(P1,θ) = [[φ ]]|θ |MT(P2,θ).

8 Verification Algorithm

Markovian testing equivalence can be decided in polynomial time. The reason is that Markovian testing
equivalence coincides with Markovian ready equivalence and, given two process terms, their underlying
CTMCs in which action names have not been discarded from transition labels are Markovian ready
equivalent iff the corresponding embedded DTMCs in which transitions have been labeled with suitably
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augmented names are related by probabilistic ready equivalence. The latter equivalence is decidable in
polynomial time [15] through a reworking of the algorithm for probabilistic language equivalence [18].

Following [19], the transformation of a name-labeled CTMC into the corresponding embedded name-
labeled DTMC is carried out by simply turning the rate of each transition into the corresponding execu-
tion probability. Then, we need to encode the total exit rate of each state of the original name-labeled
CTMC inside the names of all transitions departing from that state in the associated embedded DTMC.

Acknowledgment: This work has been funded by MIUR-PRIN projectPaCo – Performability-Aware
Computing: Logics, Models, and Languages.
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A Appendix

This appendix contains the proofs of the results shown in Sects.4, 5, 6, 7, and8. Some of these results
are based on a necessary condition for establishing whether two process terms are Markovian testing
equivalent, which we now recall after introducing the notion of trace associated with a computation.

Definition A.1 Let P ∈ P andc ∈ Cf(P). The concrete trace associated with the execution ofc is the
sequence of action names labeling the transitions ofc:

tracec(c) =

{
ε if |c|= 0

a◦ tracec(c′) if c≡ P
a,λ̃−−−→ c′

whereε is the empty trace. We denote bytrace(c) the visible part oftracec(c), i.e., the subsequence of
tracec(c) obtained by removing all the occurrences ofτ.

The above mentioned necessary condition requires that for each computation of any of the two terms
there exists a computation of the other term with the same concrete trace and stepwise average duration,
such that any pair of corresponding states traversed by the two computations have the same overall exit
rates with respect to all action names.

Proposition A.2 Let P1,P2 ∈ Ppc. WheneverP1 ∼MT P2, then for allck ∈ Cf(Pk), k∈ {1,2}, there exists
ch ∈ Cf(Ph), h∈ {1,2}−{k}, such that:

tracec(ck) = tracec(ch)
timea(ck) = timea(ch)

and for alla∈ Nameandi ∈ {0, . . . , |ck|}:
rateo(Pi

k,a,0) = rateo(Pi
h,a,0)

with Pi
k (resp.Pi

h) being thei-th state traversed byck (resp.ch).

Proof A reworking of the proof of Prop. 4.6/Cor. 4.7 of [2] that proceeds by induction on|ck|:
• Let |ck|= 0. Then it trivially existsch ∈ Cf(Ph) such that:

tracec(ck) = ε = tracec(ch)
timea(ck) = ε = timea(ch)

with ck andch being unique andP0
k ≡ Pk ∼MT Ph ≡ P0

h .
Suppose that for somea∈ Name:

rateo(P0
k ,a,0) > rateo(P0

h ,a,0)
If a = τ , for T ′ ≡ s andθ ′ = 1/rateo(P0

k ,τ,0) we would have:
prob(S C 1

≤θ ′(Pk,T ′)) = 1 6= 0 = prob(S C 1
≤θ ′(Ph,T ′))

which contradictsPk ∼MT Ph; hence, it must berateo(P0
k ,τ,0) = rateo(P0

h ,τ,0).
If a 6= τ, for T ′′ ≡<a,∗1>.s andθ ′′ = 1/(rateo(P0

k ,a,0)+ rateo(P0
k ,τ,0)) we would have:

prob(S C 1
≤θ ′′(Pk,T ′′)) > 0 = prob(S C 1

≤θ ′′(Ph,T ′′))
which again contradictsPk ∼MT Ph; hence, it must berateo(P0

k ,a,0) = rateo(P0
h ,a,0) also for all

a∈ Namev.

• Let |ck| = n > 0 and assume that the result holds for all computations inCf(Pk) of length less

thann. Supposeck≡ c′k
a′,λ−−−→Pn

k . Sincec′k belongs toCf(Pk) and has length equal ton−1, by the
induction hypothesis there existsc′h ∈ Cf(Ph) such that:

tracec(c′k) = tracec(c′h)
timea(c′k) = timea(c′h)
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and for alla∈ Nameandi ∈ {0, . . . ,n−1}:
rateo(Pi

k,a,0) = rateo(Pi
h,a,0)

As a consequence, we have:
tracec(ck) = tracec(c′k)◦a′ =

= tracec(c′h)◦a′ = tracec(ch)
and:

timea(ck) = timea(c′k)◦ 1
ratet(Pn−1

k ,0)
=

= timea(c′h)◦ 1
ratet(Pn−1

h ,0)
= timea(ch)

wherech ≡ c′h
a′,µ

−−−→Pn
h belongs toCf(Ph), otherwise – i.e., ifc′h could not be extended with an

a′-transition inPh – a test whose only trace coincides withtrace(ck) would be enough to distin-
guishPk from Ph when considering successful test-driven computations of lengthn.
It remains to establish whetherrateo(Pn

k ,a,0) = rateo(Pn
h ,a,0) for all a∈ Name. Unlike the base

case of the induction,ck andch above are not necessarily unique – with respect to their concrete
trace, their stepwise average duration, and the overall exit rates of their traversed states except
for the last one – inCf(Pk) andCf(Ph), respectively. Since we are focusing on a specificck, we
now show that if for eachch, j ∈ Cf(Ph) having the same characteristics asch above there exists
a j ∈ Namesuch that:

rateo(Pn
k ,a j ,0) 6= rateo(Pn

h, j ,a j ,0)
then we can build a test that distinguishesPk from Ph.
In fact, consider a set of computations of lengthn with the same concrete trace and stepwise av-
erage duration asck andch above that intersects bothCf(Pk) andCf(Ph). We say that this set is
maximal iff it comprises all and only such computations with corresponding states – including the
last one – that pairwise enable actions with the same names and have the same total exit rate. Since
Pk∼MT Ph, the computations of a maximal set belonging toCf(Pk) have the same probability as the
computations of the maximal set belonging toCf(Ph), as can be seen by taking a test that enables
at each step all the visible actions occurring inPk andPh and reaches success only along a trace
coinciding with the trace characterizing the maximal set (the successful test-driven computations
to consider are those of lengthn for increasing average time upper bounds of lengthn).
We also say that a maximal set (of computations of lengthn with the same concrete trace and
stepwise average duration asck andch above) is rate matching iff for each computation of the set
belonging toCf(Pk) there exists a computation of the set belonging toCf(Ph) such that their corre-
sponding states – including the last one – pairwise have the same overall exit rates with respect to
all action names, and vice versa. SincePk ∼MT Ph, for all a∈ Namethe probability of performing
a computation of a rate-matching maximal set belonging toCf(Pk) extended with ana-transition is
the same as the probability of performing a computation of the rate-matching maximal set belong-
ing toCf(Pk) extended with ana-transition.
After removing every rate-matching maximal set from the sets of computations (belonging to
Cf(Pk) andCf(Ph)) of lengthn with the same concrete trace and stepwise average duration asck

andch above, at least one of the two setsCk andCh of remaining computations will be nonempty
because of the assumption thatck is not matched by anych, j . There are two cases.
In the first case, there exist some remaining computations in the same set, sayCk, such that the
last state of each of them has the same sumr of the overall exit rates with respect to a nonempty
subset{b1, . . . ,bm} of Name, while the last state of each of the other remaining computations has a
lower sum of the overall exit rates with respect to the same action names. If there are several such
groups of remaining computations, we take one whose nonempty subset ofNamegiving rise tor
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is minimal. In this case, we build a testT whose only trace coincides withtrace(ck) extended with
a choice amongmpassive transitions labeled withb1, . . . ,bm each leading to s. Ifτ ∈ {b1, . . . ,bm},
then there will be onlym−1 branches at the end ofT.
In the second case, there is no nonempty subset ofNamegiving rise to a maximum sum of overall
exit rates in the last state of remaining computations belonging all toCk or all to Ch. We then
take the non-rate-matching maximal set such that the last state of each of its computations has the
maximum total exit rater. If the last state of the computations of several non-rate-matching max-
imal sets has the same total exit rater, we take one set in which the last state of its computations
enables actions whose set of names is minimal. Let{b1, . . . ,bm} be the set of names of the actions
enabled by the last state of each of these computations, wherem > 1 otherwise the considered
maximal set would be rate matching. In this case, we build a testT whose only trace coincides
with trace(ck) extended with a choice amongm passive transitions labeled withb1, . . . ,bm – with
the branches beingm−1 if τ ∈ {b1, . . . ,bm} – such that only some of them leads to s, while the
others lead to<z,∗1>.s. Those leading to s have to be chosen on the basis of the different overall
exit rates with respect tob1, . . . ,bm exhibited by the last state of the computations of the consid-
ered non-rate-matching maximal set, so that the one-step extended versions of the computations
of the set belonging to, say,Ck get a higher probability than the one-step extended versions of
the computations of the set belonging toCh. The existence of a maximal set allowing for such a
choice is guaranteed by the validity of the non-rate-matching property within the maximal set and
the absence of a nonempty subset ofNamegiving rise to a maximum sum of overall exit rates in
the last state of remaining computations belonging all toCk or all toCh.
In each of the two cases, for some suitableθ of lengthn we would have:

prob(S C n+1
≤θ◦ 1

r
(Pk,T)) = pk +qk > ph +qh = prob(S C n+1

≤θ◦ 1
r
(Ph,T))

whereph = 0 in the first case andqk,qh ≥ 0 are the possible contributions of rate-matching max-
imal sets (whose stepwise average duration does not exceedθ and whose computations have last
states such that the sum of their overall exit rates with respect tob1, . . . ,bm does not exceedr),
with qk = qh by virtue ofPk ∼MT Ph. Since the above inequality contradictsPk ∼MT Ph, for at least
onech, j it must be:

rateo(Pn
k ,a,0) = rateo(Pn

h, j ,a,0)
for all a∈ Name.

Corollary A.3 Let P1,P2 ∈ Ppc. WheneverP1 ∼MT P2, then for alla∈ Name:
rateo(P1,a,0) = rateo(P2,a,0)

The condition expressed in Prop.A.2 is necessary but not sufficient. The following two process terms:
<a,λ1>.<b,µ>.0+<a,λ2>.<c,γ>.0
<a,λ ′1>.<b,µ>.0+<a,λ ′2>.<c,γ>.0

satisfy the condition whenλ1+λ2 = λ ′1+λ ′2, but are not Markovian testing equivalent ifλ1 6= λ ′1, λ2 6= λ ′2,
andb 6= c or µ 6= γ.

A.1 Proofs of Results of Sect.4

Proof of Prop. 4.1. Let us preliminarily observe that, givenP∈ Ppc,v, T ∈ TR, andθ ∈ (R>0)∗, due to
the absence of actions of the form<τ,λ> within P, every successful test-driven computation is maxi-
mal, i.e., it cannot be further extended. Denoting byθ |n the prefix ofθ of lengthn, it thus holds:

prob(S C≤θ (P,T)) =
|θ |
∑

n=0
prob(S C n

≤θ |n(P,T))
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GivenP1,P2 ∈ Ppc,v, we now proceed in two steps:

⇒ SupposingP1 ∼MT P2, from the initial observation we immediately derive that for allT ∈ TR and
θ ∈ (R>0)∗:

prob(S C≤θ (P1,T)) =
|θ |
∑

n=0
prob(S C n

≤θ |n(P1,T)) =

=
|θ |
∑

n=0
prob(S C n

≤θ |n(P2,T)) = prob(S C≤θ (P2,T))

henceP1 ∼MT,old P2.

⇐ SupposingP1 ∼MT,old P2, let us prove that for allT ∈ TR andθ ∈ (R>0)∗:
prob(S C

|θ |
≤θ (P1,T)) = prob(S C

|θ |
≤θ (P2,T))

by proceeding by induction on|θ |:
– Let |θ |= 0. From the initial observation andP1 ∼MT,old P2, we immediately derive:

prob(S C 0
≤ε(P1,T)) = prob(S C≤ε(P1,T)) =

= prob(S C≤ε(P2,T)) = prob(S C 0
≤ε(P2,T))

– Let |θ |= n > 0 and assume that for allm= 0, . . . ,n−1:
prob(S C m

≤θ |m(P1,T)) = prob(S C m
≤θ |m(P2,T))

from which it follows:
n−1
∑

m=0
prob(S C m

≤θ |m(P1,T)) =
n−1
∑

m=0
prob(S C m

≤θ |m(P2,T))

From the initial observation andP1 ∼MT,old P2, we then obtain:

prob(S C
|θ |
≤θ (P1,T)) = prob(S C≤θ (P1,T))−

n−1
∑

m=0
prob(S C m

≤θ |m(P1,T)) =

= prob(S C≤θ (P2,T))−
n−1
∑

m=0
prob(S C m

≤θ |m(P2,T)) = prob(S C
|θ |
≤θ (P2,T))

Proof of Prop. 4.2. We preliminarily observe that for allP∈ Ppc, T ∈TR−{s}, andθ ∈ (R>0)∗ it holds:

prob(S C
|θ |
≤θ (P,s+T)) = prob(S C

|θ |
≤θ (P,s))+prob(S C

|θ |
≤θ (P,T))

In fact, for|θ |=0 we haveprob(S C
|θ |
≤θ (P,s+T))=prob(S C

|θ |
≤θ (P,s))=1 andprob(S C

|θ |
≤θ (P,T))=0,

while for |θ |> 0 we haveprob(S C
|θ |
≤θ (P,s)) = 0 andprob(S C

|θ |
≤θ (P,s+T)) = prob(S C

|θ |
≤θ (P,T)).

GivenP1,P2 ∈ Ppc, we now proceed in two steps:

⇒ It follows from the fact thatTR ⊂ TR,lib .

⇐ In order to avoid trivial cases, we consider a testT ∈ TR,lib −TR and we derive from it a set of
testsbreaks(T)⊆ TR by proceeding by induction on the syntactical structure ofT as follows:

breaks(T) =





{s} if T ≡ s

{<a,∗w>.T ′′ | T ′′ ∈ breaks(T ′)} if T ≡<a,∗w>.T ′

breaks(T ′)∪{s} if T ≡ T ′+s orT ≡ s+T ′

{T ′1 +T ′2 | T ′1 ∈ breaks(T1)−{s}, if T ≡ T1 +T2 andT1 6≡ s 6≡ T2 and
T ′2 ∈ breaks(T2)−{s}}∪{s} s∈ breaks(T1)∪breaks(T2)

{T ′1 +T ′2 | T ′1 ∈ breaks(T1), if T ≡ T1 +T2 and
T ′2 ∈ breaks(T2)} s /∈ breaks(T1)∪breaks(T2)
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From the initial observation andP1 ∼MT P2, it follows that for allθ ∈ (R>0)∗ it holds:

prob(S C
|θ |
≤θ (P1,T)) = ∑

T ′∈breaks(T)
prob(S C

|θ |
≤θ (P1,T ′)) =

= ∑
T ′∈breaks(T)

prob(S C
|θ |
≤θ (P2,T ′)) = prob(S C

|θ |
≤θ (P2,T))

from which we can conclude thatP1 ∼MT,lib P2.

Proof of Prop. 4.3. We proceed in two steps:

⇒ It follows from the fact thatTR ⊂ TR,τ .

⇐ In order to avoid trivial cases, we consider a testT ∈ TR,τ −TR and we derive from it a test
removeτ(T) ∈ TR,lib by proceeding by induction on the syntactical structure ofT as follows:

removeτ(T) =





s if T ≡ s

<a,∗w>.removeτ(T ′) if T ≡<a,∗w>.T ′ (with a∈ Namev)

removeτ(T ′) if T ≡<τ,λ>.T ′

removeτ(T1)+ removeτ(T2) if T ≡ T1 +T2

Since removeτ(T) ∈ TR,lib , from the proof of Prop.4.2 and P1 ∼MT P2 we obtain that for all
θ ∈ (R>0)∗ it holds:

prob(S C
|θ |
≤θ (P1, removeτ (T))) = ∑

T ′∈breaks(removeτ (T))
prob(S C

|θ |
≤θ (P1,T ′)) =

= ∑
T ′∈breaks(removeτ (T))

prob(S C
|θ |
≤θ (P2,T ′)) = prob(S C

|θ |
≤θ (P2, removeτ (T)))

Due toP1 ∼MT P2, for eachT ′ ∈ breaks(removeτ(T)) we have:

prob(S C
|θ |
≤θ (P1,T ′)) = ∑

c′∈Cs(T ′)
prob(E S C

|θ |
≤θ (P1,T ′,c′)) =

= ∑
c′∈Cs(T ′)

prob(E S C
|θ |
≤θ (P2,T ′,c′)) = prob(S C

|θ |
≤θ (P2,T ′))

whereCs(T ′) is the multiset of computations ofT ′ ending with s andE S C (Pk,T ′,c′), k∈ {1,2},
is the multiset of successful computations ofPk driven byT ′ that exercisec′. Moreover, for each
c′ ∈ Cs(T ′) we have:

prob(E S C
|θ |
≤θ (P1,T ′,c′)) = prob(E S C

|θ |
≤θ (P2,T ′,c′))

When moving fromT to removeτ(T), for all c ∈ Cs(T) it holds that the computations ofPk,
k ∈ {1,2}, exercisingc are the same as those exercisingremoveτ(c), which is the computation
obtained fromc by removing all of itsτ-transitions. Therefore, it is possible to establish a bijec-
tive correspondence betweenE S C (Pk,T,c) andE S C (Pk, removeτ(T), removeτ(c)) and hence
with E S C (Pk,T ′, removeτ(c)) for eachT ′ ∈ breaks(removeτ(T)) such thatremoveτ(c) ∈ Cs(T ′).
SinceP1 ∼MT P2, by virtue of Prop.A.2 we have that for each computation ofP1 (resp.P2) exer-
cisingremoveτ(c) there exists a computation ofP2 (resp.P1) exercisingremoveτ(c), such that both
computations have the same concrete trace, have the same stepwise average duration, and traverse
states having pairwise the same overall exit rates with respect to the various action names.

As a consequence, when fromremoveτ(c) we go back toc, i.e., when we reintroduce the expo-
nentially timedτ-actions that had been removed, each of these actions comes into play in a pair
of corresponding states ofP1 andP2 having the same overall exit rates with respect to the various
action names. No reintroduced test action of the form<τ,λ> can discriminate between those two
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states, because it does not disable any of their actions but simply increases their total exit rates –
which are equal – by the same valueλ .

GivenT ′ ∈ breaks(removeτ(T)) such thatremoveτ(c) ∈ Cs(T ′), from:

prob(E S C
|θ |
≤θ (P1,T ′, removeτ(c))) = prob(E S C

|θ |
≤θ (P2,T ′, removeτ(c)))

and the bijective correspondence betweenE S C (Pk,T,c) andE S C (Pk,T ′, removeτ(c)), k∈{1,2},
it then follows:

prob(E S C
|θ |
≤θ (P1,T,c)) = prob(E S C

|θ |
≤θ (P2,T,c))

and hence:
prob(S C

|θ |
≤θ (P1,T)) = ∑

c∈Cs(T)
prob(E S C

|θ |
≤θ (P1,T,c)) =

= ∑
c∈Cs(T)

prob(E S C
|θ |
≤θ (P2,T,c)) = prob(S C

|θ |
≤θ (P2,T))

from which we can conclude thatP1 ∼MT,τ P2.

As regards the first of the two further alternative characterizations coming from [2], we have the follow-
ing. WhenP∈ Ppc, the stepwise duration ofc is defined as the sequence of random variables quantifying
the sojourn times in the states traversed byc:

timed(c) =

{
ε if |c|= 0

Expratet(P,0) ◦ timed(c′) if c≡ P
a,λ−−−→ c′

whereε is the empty stepwise duration whileExpratet(P,0) is the exponentially distributed random variable
with rate ratet(P,0) ∈ R>0. We also define the probability distribution of executing a computation in
C⊆ Cf(P) within a sequenceθ ∈ (R>0)∗ of time units as:

probd(C,θ) =
|c|≤|θ |

∑
c∈C

prob(c) ·
|c|
∏
i=1

Pr{timed(c)[i]≤ θ [i]}

wheneverC is finite and all of its computations are independent of each other. In the definition above,
Pr{timed(c)[i] ≤ θ [i]} = 1−e−θ [i]/timea(c)[i] is the cumulative distribution function of the exponentially
distributed random variabletimed(c)[i], whose expected value istimea(c)[i].

Definition A.4 LetP1,P2∈Ppc. We say thatP1 is Markovian distribution-testing equivalent toP2, written
P1 ∼MT,d P2, iff for all reactive testsT ∈ TR and sequencesθ ∈ (R>0)∗ of amounts of time:

probd(S C |θ |(P1,T),θ) = probd(S C |θ |(P2,T),θ)

Proposition A.5 Let P1,P2∈ Ppc. WheneverP1∼MT,d P2, then for allck ∈Cf(Pk), k∈ {1,2}, there exists
ch ∈ Cf(Ph), h∈ {1,2}−{k}, such that:

tracec(ck) = tracec(ch)
timed(ck) = timed(ch)

and for alla∈ Nameandi ∈ {0, . . . , |ck|}:
rateo(Pi

k,a,0) = rateo(Pi
h,a,0)

with Pi
k (resp.Pi

h) being thei-th state traversed byck (resp.ch).

Proof Similar to the proof of Prop.A.2.
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Proposition A.6 Let P1,P2 ∈ Ppc. ThenP1 ∼MT,d P2 ⇐⇒ P1 ∼MT P2.

Proof A reworking of the proof of Thm. 4.20/Cor. 4.21 of [2] that proceeds as follows. Recalled that
timea( )[.] is the expected value of random variabletimed( )[.], givenT ∈ Tr andθ ∈ (R>0)∗ the result
follows from the fact that the first (resp. last) equality below implies all the subsequent (resp. preceding)
ones underP1 ∼MT,d P2 (resp.P1 ∼MT P2):

∑
c1∈S C |θ |(P1,T)

prob(c1) ·
|θ |
∏
i=1

Pr{timed(c1)[i]≤ θ [i]} = ∑
c2∈S C |θ |(P2,T)

prob(c2) ·
|θ |
∏
i=1

Pr{timed(c2)[i]≤ θ [i]}

∑
c1∈S C |θ |(P1,T)

prob(c1) ·
|θ |
∏
i=1

dPr{timed(c1)[i]≤θ [i]}
dθ [i] = ∑

c2∈S C |θ |(P2,T)
prob(c2) ·

|θ |
∏
i=1

dPr{timed(c2)[i]≤θ [i]}
dθ [i]

∑
c1∈S C |θ |(P1,T)

prob(c1) ·
|θ |
∏
i=1

θ [i]· dPr{timed(c1)[i]≤θ [i]}
dθ [i] = ∑

c2∈S C |θ |(P2,T)
prob(c2) ·

|θ |
∏
i=1

θ [i]· dPr{timed(c2)[i]≤θ [i]}
dθ [i]

∑
c1∈S C |θ |(P1,T)

prob(c1) ·
|θ |
∏
i=1

∞∫
0

θ [i]· dPr{timed(c1)[i]≤θ [i]}
dθ [i] dθ [i] = ∑

c2∈S C |θ |(P2,T)
prob(c2) ·

|θ |
∏
i=1

∞∫
0

θ [i]· dPr{timed(c2)[i]≤θ [i]}
dθ [i] dθ [i]

∑
c1∈S C |θ |(P1,T)

prob(c1) ·
|θ |
∏
i=1

timea(c1)[i] = ∑
c2∈S C |θ |(P2,T)

prob(c2) ·
|θ |
∏
i=1

timea(c2)[i]

∑
c1∈S C |θ |(P1,T)

prob(c1) ·
|θ |
∏
i=1

Pr{timea(c1)[i]≤ θ [i]} = ∑
c2∈S C |θ |(P2,T)

prob(c2) ·
|θ |
∏
i=1

Pr{timea(c2)[i]≤ θ [i]}

∑
c1∈S C

|θ |
≤θ (P1,T)

prob(c1) = ∑
c2∈S C

|θ |
≤θ (P2,T)

prob(c2)

In fact, supposing that all the computations inS C |θ |(P1,T) and inS C |θ |(P2,T) with the same duration
are counted only once with their total probability – which implies thatS C |θ |(P1,T) andS C |θ |(P2,T)
can be viewed as sets rather than multisets – the double implication is established below in two steps:

⇒ Assume that the computations (with different durations) inS C |θ |(P1,T) and inS C |θ |(P2,T) are
such that the products of the corresponding|θ | elements in the first equality – which expresses
P1 ∼MT,d P2 – are all different. If this were not the case, without loss of generality we could focus
on any two maximal subsets ofS C |θ |(P1,T) andS C |θ |(P2,T) satisfying this constraint.
Then the first equality is of the form:

n
∑
j=1

p1, j ·D1, j(θ) =
n
∑
j=1

p2, j ·D2, j(θ)

where:

– p1, j , p2, j ∈ R]0,1] for 1≤ j ≤ n.

–
n
∑
j=1

p1, j ≤ 1 and
n
∑
j=1

p2, j ≤ 1.

– D1, j and D2, j are strictly increasing nonlinear continuous functions from(R>0)∗ to R]0,1]
for 1≤ j ≤ n.

– All functionsD1, j ’s are different from each other.

– All functionsD2, j ’s are different from each other.

– Due to Prop.A.5, D1, j = D2, j ≡ D j for 1≤ j ≤ n becauseP1 ∼MT,d P2.

Therefore, if we rewrite the form of the first equality as follows:
n
∑
j=1

(p1, j − p2, j) ·D j(θ) = 0
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we get a homogeneous linear system composed of uncountably many equations whose unknowns
are the(p1, j − p2, j)’s. Since the values belonging to thej-th column,1≤ j ≤ n, of the coefficient
matrix of the system are all positive and taken from the strictly increasing nonlinear functionD j ,
with suchD j ’s being all different from each other, the rows of the coefficient matrix are all linearly
independent. Thus, the system admits only the solution zero, i.e.,p1, j = p2, j for 1≤ j ≤ n. As
a consequence, when proving the implication of the equalities from the first one to the sixth one,
we can exploit the fact that “=” is a congruence with respect to addition and multiplication, which
allows us to substitute equals for equals within the same context “∑ prob( ) ·∏” of both sides of
the equalities.
From the sixth equality, it then follows the last one, i.e.,P1∼MT P2, because fork∈ {1,2} it holds:

|θ |
∏
i=1

Pr{timea(ck)[i]≤ θ [i]} =





1 if ck ∈S C
|θ |
≤θ (Pk,T)

0 if ck /∈S C
|θ |
≤θ (Pk,T)

⇐ Using the same argument as the one at the end of the previous step, we derive thatP1∼MT P2, i.e.,
the last equality, implies the sixth one. The latter equality is of the form:

n
∑
j=1

p1, j ·v1, j(θ) =
n
∑
j=1

p2, j ·v2, j(θ)

where:

– p1, j , p2, j ∈ R]0,1] for 1≤ j ≤ n.

–
n
∑
j=1

p1, j ≤ 1 and
n
∑
j=1

p2, j ≤ 1.

– v1, j andv2, j are functions from(R>0)∗ to {0,1} for 1≤ j ≤ n.
– Due to Prop.A.2, v1, j = v2, j ≡ v j for 1≤ j ≤ n becauseP1 ∼MT P2.

Therefore, if we rewrite the form of the sixth equality as follows:
n
∑
j=1

(p1, j − p2, j) ·v j(θ) = 0

and we choose increasing values ofθ , we obtainp1, j = p2, j for 1≤ j ≤ n. As a consequence,
when proving the implication of the equalities from the sixth one to the first one – which expresses
P1 ∼MT,d P2 – we can exploit the fact that “=” is a congruence with respect to addition and multi-
plication, which allows us to substitute equals for equals within the same context “∑ prob( ) ·∏”
of both sides of the equalities.

We now address the second of the two further alternative characterizations coming from [2].

Definition A.7 An elementξ of (Namev×2Namev)∗ is an extended trace iff:

• eitherξ is the empty sequenceε;

• or ξ ≡ (a1,E1) ◦ (a2,E2) ◦ . . . ◦ (an,En) for somen ∈ N>0, with ai ∈ Ei and Ei finite for each
i = 1, . . . ,n.

We denote byE T the set of extended traces.

Definition A.8 Let ξ ∈ E T . The trace associated withξ is defined by induction on the length ofξ
through the following(Namev)∗-valued function:

traceet(ξ ) =
{

ε if |ξ |= 0
a◦ traceet(ξ ′) if ξ ≡ (a,E )◦ξ ′

whereε is the empty trace.
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Definition A.9 Let P∈ Ppc, c∈ Cf(P), andξ ∈ E T . We say thatc is compatible withξ iff:
trace(c) = traceet(ξ )

We denote byC C (P,ξ ) the multiset of computations inCf(P) that are compatible withξ .

GivenP∈ Ppc, ξ ∈ E T , andc∈ C C (P,ξ ), we have to consider the probability and the duration ofc
with respect toξ , which are defined by taking into account the action names permitted at each step byξ .
The probability of executingc with respect toξ is defined as:

probξ (c) =





1 if |c|= 0

λ
rateo(P,E∪{τ},0) ·probξ ′(c′) if c≡ P

a,λ−−−→ c′
with ξ ≡ (a,E )◦ξ ′

λ
rateo(P,E∪{τ},0) ·probξ (c′) if c≡ P

τ,λ−−−→ c′
with ξ ≡ (a,E )◦ξ ′

λ
rateo(P,τ,0) ·probξ (c′) if c≡ P

τ,λ−−−→ c′∧ξ ≡ ε

We also define the probability of executing a computation inC⊆ C C (P,ξ ) with respect toξ as:

probξ (C) = ∑
c∈C

probξ (c)

wheneverC is finite and all of its computations are independent of each other.
The stepwise average duration ofc with respect toξ is defined as:

timea,ξ (c) =





ε if |c|= 0

1
rateo(P,E∪{τ},0) ◦ timea,ξ ′(c′) if c≡ P

a,λ−−−→ c′
with ξ ≡ (a,E )◦ξ ′

1
rateo(P,E∪{τ},0) ◦ timea,ξ (c′) if c≡ P

τ,λ−−−→ c′
with ξ ≡ (a,E )◦ξ ′

1
rateo(P,τ,0) ◦ timea,ξ (c′) if c≡ P

τ,λ−−−→ c′∧ξ ≡ ε

where ε is the empty stepwise average duration. We also define the multiset of computations in
C⊆ C C (P,ξ ) whose stepwise average duration with respect toξ is not greater thanθ ∈ (R>0)∗ as:

C≤θ ,ξ = {|c∈C | |c| ≤ |θ |∧∀i = 1, . . . , |c|. timea,ξ (c)[i]≤ θ [i] |}

Moreover, as before we denote byCl the multiset of computations inC ⊆ C C (P,ξ ) whose length is
equal tol ∈ N.

Definition A.10 Let P1,P2 ∈ Ppc. We say thatP1 is Markovian extended-trace equivalent toP2, written
P1 ∼MTr,e P2, iff for all extended tracesξ ∈ E T and sequencesθ ∈ (R>0)∗ of average amounts of time:

probξ (C C
|θ |
≤θ ,ξ (P1,ξ )) = probξ (C C

|θ |
≤θ ,ξ (P2,ξ ))
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Theorem A.11 Let P1,P2 ∈ Ppc. ThenP1 ∼MTr,e P2 ⇐⇒ P1 ∼MT P2.

Proof A reworking of the proof of Thm. 4.35 of [2] that proceeds in two steps:

⇒ Let us denote byCs(T) the multiset of computations ofT ∈TR ending with s and byE S C (P,T,c)
the multiset of successful computations ofP∈ Ppc driven byT that exercisec∈ Cs(T). Given an
arbitraryθ ∈ (R>0)∗, for k∈ {1,2} it holds:

prob(S C
|θ |
≤θ (Pk,T)) = ∑

c∈Cs(T)
prob(E S C

|θ |
≤θ (Pk,T,c))

Let us define the extended trace associated withc∈ Cs(T) as follows:

tracee(c) =

{
ε if |c|= 0

(a,{b∈ Namev | weight(T,b) > 0})◦ tracee(c′) if c≡ T
a,∗w−−−→ c′

We now prove that for allθ ∈ (R>0)∗, P∈ Ppc, T ∈ TR, andc∈ Cs(T):
prob(E S C

|θ |
≤θ (P,T,c)) = probr(c) ·probtracee(c)(C C

|θ |
≤θ ,tracee(c)

(P, tracee(c)))
where the reactive probability ofc is defined as follows:

probr(c) =

{
1 if |c|= 0

w
weight(T,a) ·probr(c′) if c≡ T

a,∗w−−−→ c′

There are two cases:

– Let |c|= 0. Thenc≡ T ≡ s, tracee(c)≡ ε, andprobr(c) = 1. There are two subcases.
If |θ |= 0, then:

prob(E S C
|θ |
≤θ (P,T,c)) = 1 = probr(c) ·probtracee(c)(C C

|θ |
≤θ ,tracee(c)

(P, tracee(c)))
If |θ | > 0, then the only computations that exercisec or are compatible withtracee(c) are
those composed ofτ-transitions performed byP, hence:

prob(E S C
|θ |
≤θ (P,T,c)) = probr(c) ·probtracee(c)(C C

|θ |
≤θ ,tracee(c)

(P, tracee(c)))

– Let |c|> 0 with c≡ T
a,∗w−−−→ c′, a∈ Namev, andT ′ being the first state ofc′. Let us proceed

by induction on|θ |:
∗ Let |θ |= 0. ThenE S C

|θ |
≤θ (P,T,c) = /0 = C C

|θ |
≤θ ,tracee(c)

(P, tracee(c)) and hence:

prob(E S C
|θ |
≤θ (P,T,c)) = 0 = probr(c) ·probtracee(c)(C C

|θ |
≤θ ,tracee(c)

(P, tracee(c)))

∗ Let |θ | > 0 with θ ≡ t ◦ θ ′, t ∈ R>0, and assume that for all̄P ∈ Ppc, T̄ ∈ TR, and
c̄∈ Cs(T̄):

prob(E S C
|θ ′|
≤θ ′(P̄, T̄, c̄)) = probr(c̄) ·probtracee(c̄)(C C

|θ ′|
≤θ ′,tracee(c̄)

(P̄, tracee(c̄)))
For somer ∈ R≥0, it holds:

ratet(P‖Namev T,0) = r = ∑
b∈E∪{τ}

rateo(P,b,0)

whereE = {b∈ Namev | weight(T,b) > 0}. There are two subcases.
If r = 0 or 1

r > t, then:

prob(E S C
|θ |
≤θ (P,T,c)) = 0 = probr(c) ·probtracee(c)(C C

|θ |
≤θ ,tracee(c)

(P, tracee(c)))
If r > 0 and 1

r ≤ t, then:

prob(E S C
|θ |
≤θ (P,T,c)) = ∑

P
a,λ−−−→P′

λ ·w/weight(T,a)
r ·prob(E S C

|θ ′|
≤θ ′(P

′,T ′,c′))

+ ∑
P

τ,λ−−−→P′

λ
r ·prob(E S C

|θ ′|
≤θ ′(P

′,T,c))



24 Markovian Testing Equivalence and Exponentially Timed Internal Actions

From the induction hypothesis, it follows:
prob(E S C

|θ |
≤θ (P,T,c)) = ∑

P
a,λ−−−→P′

λ
r · w

weight(T,a) ·probr(c′) ·probtracee(c′)(C C
|θ ′|
≤θ ′,tracee(c′)

(P′, tracee(c′)))

+ ∑
P

τ ,λ−−−→P′

λ
r ·probr(c) ·probtracee(c)(C C

|θ ′|
≤θ ′,tracee(c)

(P′, tracee(c))) =

= ∑
P

a,λ−−−→P′

λ
r ·probr(c) ·probtracee(c′)(C C

|θ ′|
≤θ ′,tracee(c′)

(P′, tracee(c′)))

+ ∑
P

τ ,λ−−−→P′

λ
r ·probr(c) ·probtracee(c)(C C

|θ ′|
≤θ ′,tracee(c)

(P′, tracee(c))) =

= probr(c) · ( ∑
P

a,λ−−−→P′

λ
r ·probtracee(c′)(C C

|θ ′|
≤θ ′,tracee(c′)

(P′, tracee(c′)))

+ ∑
P

τ,λ−−−→P′

λ
r ·probtracee(c)(C C

|θ ′|
≤θ ′,tracee(c)

(P′, tracee(c)))) =

= probr(c) ·probtracee(c)(C C
|θ |
≤θ ,tracee(c)

(P, tracee(c)))

SinceP1 ∼MTr,e P2, for all θ ∈ (R>0)∗ andc∈ Cs(T), T ∈ TR, we have:

probtracee(c)(C C
|θ |
≤θ ,tracee(c)

(P1, tracee(c))) = probtracee(c)(C C
|θ |
≤θ ,tracee(c)

(P2, tracee(c)))
As a consequence, it holds:

prob(E S C
|θ |
≤θ (P1,T,c)) = prob(E S C

|θ |
≤θ (P2,T,c))

from which it follows:
prob(S C

|θ |
≤θ (P1,T)) = prob(S C

|θ |
≤θ (P2,T))

and henceP1 ∼MT P2.

⇐ Let us define the test associated withξ ∈ E T as follows:

test(ξ ) ∆=





s if |ξ |= 0

<a,∗1>.test(ξ ′)+ ∑
b∈E−{a}

<b,∗1>.<z,∗1>.s if ξ ≡ (a,E )◦ξ ′

where the summation is absent wheneverE = {a} and z is a visible action name representing fail-
ure that can occur within tests but not within process terms under test. We denote byTR,c the
resulting set of tests.
We now prove that for allθ ∈ (R>0)∗, P∈ Ppc, andξ ∈ E T :

prob(S C
|θ |
≤θ (P, test(ξ ))) = probξ (C C

|θ |
≤θ ,ξ (P,ξ ))

There are two cases:

– Let |ξ |= 0. Thenξ ≡ ε andtest(ξ )≡ s. There are two subcases.
If |θ |= 0, then:

prob(S C
|θ |
≤θ (P, test(ξ ))) = 1 = probξ (C C

|θ |
≤θ ,ξ (P,ξ ))

If |θ |> 0, then the only computations that exercisetest(ξ ) or are compatible withξ are those
composed ofτ-transitions performed byP, hence:

prob(S C
|θ |
≤θ (P, test(ξ ))) = probξ (C C

|θ |
≤θ ,ξ (P,ξ ))

– Let |ξ |> 0 with ξ ≡ (a,E )◦ξ ′, a∈ Namev. Let us proceed by induction on|θ |:
∗ Let |θ |= 0. ThenS C

|θ |
≤θ (P, test(ξ )) = /0 = C C

|θ |
≤θ ,ξ (P,ξ ) and hence:

prob(S C
|θ |
≤θ (P, test(ξ ))) = 0 = probξ (C C

|θ |
≤θ ,ξ (P,ξ ))

∗ Let |θ |> 0 with θ ≡ t ◦θ ′, t ∈ R>0, and assume that for all̄P∈ Ppc andξ̄ ∈ E T :

prob(S C
|θ ′|
≤θ ′(P̄, test(ξ̄ ))) = probξ̄ (C C

|θ ′|
≤θ ′,ξ̄ (P̄, ξ̄ ))
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For somer ∈ R≥0, it holds:
ratet(P‖Namev test(ξ ),0) = r = ∑

b∈E∪{τ}
rateo(P,b,0)

There are two subcases.
If r = 0 or 1

r > t, then:

prob(S C
|θ |
≤θ (P, test(ξ ))) = 0 = probξ (C C

|θ |
≤θ ,ξ (P,ξ ))

If r > 0 and 1
r ≤ t, then:

prob(S C
|θ |
≤θ (P, test(ξ ))) = ∑

P
a,λ−−−→P′

λ
r ·prob(S C

|θ ′|
≤θ ′(P

′, test(ξ ′)))

+ ∑
P

τ,λ−−−→P′

λ
r ·prob(S C

|θ ′|
≤θ ′(P

′, test(ξ )))

From the induction hypothesis, it follows:

prob(S C
|θ |
≤θ (P, test(ξ ))) = ∑

P
a,λ−−−→P′

λ
r ·probξ ′(C C

|θ ′|
≤θ ′,ξ ′(P

′,ξ ′))

+ ∑
P

τ,λ−−−→P′

λ
r ·probξ (C C

|θ ′|
≤θ ′,ξ (P′,ξ )) =

= probξ (C C
|θ |
≤θ ,ξ (P,ξ ))

SinceP1 ∼MT P2, for all T ∈ TR,c andθ ∈ (R>0)∗ we have:

prob(S C
|θ |
≤θ (P1,T)) = prob(S C

|θ |
≤θ (P2,T))

which is equivalent to say that for allξ ∈ E T andθ ∈ (R>0)∗:
prob(S C

|θ |
≤θ (P1, test(ξ ))) = prob(S C

|θ |
≤θ (P2, test(ξ )))

As a consequence, it holds:
probξ (C C

|θ |
≤θ ,ξ (P1,ξ )) = probξ (C C

|θ |
≤θ ,ξ (P2,ξ ))

and henceP1 ∼MTr,e P2.

Corollary A.12 Let P1,P2 ∈ Ppc. ThenP1 ∼MT P2 iff for all T ∈ TR,c andθ ∈ (R>0)∗:
prob(S C

|θ |
≤θ (P1,T)) = prob(S C

|θ |
≤θ (P2,T))

A.2 Proofs of Results of Sect.5

Proof of Thm. 5.1. In the case of the action prefix operator and of the alternative composition operator,
it is a reworking of the proof of Thm. 4.53 of [2] that proceeds as follows:

• AssumingP1 ∼MT P2 for P1,P2 ∈ Ppc, let us demonstrate that for all<a,λ> ∈ Act, T ∈ TR, and
θ ∈ (R>0)∗:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = prob(S C

|θ |
≤θ (<a,λ>.P2,T))

There are two cases:

– Let T ≡ s. Then there are two subcases.
If |θ |= 0, then:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = 1 = prob(S C

|θ |
≤θ (<a,λ>.P2,T))

If |θ |> 0 with θ ≡ t ◦θ ′, t ∈ R>0, we have two further subcases:

∗ If a∈ Namev or 1
λ > t, then:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = 0 = prob(S C

|θ |
≤θ (<a,λ>.P2,T))
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∗ If a = τ and 1
λ ≤ t, then:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = prob(S C

|θ ′|
≤θ ′(P1,T)) =

= prob(S C
|θ ′|
≤θ ′(P2,T)) = prob(S C

|θ |
≤θ (<a,λ>.P2,T))

becauseP1 ∼MT P2.

– Let T 6≡ s. Then there are two subcases.
If |θ |= 0, then:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = 0 = prob(S C

|θ |
≤θ (<a,λ>.P2,T))

If |θ |> 0 with θ ≡ t ◦θ ′, t ∈ R>0, we have three further subcases:

∗ If 1
λ > t or a∈ Namev andweight(T,a) = 0, then:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = 0 = prob(S C

|θ |
≤θ (<a,λ>.P2,T))

∗ If 1
λ ≤ t anda∈ Namev andweight(T,a) > 0, then:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = ∑

T
a,∗w−−−→T ′

w
weight(T,a) ·prob(S C

|θ ′|
≤θ ′(P1,T ′)) =

= ∑
T

a,∗w−−−→T ′

w
weight(T,a) ·prob(S C

|θ ′|
≤θ ′(P2,T ′)) = prob(S C

|θ |
≤θ (<a,λ>.P2,T))

becauseP1 ∼MT P2.
∗ If 1

λ ≤ t anda = τ, then:

prob(S C
|θ |
≤θ (<a,λ>.P1,T)) = prob(S C

|θ ′|
≤θ ′(P1,T)) =

= prob(S C
|θ ′|
≤θ ′(P2,T)) = prob(S C

|θ |
≤θ (<a,λ>.P2,T))

becauseP1 ∼MT P2.

• AssumingP1 ∼MT P2 for P1,P2 ∈ Ppc, let us demonstrate that for allP ∈ Ppc, T ∈ TR, and
θ ∈ (R>0)∗:

prob(S C
|θ |
≤θ (P1 +P,T)) = prob(S C

|θ |
≤θ (P2 +P,T))

There are two cases:

– Let T ≡ s and|θ |= 0. Then:

prob(S C
|θ |
≤θ (P1 +P,T)) = 1 = prob(S C

|θ |
≤θ (P2 +P,T))

– Let T 6≡ s or|θ |> 0. Fork∈ {1,2}, we have:

prob(S C
|θ |
≤θ (Pk +P,T)) =





pk ·prob(S C
|θk|
≤θk

(Pk,T))+ p′k ·prob(S C
|θ ′k|
≤θ ′k

(P,T)) if rk > 0∧ r > 0

prob(S C
|θ |
≤θ (Pk,T)) if rk > 0∧ r = 0

prob(S C
|θ |
≤θ (P,T)) if rk = 0∧ r > 0

0 if rk = 0∧ r = 0
where:

rk = ratet(Pk‖Namev T,0) r = ratet(P‖Namev T,0)
pk = rk

rk+r p′k = r
rk+r

θk[i] =
{

θ [i]+ ( 1
rk
− 1

rk+r ) if i = 1
θ [i] if i > 1

θ ′k[i] =
{

θ [i]+ (1
r − 1

rk+r ) if i = 1
θ [i] if i > 1

In fact, in the case in which bothPk‖Namev T andP‖Namev T can perform at least one action
– deriving from a synchronization withT or from aτ-action of the subprocess under test –
pk (resp.p′k) is the probability that the first transition in a successfulT-driven computation is
originated byPk (resp.P). Similarly, θk (resp.θ ′k) takes into account the extra average time
that is available toPk (resp.P) in the context ofPk +P when executing the first transition of
a successfulT-driven computation.
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SinceP1∼MT P2, from Cor.A.3 we derive thatr1 = r2 and hencep1 = p2, p′1 = p′2, θ1 = θ2,
andθ ′1 = θ ′2. FromP1 ∼MT P2 andθ1 = θ2, we also derive:

prob(S C
|θ1|
≤θ1

(P1,T)) = prob(S C
|θ2|
≤θ2

(P2,T))
prob(S C

|θ |
≤θ (P1,T)) = prob(S C

|θ |
≤θ (P2,T))

As a consequence:
prob(S C

|θ |
≤θ (P1 +P,T)) = prob(S C

|θ |
≤θ (P2 +P,T))

With regard to the three static operators, assumingP1 ∼MT P2 for P1,P2 ∈ Ppc we proceed as follows:

• In the case of the parallel composition operator, the congruence result follows from the fact that,
for k ∈ {1,2} and for allP∈ P andS⊆ Namev such thatPk‖SP∈ Ppc, T ∈ TR, andθ ∈ (R>0)∗,
prob(S C

|θ |
≤θ (Pk‖SP,T)) is equal toprob(S C

|θ |
≤θ (Pk, T̄)) for someT̄ ∈ TR derived fromT.

To this purpose, we observe thatPk‖SP can synchronize withT ona∈ Namev iff:

– eithera /∈ SandPk can synchronize withT on a or P can synchronize (through an exponen-
tially timed action) withT ona;

– or a∈SandPk can synchronize withT ona andP can synchronize (through a passive action)
with T ona.

With respect to the set of actions enabled byPk and its derivatives, the context‖SP can:

– restrict the set by disabling exponentially timed actions onPk side whose name belongs toS;
restrictions can be managed in̄T by simply introducing suitable passive actions representing
failure, whose visible name z cannot occur in process terms under test;

– enlarge the set by enabling exponentially timed actions onPside whose name does not belong
to S; no such enlargement will ever be caught by the derivatives ofPk that do not enable those
actions, unless we introduce suitable exponentially timedτ-actions within the derivatives of
T̄ that can be reached after executing at most|θ | actions.

Restrictions and enlargements of the set of actions enabled byPk and its derivatives are dealt
with by placingT in the context ‖SP through a family of functionscombineS,P,n(.) yielding T̄.
For |θ |= n = 0, we letcombineS,P,n(T) = T, whereas for|θ |= n > 0 we have three cases:

– If T ≡ s, then:
combineS,P,n(T) = s+ ∑

P
τ,λ−−−→P′

<τ,λ>.combineS,P′,n−1(s)

where the second summand is absent ifP cannot execute exponentially timedτ-actions.
– If T 6≡ s andT can perform actions whose names do not belong toS, or P can perform ex-

ponentially timed visible actions whose names do not belong toS such thatT can perform
passive actions with the same names, or bothP andT can perform passive actions with the
same names belonging toS, or P can execute exponentially timedτ-actions, then:

combineS,P,n(T) = ∑
a/∈S∧T

a,∗w−−−→T ′
<a,∗w>.combineS,P,n−1(T ′) +

∑
a/∈S∪{τ}∧P

a,λ−−−→P′∧T
a,∗w−−−→T ′

<τ,λ · w
weight(T,a)>.combineS,P′,n−1(T ′) +

∑
a∈S∧P

a,∗v−−−→P′∧T
a,∗w−−−→T ′

<a,∗norm(v,w,a,P,T)>.combineS,P′,n−1(T ′) +

∑
P

τ,λ−−−→P′

<τ,λ>.combineS,P′,n−1(T)
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– If T 6≡ s and none of the conditions of the previous case hold (i.e., ifT can perform only ac-
tions whose names belong toSwith P enabling no passive visible actions with those names
andP cannot execute exponentially timedτ-actions), then:

combineS,P,n(T) = <z,∗1>.s

As can be noted, subterms of the resulting testT̄ equivalent toT may belong toTR,lib ∪TR,τ , but at
that point we can exploit the proofs of Props.4.2and4.3 to derive a set of tests that is equivalent
to T̄, each element of which belongs toTR.

• In the case of the hiding operator, the congruence result follows from the fact that,
for k ∈ {1,2} and for allH ⊆ Namev, T ∈ TR, andθ ∈ (R>0)∗, prob(S C

|θ |
≤θ (Pk/H,T)) is equal

to prob(S C
|θ |
≤θ (Pk, T̄)) for someT̄ ∈ TR derived fromT.

To this purpose, on the test side we observe that every computation ofT that comprises an action
whose name belongs toH cannot be exercised byPk/H, and hence cannot leadPk/H to success.
When derivingT̄, that action must not be removed from the test – in order not to alter the quanti-
tativeT-driven behavior ofPk with respect to the quantitativeT-driven behavior ofPk/H, in which
the τ-action corresponding to that action can be executed anyway – but must leadPk to fail im-
mediately afterwards – which is achieved by introducing a passive action whose visible name z
cannot occur inside processes under test. TestT̄ is thus yielded by a family of functionshide′H(.)
defined by induction on the syntactical structure ofT as follows:

hide′H(T) =





s if T ≡ s

<a,∗w>.<z,∗1>.s if T ≡<a,∗w>.T ′ anda∈ H

<a,∗w>.hide′H(T ′) if T ≡<a,∗w>.T ′ anda /∈ H

hide′H(T1)+hide′H(T2) if T ≡ T1 +T2

On the process side, we observe that each derivative ofhide′H(T) different from<z,∗1>.s that does
not enable actions whose names belong toH may erroneously block a derivative ofPk enabling
some of those actions, in the sense that the corresponding derivative ofT would not block the cor-
responding derivative ofPk/H as the latter would move autonomously by performingτ-actions.
When buildingT̄, we thus need to extend each such derivative ofhide′H(T) by offering all the pos-
sible sequences of length at most|θ | of actions whose names belong toH, with each such action
followed by the derivative itself. More precisely, we define a family of functionshide′′H ′,n(.) with
H ′ being the set of names inH for which there are no enabled actions. ForH ′ = /0 or |θ |= n = 0
or a derivativeT ′ of hide′H(T) equal to<z,∗1>.s, we lethide′′H ′,n(T

′) = T ′, otherwise:
hide′′H ′,n(T

′) = T ′+ ∑
a∈H ′

<a,∗1>.hide′′H ′,n−1(T
′)

Since s does not enable any action whose name is inH, the resulting test̄T equivalent toT may
belong toTR,lib , but at that point we can exploit the proof of Prop.4.2 to derive a set of tests that
is equivalent toT̄, each element of which belongs toTR.

• In the case of the relabeling operator, the congruence result follows from the fact that,
for k ∈ {1,2} and for allϕ ∈ Relab, T ∈ TR, andθ ∈ (R>0)∗, prob(S C

|θ |
≤θ (Pk[ϕ],T)) is equal

to prob(S C
|θ |
≤θ (Pk, T̄)) for someT̄ ∈ TR derived fromT.

In fact, observed thatPk[ϕ] can perform<a,λ> iff Pk can perform<b,λ> for b ∈ ϕ−1(a), we
have thatPk[ϕ] can synchronize withT on a∈ Namev iff Pk can synchronize withunrelabelϕ(T)
onb∈ ϕ−1(a), whereunrelabelϕ(T) – which yieldsT̄ – is defined by induction on the syntactical
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structure ofT as follows:

unrelabelϕ(T) =





s if T ≡ s

<z,∗1>.s if T ≡<a,∗w>.T ′ andϕ−1(a) = /0

∑
b∈ϕ−1(a)

<b,∗w>.unrelabelϕ(T ′) if T ≡<a,∗w>.T ′ andϕ−1(a) 6= /0

unrelabelϕ(T1)+unrelabelϕ(T2) if T ≡ T1 +T2
where z is a visible action name that cannot occur inside process terms under test.

A.3 Proofs of Results of Sect.6

Proof of Thm. 6.1. A reworking of the proofs of Thms. 4.54 and 4.57 of [2] that proceeds in two steps:

⇒ Since∼MT is an equivalence relation and a congruence with respect to all the operators of MPC, in
any deduction based onAMT it is correct to use reflexivity, symmetry, transitivity, and substitutivity
with respect to all the operators of MPC.
As far as the set of specific axioms is concerned, apart fromAMT,4 it is trivial to prove their
soundness with respect to∼MT . In particular, we observe that the five summands on the right-hand
side ofAMT,5 are in full accordance with the operational semantic rules for the parallel composition
operator.
With regard toAMT,4, it suffices to observe what follows:

– Both terms occurring inAMT,4 can initially execute onlya-actions.

– The average time to execute them is1/∑k∈I λk in both terms.

– If Ji = /0 for all i ∈ I , then thea-derivative term is0 with probability1 both on the left and on
the right, so no test can distinguish between the two original terms.

– If Ji 6= /0 for all i ∈ I , then thea-derivative term is∑ j∈Ji
<bi, j ,µi, j>.Pi, j with probability

λi/∑k∈I λk on the left, while it is∑i∈I ∑ j∈Ji
<bi, j ,λi/∑k∈I λk ·µi, j>.Pi, j with probability1 on

the right. Not even at this point can a test make a distinction for the following reasons:

∗ All the a-derivative terms can initially execute the same set of action names{b1, . . . ,bn},
where thebh-actions,1≤ h≤ n, have the same total rateµh in all thea-derivative terms.

∗ Thea-bh-derivative term isPi, j with the same probability(λi/∑k∈I λk) ·(µi, j/∑1≤h≤n µh)
both on the left and on the right.

∗ Since thebh-actions have the same total rateµh in all thea-derivative terms, the denom-
inator of the second fraction above changes in the same way on the left and on the right
depending on the actions that are enabled by a specific test.

⇐ We say that a nonrecursive process termP∈ P is in testing-minimal sum normal form (tmsnf) iff:

– eitherP≡ 0;

– or P≡∑i∈I <ai , λ̃i>.Pi with I finite and nonempty,P initially minimal with respect toAMT,4,
andPi in tmsnf for all i ∈ I .

By initial minimality of P with respect toAMT,4, we mean that no subset of summands ofP
matches the left-hand side term ofAMT,4. From the definition, it follows that the initial minimality
holds with respect toAMT,3 as well.
We also introduce the size of a nonrecursive process term as an upper bound to the length of its
longest computation, which is inductively defined as follows:
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size(0) = 0
size(<a, λ̃>.P) = 1+size(P)

size(P1 +P2) = max(size(P1),size(P2))
size(P1‖SP2) = size(P1)+size(P2)

size(P/L) = size(P)
size(P[ϕ]) = size(P)

We now prove that for each nonrecursive process termP∈ P there exists a nonrecursive process
termQ∈ P in tmsnf such thatAMT ` P = Q, by proceeding by induction on the syntactical struc-
ture ofP:

– If P≡ 0, the result follows by takingQ≡ 0 (which is in tmsnf) and using reflexivity.

– If P ≡ <a, λ̃>.P′, then by the induction hypothesis there existsQ′ in tmsnf such that
AMT ` P′ = Q′. From substitutivity with respect to action prefix, we obtain that
AMT `<a, λ̃>.P′ = <a, λ̃>.Q′, from which the result follows as<a, λ̃>.Q′ is in tmsnf.

– If P≡ P1 + P2, then by the induction hypothesis there existQ1 andQ2 in tmsnf such that
AMT ` P1 = Q1 andAMT ` P2 = Q2. From substitutivity with respect to alternative compo-
sition, we obtain thatAMT ` P1 +P2 = Q1 +Q2. There are two cases.
If Q1 +Q2 is in tmsnf, then we are done.
If Q1+Q2 is not in tmsnf (because it is not initially minimal with respect toAMT,3 or AMT,4),
the result follows after as many applications ofAMT,3 and AMT,4 as needed – possibly
preceded by applications ofAMT,1 andAMT,2 – by virtue of substitutivity with respect to
alternative composition as well as transitivity.

– If P≡ P1‖SP2, then by the induction hypothesis there existQ1 andQ2 in tmsnf such that
AMT ` P1 = Q1 andAMT ` P2 = Q2. From substitutivity with respect to alternative composi-
tion, we obtain thatAMT `P1‖SP2 = Q1‖SQ2. Let us proceed by induction onsize(Q1‖SQ2):

∗ If size(Q1‖SQ2) = 0, thenQ1 ≡ Q2 ≡ 0 and hence the result follows fromAMT,8 and
transitivity.

∗ Let size(Q1‖SQ2) = n> 0 and assume that the result holds for every pair of nonrecursive
process termsQ′

1 andQ′
2 in tmsnf such thatsize(Q′

1‖SQ′
2) < n. There are two cases.

If exactly one betweenQ1 andQ2 is 0, then the result follows fromAMT,6 or AMT,7 and
transitivity.
If neitherQ1 norQ2 is 0, we rewriteQ1‖SQ2 by means ofAMT,5. Since the size of each
parallel compositionQ′

1‖SQ′
2 occurring in one of the summands of the resulting process

term is less thann, by the induction hypothesis each suchQ′
1‖SQ′

2 can be rewritten into
a nonrecursive process term in tmsnf. The result then follows after as many applications
of AMT,3 andAMT,4 as needed (possibly preceded by applications ofAMT,1 andAMT,2)
by virtue of substitutivity with respect to alternative composition as well as transitivity.

– If P≡P′/H, then by the induction hypothesis there existsQ′ in tmsnf such thatAMT `P′=Q′.
From substitutivity with respect to hiding, we obtain thatAMT ` P′/H = Q′/H. Let us
proceed by induction onsize(Q′/H):

∗ If size(Q′/H) = 0, thenQ′ ≡ 0 and hence the result follows fromAMT,9 and transitivity.
∗ Let size(Q′/H) = n > 0 and assume that the result holds for every nonrecursive pro-

cess termQ′′ in tmsnf such thatsize(Q′′/H) < n. In this case, we distribute/H among
all the summands ofQ′ by means of repeated applications ofAMT,12, then we apply
AMT,10 or AMT,11 to each summand augmented with/H. Since the size of eachQ′′/H
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occurring in one of the summands of the resulting process term is less thann, by the in-
duction hypothesis each suchQ′′/H can be rewritten into a nonrecursive process term in
tmsnf. The result then follows after as many applications ofAMT,4 as needed (possibly
preceded by applications ofAMT,1 andAMT,2) by virtue of substitutivity with respect to
alternative composition as well as transitivity.

– If P≡P′[ϕ], then by the induction hypothesis there existsQ′ in tmsnf such thatAMT `P′=Q′.
From substitutivity with respect to relabeling, we obtain thatAMT ` P′[ϕ] = Q′[ϕ]. Let us
proceed by induction onsize(Q′[ϕ]):

∗ If size(Q′[ϕ]) = 0, thenQ′ ≡ 0 and hence the result follows fromAMT,13 and transitivity.
∗ Let size(Q′[ϕ]) = n > 0 and assume that the result holds for every nonrecursive process

term Q′′ in tmsnf such thatsize(Q′′[ϕ]) < n. In this case, we distribute[ϕ] among
all the summands ofQ′ by means of repeated applications ofAMT,15, then we apply
AMT,14 to each summand augmented with[ϕ]. Since the size of eachQ′′[ϕ ] occurring
in one of the summands of the resulting process term is less thann, by the induction
hypothesis each suchQ′′[ϕ] can be rewritten into a nonrecursive process term in tmsnf.
The result then follows after as many applications ofAMT,4 as needed (possibly preceded
by applications ofAMT,1 andAMT,2) by virtue of substitutivity with respect to alternative
composition as well as transitivity.

GivenP1,P2 ∈ Ppc,nrecsuch thatP1∼MT P2, we prove thatAMT `P1 = P2 by assuming without loss
of generality that bothP1 andP2 are in tmsnf. In fact, if this were not the case, we could derive
Q1,Q2 ∈ Ppc,nrec in tmsnf such thatAMT ` P1 = Q1 andAMT ` P2 = Q2 (henceP1 ∼MT Q1 and
P2 ∼MT Q2 due to the soundness of the axioms with respect to∼MT), with Q1 ∼MT Q2 (because it
also holdsP1 ∼MT P2 and∼MT is a transitive relation). So, if we proved thatAMT ` Q1 = Q2, it
would then followAMT ` P1 = P2 by transitivity.
Let us proceed by induction on the syntactical structure ofP1 in tmsnf:

– If P1≡ 0, fromP1∼MT P2 andP2 in tmsnf it follows thatP2≡ 0, hence the result by reflexivity.

– If P1≡∑i∈I1 <ai ,λi>.P1,i with I1 finite and nonempty, fromP1∼MT P2 andP2 in tmsnf it fol-
lows thatP2 ≡ ∑ j∈I2 <b j ,µ j>.P2, j with I2 finite and nonempty. By virtue of Cor.A.3, from
P1 ∼MT P2 we derive that:

{ai | i ∈ I1} = {b j | j ∈ I2} ≡ {c1, . . . ,cn}
with:

rateo(P1,ck,0) = rateo(P2,ck,0)
for eachk = 1, . . . ,n. We can then concentrate on a genericck and on the two sets of sum-
mands ofP1 andP2 enablingck-actions:

Sk,1 = {<ai ,λi>.P1,i | i ∈ I1∧ai = ck}
Sk,2 = {<b j ,µ j>.P2, j | j ∈ I2∧b j = ck}

which satisfy the following two properties:

1. ∑P∈Sk,1
rateo(P,ck,0) = ∑P∈Sk,2

rateo(P,ck,0).
2. The derivative termsP1,i (resp.P2, j ) occurring inSk,1 (resp.Sk,2) are all inequivalent with

respect to∼MT due to the initial minimality ofP1 (resp.P2) with respect toAMT,4. In
fact, due to such an initial minimality, taken two derivative terms in the same summand
set, it must be the case that their sets of initial action names are different or the total exit
rate with respect to one of these initial action names is different in the two derivative
terms, thus violating the necessary condition for∼MT stated by Cor.A.3.
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Let us prove that for each summand<ai ,λi>.P1,i ∈ Sk,1 there exists exactly one summand
<b j ,µ j>.P2, j ∈ Sk,2 such thatλi = µ j andP1,i ∼MT P2, j , by proceeding by induction on|Sk,1|
(the reverse can be proved in the same way):

∗ If |Sk,1|= 1, thenSk,1 contains a single summand, say<ai ,λi>.P1,i . As a consequence,
Sk,2 must contain a single summand as well, say<b j ,µ j>.P2, j , and it must be
λi = µ j andP1,i ∼MT P2, j becauseP1 ∼MT P2 (e.g.,P1 andP2 cannot be distinguished
by tests starting with ack-action if ck 6= τ). The reason whySk,2 cannot contain several
summands starting with ack-action is that their inequivalent derivatives would either vi-
olate the necessary condition for∼MT stated by Cor.A.3, thus contradictingP1 ∼MT P2,
or satisfy that necessary condition, thus contradicting the initial minimality ofP2 with
respect toAMT,4.

∗ Let |Sk,1| > 1 and assume that the result holds for any two proper subsets ofSk,1 and
Sk,2 satisfying properties 1 and 2. LetSd

k,1 be the set of the summands ofSk,1 whose
derivative terms have – among all the derivative terms occurring inSk,1 – the max-
imum total exit rateδ with respect to an action named. By virtue of property 2,
d can be chosen in such a way thatSd

k,1 6= Sk,1. Then the derivative term of each sum-

mand ofSd
k,1 passes with probability 1 the test<d,∗1>.s (or simply s ifd = τ) within

the minimum average time1/δ when considering successful test-driven computations
of length 1, henceP1 passes with probability∑P∈Sd

k,1
rateo(P,ck,0)/∑P∈Sk,1

rateo(P,ck,0)
the test<ck,∗1>.<d,∗1>.s (or simply <ck,∗1>.s if ck 6= τ and d = τ, <d,∗1>.s
if ck = τ andd 6= τ , or s if ck = d = τ) within the minimum average time sequence
1/∑P∈Sk,1

rateo(P,ck,0) ◦1/δ when considering successful test-driven computations of
length 2. SinceP1 ∼MT P2, alsoP2 must pass the same test in the same way asP1,
hence there must exist a subsetSd

k,2 of Sk,2 whose derivative terms all have the max-

imum total exit rateδ with respect tod, with Sd
k,2 6= Sk,2 and ∑P∈Sd

k,1
rateo(P,ck,0) =

∑P∈Sd
k,2

rateo(P,ck,0).

SinceSd
k,1 andSd

k,2 are proper subsets ofSk,1 andSk,2 satisfying properties 1 and 2, by the

induction hypothesis it follows that for each summand<ai ,λi>.P1,i ∈ Sd
k,1 there exists

exactly one summand<b j ,µ j>.P2, j ∈ Sd
k,2 such thatλi = µ j andP1,i ∼MT P2, j .

Likewise, sinceS′k,1 = Sk,1−Sd
k,1 andS′k,2 = Sk,2−Sd

k,2 are proper subsets ofSk,1 andSk,2

satisfying properties 1 and 2, by the induction hypothesis it follows that for each sum-
mand<ai ,λi>.P1,i ∈ S′k,1 there exists exactly one summand<b j ,µ j>.P2, j ∈ S′k,2 such
thatλi = µ j andP1,i ∼MT P2, j . Thus, the result follows for the wholeSk,1 andSk,2.

As a consequence, a bijective correspondence can be established between any pair(Sk,1,Sk,2).
For each pair of corresponding summands<ai ,λi>.P1,i and<b j ,µ j>.P2, j , sinceP1,i ∼MT P2, j

and both subtermsP1,i and P2, j are in tmsnf, by the induction hypothesis it follows that
AMT `P1,i = P2, j . ThusAMT `<ai ,λi>.P1,i = <b j ,µ j>.P2, j by substitutivity with respect to
action prefix (ai = b j andλi = µ j ) and henceAMT `∑i∈I1 <ai ,λi>.P1,i = ∑ j∈I2 <b j ,µ j>.P2, j

by substitutivity with respect to alternative composition.

A.4 Proofs of Results of Sect.7

Proof of Thm. 7.3. A reworking of the proof of Thm. 5.4 of [4] that proceeds as follows. We de-
note by init(T) the set of names of actions enabled byT ∈ TR. We also denote byTR,det the set of
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name-deterministic reactive tests (which is a superset ofTR,c), i.e., the set of reactive tests in which
every subterm of the formT1 +T2 satisfiesinit(T1)∩ init(T2) = /0. The result follows from the bijective
correspondence between classes of tests inTR,det differring only for their action weights and formulas
of ML MT , which is established below in two steps:

• Firstly, we prove that for allT ∈ TR,det there existsφT ∈ML MT such thatinit(φT) = init(T) and
for all P∈ Ppc andθ ∈ (R>0)∗:

[[φT ]]|θ |MT(P,θ) = prob(S C
|θ |
≤θ (P,T))

by proceeding by induction on the syntactical structure ofT:

– Let T ≡ s and takeφT ≡ true. We prove that for allP∈ Ppc andθ ∈ (R>0)∗:
[[true]]|θ |MT(P,θ) = prob(S C

|θ |
≤θ (P,s))

by proceeding by induction on|θ |:
∗ If |θ |= 0, then:

[[true]]|θ |MT(P,θ) = 1 = prob(S C
|θ |
≤θ (P,s))

∗ Let |θ |> 0 with θ = t ◦θ ′, t ∈ R>0, and assume that for all̄P∈ Ppc:

[[true]]|θ
′|

MT(P̄,θ ′) = prob(S C
|θ ′|
≤θ ′(P̄,s))

There are two cases.
If rateo(P,τ,0) = 0 or 1

rateo(P,τ,0) > t, then:

[[true]]|θ |MT(P,θ) = 0 = prob(S C
|θ |
≤θ (P,s))

If rateo(P,τ ,0) > 0 and 1
rateo(P,τ,0) ≤ t, then:

[[true]]|θ |MT(P,θ) = ∑
P

τ,λ−−−→P′

λ
rateo(P,τ,0) · [[true]]|θ

′|
MT(P′,θ ′) =

= ∑
P

τ,λ−−−→P′

λ
rateo(P,τ,0) ·prob(S C

|θ ′|
≤θ ′(P

′,s)) = prob(S C
|θ |
≤θ (P,s))

by the induction hypothesis.

– Let T ≡ <a,∗w>.T ′. From the induction hypothesis, it follows that there exists
φT ′ ∈ML MT such thatinit(φT ′) = init(T ′) and for allP̂∈ Ppc andθ̂ ∈ (R>0)∗:

[[φT ′ ]]
|θ̂ |
MT(P̂, θ̂) = prob(S C

|θ̂ |
≤θ̂ (P̂,T ′))

TakeφT ≡ 〈a〉φT ′ . We prove that for allP∈ Ppc andθ ∈ (R>0)∗:
[[φT ]]|θ |MT(P,θ) = prob(S C

|θ |
≤θ (P,T))

by proceeding by induction on|θ |:
∗ If |θ |= 0, then:

[[φT ]]|θ |MT(P,θ) = 0 = prob(S C
|θ |
≤θ (P,T))

∗ Let |θ |> 0 with θ = t ◦θ ′, t ∈ R>0, and assume that for all̄P∈ Ppc:

[[φT ]]|θ
′|

MT(P̄,θ ′) = prob(S C
|θ ′|
≤θ ′(P̄,T))

There are two cases.
If rateo(P,{a,τ},0) = 0 or 1

rateo(P,{a,τ},0) > t, then:

[[φT ]]|θ |MT(P,θ) = 0 = prob(S C
|θ |
≤θ (P,T))
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If rateo(P,{a,τ},0) > 0 and 1
rateo(P,{a,τ},0) ≤ t, then:

[[φT ]]|θ |MT(P,θ) = ∑
P

a,λ−−−→P′

λ
rateo(P,{a,τ},0) · [[φT ′ ]]

|θ ′|
MT(P′,θ ′)

+ ∑
P

τ,λ−−−→P′

λ
rateo(P,{a,τ},0) · [[φT ]]|θ

′|
MT(P′,θ ′) =

= ∑
P

a,λ−−−→P′

λ
rateo(P,{a,τ},0) ·prob(S C

|θ ′|
≤θ ′(P

′,T ′))

+ ∑
P

τ,λ−−−→P′

λ
rateo(P,{a,τ},0) ·prob(S C

|θ ′|
≤θ ′(P

′,T)) = prob(S C
|θ |
≤θ (P,T))

by the induction hypotheses.

– Let T ≡ T1+T2. From the induction hypothesis, it follows that there existφT1,φT2 ∈ML MT

such thatinit(φT1) = init(T1), init(φT2) = init(T2) and for allP̂∈ Ppc andθ̂ ∈ (R>0)∗:

[[φT1]]
|θ̂ |
MT(P̂, θ̂) = prob(S C

|θ̂ |
≤θ̂ (P̂,T1))

[[φT2]]
|θ̂ |
MT(P̂, θ̂) = prob(S C

|θ̂ |
≤θ̂ (P̂,T2))

TakeφT ≡ φT1∨φT2, which satisfiesinit(φT1)∩ init(φT2) = /0 becauseT is name deterministic
and henceinit(T1)∩ init(T2) = /0. We prove that for allP∈ Ppc andθ ∈ (R>0)∗:

[[φT ]]|θ |MT(P,θ) = prob(S C
|θ |
≤θ (P,T))

by proceeding by induction on|θ |:
∗ If |θ |= 0, then:

[[φT ]]|θ |MT(P,θ) = 0 = prob(S C
|θ |
≤θ (P,T))

∗ Let |θ |> 0 with θ = t ◦θ ′, t ∈ R>0, and assume that for all̄P∈ Ppc:

[[φT ]]|θ
′|

MT(P̄,θ ′) = prob(S C
|θ ′|
≤θ ′(P̄,T))

There are two cases.
If rateo(P, init(φT)∪{τ},0) = 0 or 1

rateo(P,init(φT)∪{τ},0) > t, then:

[[φT ]]|θ |MT(P,θ) = 0 = prob(S C
|θ |
≤θ (P,T))

If rateo(P, init(φT) ∪ {τ},0) > 0 and 1
rateo(P,init(φT)∪{τ},0) ≤ t, then after posing for

j ∈ {1,2}:
p j =

rateo(P,init(φTj ),0)
rateo(P,init(φT )∪{τ},0) = rateo(P,init(Tj ),0)

rateo(P,init(T)∪{τ},0)

t j = t +( 1
rateo(P,init(φTj ),0) − 1

rateo(P,init(φT )∪{τ},0) ) = t +( 1
rateo(P,init(Tj ),0) − 1

rateo(P,init(T)∪{τ},0) )

we have:
[[φT ]]|θ |MT(P,θ) = p1 · [[φT1]]

|t1◦θ ′|
MT (Pno-init-τ , t1 ◦θ ′)

+p2 · [[φT2]]
|t2◦θ ′|
MT (Pno-init-τ , t2 ◦θ ′)

+ ∑
P

τ ,λ−−−→P′

λ
rateo(P,init(φT )∪{τ},0) · [[φT ]]|θ

′|
MT(P′,θ ′) =

= p1 ·prob(S C
|t1◦θ ′|
≤t1◦θ ′(Pno-init-τ ,T1))

+p2 ·prob(S C
|t2◦θ ′|
≤t2◦θ ′(Pno-init-τ ,T2))

+ ∑
P

τ,λ−−−→P′

λ
rateo(P,init(T)∪{τ},0) ·prob(S C

|θ ′|
≤θ ′(P

′,T)) = prob(S C
|θ |
≤θ (P,T))

by the induction hypotheses.

• Secondly, we prove that for allφ ∈ML MT there existsTφ ∈ TR,det such thatinit(Tφ ) = init(φ)
and for allP∈ Ppc andθ ∈ (R>0)∗:

prob(S C
|θ |
≤θ (P,Tφ )) = [[φ ]]|θ |MT(P,θ)
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by proceeding by induction on the syntactical structure ofφ . The proof is completely symmetri-
cal with respect to the proof of the first step, in the sense that the roles of formulas and tests are
exchanged: the former are given, the latter are built on the basis of the former.

A.5 Proofs of Results of Sect.8

The result exploited in that section is related to Markovian ready equivalence.

Definition A.13 Let P∈ Ppc, c∈ Cf(P), andα ∈ (Namev)∗. We say thatc is compatible withα iff:
trace(c) = α

We denote byC C (P,α) the multiset of computations inCf(P) that are compatible with traceα.

Definition A.14 Let P∈ Ppc, c∈ Cf(P), andρ ≡ (α,R) ∈ (Namev)∗×2Namev . We say that computation
c is compatible with the ready pairρ iff c∈ C C (P,α) and the set of names of visible actions that can be
performed by the last state reached byc coincides with the ready setR. We denote byRC C (P,ρ) the
multiset of computations inCf(P) that are compatible withρ.

Definition A.15 Let P1,P2∈ Ppc. We say thatP1 is Markovian ready equivalent toP2, writtenP1∼MR P2,
iff for all ready pairsρ ∈ (Namev)∗×2Namev and sequencesθ ∈ (R>0)∗ of average amounts of time:

prob(RC C
|θ |
≤θ (P1,ρ)) = prob(RC C

|θ |
≤θ (P2,ρ))

Proposition A.16 Let P1,P2 ∈ Ppc. ThenP1 ∼MR P2 ⇐⇒ P1 ∼MT P2.

Proof A reworking of the proof of Prop. 5.42 of [2] that proceeds in two steps:

⇒ We prove the contrapositive, so we assume thatP1 6∼MT P2. Then by virtue of Thm.A.11 there
existξ ∈ E T andθ ∈ (R>0)∗ such that:

probξ (C C
|θ |
≤θ ,ξ (P1,ξ )) 6= probξ (C C

|θ |
≤θ ,ξ (P2,ξ ))

Let us consider an extended traceξ̄ with minimal length among those satisfying the above inequal-
ity, together with a corresponding sequenceθ̄ of average amounts of time with minimal length.
There are two cases:

– If ξ̄ ≡ ε, then forα ≡ ε and|θ̄ |> 0 the inequality above can be rewritten as follows:

prob(C C
|θ̄ |
≤θ̄ (P1,α)) 6= prob(C C

|θ̄ |
≤θ̄ (P2,α))

which in turn can be rewritten as follows:
∑

R∈2Namev

prob(RC C
|θ̄ |
≤θ̄ (P1,(α,R))) 6= ∑

R∈2Namev

prob(C C
|θ̄ |
≤θ̄ (P2,(α,R)))

As a consequence, there must be at least oneR∈ 2Namev , sayR̂, for which it holds:

prob(RC C
|θ̄ |
≤θ̄ (P1,(α, R̂))) 6= prob(C C

|θ̄ |
≤θ̄ (P2,(α, R̂)))

henceP1 6∼MR P2.

– If ξ̄ ≡ ξ̄ ′ ◦ (a,E ) with traceet(ξ̄ ′) = α ′, then by virtue of the minimality of the length of̄ξ
we have that for allθ ′ ∈ (R>0)∗:

probξα′ (C C
|θ ′|
≤θ ′,ξα′

(P1,ξα ′)) = probξα ′ (C C
|θ ′|
≤θ ′,ξα′

(P2,ξα ′))
whereξα ′ is an extended trace obtained fromα ′ by including at each step the set of visible
action names occurring inP1 or P2. Therefore:

prob(C C
|θ ′|
≤θ ′(P1,α ′)) = prob(C C

|θ ′|
≤θ ′(P2,α ′))

There are two subcases:
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∗ If the last states reached by the computations inC C
|θ ′|
≤θ ′(P1,α ′) and the last states reached

by the computations inC C
|θ ′|
≤θ ′(P2,α ′) result in the same family of ready sets, then by

virtue of the initial inequality there must exist a visible action name in the family of
ready sets, saŷa, such that for somêθ ∈ (R>0)∗ not lexicographically less than̄θ :

prob(C C
|θ̂ |
≤θ̂ (P1,α ′ ◦ â)) 6= prob(C C

|θ̂ |
≤θ̂ (P2,α ′ ◦ â))

which can be rewritten as follows:
∑

R∈2Namev

prob(RC C
|θ̂ |
≤θ̂ (P1,(α ′ ◦ â,R))) 6= ∑

R∈2Namev

prob(RC C
|θ̂ |
≤θ̂ (P2,(α ′ ◦ â,R)))

As a consequence, there must be at least oneR∈ 2Namev , sayR̂, for which it holds:

prob(RC C
|θ̂ |
≤θ̂ (P1,(α ′ ◦ â, R̂))) 6= prob(RC C

|θ̂ |
≤θ̂ (P2,(α ′ ◦ â, R̂)))

henceP1 6∼MR P2.
∗ If the last states reached by the computations inC C

|θ ′|
≤θ ′(P1,α ′) and the last states reached

by the computations inC C
|θ ′|
≤θ ′(P2,α ′) result in two different families of ready sets, then

there is at least one ready set, sayR̂, that is possessed by only one of the two sets of
computations, say the former. Therefore, for someθ̂ ∈ (R>0)∗ it holds:

prob(RC C
|θ̂ |
≤θ̂ (P1,(α ′, R̂))) > 0 = prob(RC C

|θ̂ |
≤θ̂ (P2,(α ′, R̂)))

henceP1 6∼MR P2.

⇐ By virtue of Prop.A.2, from P1 ∼MT P2 it follows that for allck ∈ Cf(Pk), k∈ {1,2}, there exists
ch ∈ Cf(Ph), h∈ {1,2}−{k}, such that:

tracec(ck) = tracec(ch)
timea(ck) = timea(ch)

and for alla∈ Name:
rateo(Plast

k ,a,0) = rateo(Plast
h ,a,0)

with Plast
k (resp.Plast

h ) being the last state reached byck (resp.ch). Therefore, given an arbitrary
α ∈ (Namev)∗, for all ck ∈ C C (Pk,α), k∈ {1,2}, there existsch ∈ C C (Ph,α), h∈ {1,2}−{k},
such that:

timea(ck) = timea(ch)
and for alla∈ Name:

rateo(Plast
k ,a,0) = rateo(Plast

h ,a,0)
with the equality above meaning that every pair of matching computations (i.e., with the same trace
and the same stepwise average duration) end up in states with the same ready set.
Let us consider the computations ofC C (P1,α) andC C (P2,α) on the basis of their extended
stepwise average duration, which is given by their stepwise average duration concatenated with
the inverse of the total exit rate of their last state, or simply by their stepwise average duration
whenever the total exit rate of their last state is zero. This results in two disjoint partitions of
C C (P1,α)∪C C (P2,α) whose classes intersect both multisets: each class of the first partition
collects all the matching computations with the same extended stepwise average duration ending
in states with zero total exit rate, while each class of the second partition collects all the match-
ing computations with the same extended stepwise average duration ending in states with nonzero
total exit rate. We denote bŷθ1, . . . , θ̂n̂, n̂∈N, the extended stepwise average durations listed in in-
creasing order resulting from the classes of the first partition and byθ̄1, . . . , θ̄n̄, n̄∈N, the extended
stepwise average durations listed in increasing order resulting from the classes of the second parti-
tion, wheren̂+ n̄ > 0. In turn, every class of the second partition will be formed by several groups
of matching computations, with each group being characterized by a different ready set.
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Let us examine the class of matching computations of the second partition whose associated ex-
tended stepwise average duration is the minimum one, i.e.,θ̄1 ≡ θ̄ ′1 ◦ t̄1 with t̄1 ∈ R>0. Assuming
that R̄1,1, . . . , R̄1,m̄1 be the ready sets characterizing the groups of matching computations of the
considered class listed in order of nondecreasing size, let us focus on the smallest one, i.e.,R̄1,1.
There are two cases:

– If R̄1,1 = /0 (which means that only invisible actions can be executed in the last state of the
considered computations), we take a testT̄1,1 composed of a sequence terminated by s of pas-
sive visible actions whose names and order are the same as those of the actions occurring in
α, which at every step also enables passive actions with all the other visible names occurring
in P1 or P2 each followed by<z,∗1>.s (with z being the usual visible action name admitted
within tests but not within process terms under test). FromP1 ∼MT P2, we derive:

prob(S C
|θ̄1|
≤θ̄1

(P1, T̄1,1)) = prob(S C
|θ̄1|
≤θ̄1

(P2, T̄1,1))
where – due to the structure of̄T1,1 – for k∈ {1,2} it holds:

prob(S C
|θ̄1|
≤θ̄1

(Pk, T̄1,1)) = prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(Pk,(α, /0)))−prob(MC C
|θ̄ ′1|
≤θ̄ ′1

(Pk,α))
with MC C (Pk,α) being the multiset of maximal (i.e., terminating in a state without outgo-
ing transitions) computations inCf(P) that are compatible withα. SinceP1 ∼MT P2 implies

P1 ∼MTr P2 and the latter is equivalent toP1 ∼MTr,c P2, it holds prob(MC C
|θ̄ ′1|
≤θ̄ ′1

(P1,α)) =

prob(MC C
|θ̄ ′1|
≤θ̄ ′1

(P2,α)) and hence:

prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(P1,(α, /0))) = prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(P2,(α, /0)))

– If R̄1,1 6= /0, we take a test̄T1,1 composed of a sequence terminated by∑a∈R̄1,1
<a,∗1>.s of

passive visible actions whose names and order are the same as those of the actions occurring
in α, which at every nonfinal step also enables passive actions with all the other visible names
occurring inP1 or P2 each followed by<z,∗1>.s. FromP1 ∼MT P2, we derive:

prob(S C
|θ̄1|
≤θ̄1

(P1, T̄1,1)) = prob(S C
|θ̄1|
≤θ̄1

(P2, T̄1,1))
where – due to the structure of̄T1,1 – for k∈ {1,2} it holds:

prob(S C
|θ̄1|
≤θ̄1

(Pk, T̄1,1)) = prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(Pk,(α, R̄1,1)))
and hence:

prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(P1,(α, R̄1,1))) = prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(P2,(α, R̄1,1)))

If we focus on a generic group of matching computations of the first class of the second partition,
say the one whose ready set isR̄1, j (which cannot be empty) with2≤ j ≤ m̄1, we take a test̄T1, j

composed of a sequence terminated by∑a∈R̄1, j
<a,∗1>.s of passive visible actions whose names

and order are the same as those of the actions occurring inα, which at every nonfinal step also
enables passive actions with all the other visible names occurring inP1 or P2 each followed by
<z,∗1>.s. FromP1 ∼MT P2, we derive:

prob(S C
|θ̄1|
≤θ̄1

(P1, T̄1, j)) = prob(S C
|θ̄1|
≤θ̄1

(P2, T̄1, j))
where – due to the structure of̄T1, j – for k∈ {1,2} it holds:

prob(S C
|θ̄1|
≤θ̄1

(Pk, T̄1, j)) = prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(Pk,(α, R̄1, j)))+ q̄k,1,< j

In the equality above,̄qk,1,< j represents the contribution of the groups of matching computations
of the first class characterized by ready setsR̄1,1, . . . , R̄1, j−1, with the contribution of groupj ′,
1≤ j ′ < j, being eitherprob(S C

|θ̄1|
≤θ̄1

(Pk, T̄1, j ′)) or zero depending on whether̄R1, j ′ ⊂ R̄1, j or not.
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Therefore, fromP1 ∼MT P2 it follows q̄1,1,< j = q̄2,1,< j and hence:

prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(P1,(α, R̄1, j))) = prob(RC C
|θ̄ ′1|
≤θ̄ ′1

(P2,(α, R̄1, j)))
If we focus on a generic class of the second partition, say the one whose associated extended step-
wise average duration is̄θi ≡ θ̄ ′i ◦ t̄i with t̄i ∈ R>0, 2 ≤ i ≤ n̄, and whose groups of matching
computations are characterized by the ready setsR̄i,1, . . . , R̄i,m̄i listed in order of nondecreasing
size, we can reason in a similar way for the first group and for a generic group of the considered
class by taking suitable tests̄Ti, j , 1≤ j ≤ m̄i , built in the same way as tests̄T1, j . The only difference
is that, in the equalities relating the probability ofS C -multisets with the probability ofRC C -
multisets, we have to take into account the contribution of the classes of the second partition whose
associated extended stepwise average durations areθ̄1, . . . , θ̄i−1. Fork∈ {1,2}, the contribution of

group j ′, 1≤ j ′ ≤ m̄i′ , of classi′, 1≤ i′ < i, to group j of classi is eitherprob(S C
|θ̄i |
≤θ̄i

(Pk, T̄ ′i′, j ′))
or zero depending on whether̄Ri′, j ′ ∩ R̄i, j 6= /0 or not, whereT̄ ′i′, j ′ is obtained fromT̄i′, j ′ by enabling
at the final step only passive visible actions whose name belongs toR̄i′, j ′ ∩ R̄i, j . FromP1∼MT P2 it

follows prob(S C
|θ̄i |
≤θ̄i

(P1, T̄ ′i′, j ′)) = prob(S C
|θ̄i |
≤θ̄i

(P2, T̄ ′i′, j ′)) and hence:

prob(RC C
|θ̄ ′i |
≤θ̄ ′i

(P1,(α, R̄i, j))) = prob(RC C
|θ̄ ′i |
≤θ̄ ′i

(P2,(α, R̄i, j)))
We finally consider the classes of the first partition, each of which is formed by a single group of
matching computations characterized by the empty ready set as the total exit rate of their final
state is zero. Let us examine a generic class of matching computations of the first partition, say
the one whose associated extended stepwise average duration isθ̂l , 1≤ l ≤ n̂. If we take a test̂T
composed of a sequence terminated by s of passive visible actions whose names and order are the
same as those of the actions occurring inα, which at every step also enables passive actions with
all the other visible names occurring inP1 or P2 each followed by<z,∗1>.s, then fromP1∼MT P2

we derive:
prob(S C

|θ̂l |
≤θ̂l

(P1, T̂)) = prob(S C
|θ̂l |
≤θ̂l

(P2, T̂))

where – due to the structure ofT̂ – for k∈ {1,2} it holds:
prob(S C

|θ̂l |
≤θ̂l

(Pk, T̂)) = prob(C C
|θ̂l |
≤θ̂i

(Pk,α)) = prob(RC C
|θ̂l |
≤θ̂i

(Pk,(α, /0)))+ ∑
R̄i, j 6= /0

prob(RC C
|θ̂l |
≤θ̂l

(Pk,(α, R̄i, j )))

Since∑R̄i, j 6= /0prob(RC C
|θ̂l |
≤θ̂l

(P1,(α, R̄i, j))) = ∑R̄i, j 6= /0prob(RC C
|θ̂l |
≤θ̂l

(P2,(α, R̄i, j))), it holds:

prob(RC C
|θ̂l |
≤θ̂l

(P1,(α, /0))) = prob(RC C
|θ̂l |
≤θ̂l

(P2,(α, /0)))
Due to the generality ofα and the consideration of all the possible ready sets afterα occurring in
P1 or P2 together with their threshold stepwise average durations, we can conclude thatP1∼MR P2.

We conclude by showing the algorithm (based on Prop.A.16) for checking whetherP1 ∼MT P2:

1. Transform[[P1]] and[[P2]] into their equivalent discrete-time versions:

(a) Divide the rate of each transition by the total exit rate of its source state.

(b) Augment the name of each transition with the total exit rate of its source state.

2. Compute the equivalence relationR that equates any two states of the discrete-time versions of
[[P1]] and[[P2]] whenever the two sets of augmented action names labeling the transitions departing
from the two states coincide.

3. For each equivalence classR induced byR, considerR as the set of accepting states and check
whether the discrete-time versions of[[P1]] and[[P2]] are probabilistic language equivalent.
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4. Return yes/no depending on whether all the checks performed in the previous step have been
successful or at least one of them has failed.

Each iteration of step 3 above requires the application of the algorithm for probabilistic language equiv-
alence. Denoted byNameRealP1,P2 the set of augmented action names labeling the transitions of the
discrete-time versions of[[P1]] or [[P2]], the algorithm visits in breadth-first order the tree containing a
node for each element of(NameRealP1,P2)

∗ and studies the linear independence of the state probability
vectors associated with a finite subset of the tree nodes:

1. Create an empty setV of state probability vectors.

2. Create a queue whose only element is the empty stringε.

3. While the queue is not empty:

(a) Remove the first element from the queue, say stringς .

(b) If the state probability vector of the discrete-time versions of[[P1]] and[[P2]] after readingς
does not belong to the vector space generated byV, then:

i. For eacha∈ NameRealP1,P2, addς ◦a to the queue.
ii. Add the state probability vector toV.

4. Build a three-valued state vectoru whose generic element is:

(a) 0 if it corresponds to a nonaccepting state.

(b) 1 if it corresponds to an accepting state of the discrete-time version of[[P1]].
(c) −1 if it corresponds to an accepting state of the discrete-time version of[[P2]].

5. For eachv∈V, check whetherv·uT = 0.

6. Return yes/no depending on whether all the checks performed in the previous step have been
successful or at least one of them has failed.

The time complexity of the algorithm isO(n5), wheren is the total number of states of[[P1]] and[[P2]].


