Markovian Testing Equivalence and
Exponentially Timed Internal Actions

Marco Bernardo

Universi@a di Urbino “Carlo Bo” — Italy
Istituto di Scienze e Tecnologie dell'lInformazione

In the theory of testing for Markovian processes developed so far, exponentially timed internal actions
are not admitted within processes. When present, these actions cannot be abstracted away, because
their execution takes a nonzero amount of time and hence can be observed. On the other hand,
they must be carefully taken into account, in order not to equate processes that are distinguishable
from a timing viewpoint. In this paper, we recast the definition of Markovian testing equivalence

in the framework of a Markovian process calculus including exponentially timed internal actions.
Then, we show that the resulting behavioral equivalence is a congruence, has a sound and complete
axiomatization, has a modal logic characterization, and can be decided in polynomial time.

1 Introduction

Markovian behavioral equivalences are a means to relate and manipulate formal models with an underly-
ing continuous-time Markov chain (CTMC) semantics. Various proposals have appeared in the literature,
which are extensions of the traditional approaches to the definition of behavioral equivalences. Marko-
vian bisimilarity [14, 13, 5] considers two processes to be equivalent whenever they are able to mimic
each other’s functional and performance behavior stepwise. Markovian testing equivdlawes[ders

two processes to be equivalent whenever an external observer is not able to distinguish between them
from a functional or performance viewpoint by interacting with them by means of tests and comparing
their reactions. Markovian trace equivalendé][considers two processes to be equivalent whenever
they are able to perform computations with the same functional and performance characteristics.

The three Markovian behavioral equivalences mentioned above have different discriminating powers
as a consequence of their different definitions. However, they are all meaningful not only from a func-
tional standpoint7, 11, 7], but also from a performance standpoint. In fact, Markovian bisimilarity is
known to be in agreement with an exact CTMC-level aggregation called ordinary lumpab#jtg][
while Markovian testing and trace equivalences are known to be consistent with a coarser exact CTMC-
level aggregation called T-lumpabilit2,[3].

In this paper, we focus on the treatment of internal actions — denotadalsyusual — that are ex-
ponentially timed. Unlike internal actions of nondeterministic processes, exponentially timed internal
actions cannot be abstracted away, because their execution takes a nonzero amount of time and hence
can be observed. To be precise,14,[6, 1] the issue of abstracting from them has been addressed, but it
remains unclear whether and to what extent abstraction is possible, especially if we want to end up with
a weak Markovian behavioral equivalence that induces a nontrivial, exact CTMC-level aggregation.

The definition of Markovian bisimilarity smoothly includes exponentially timed internal actions, by
applying to them the same exit rate equality check that is applied to exponentially timed visible actions.
Unfortunately, this is not the case with Markovian testing and trace equivalences as witnessed by the
theory developed for them, which does not admit exponentially timed internal actions within processes.

QFM 2009

EPTCS 22, 2009, pp. 89, doi:10.4204/EPTCS.??.2? © M. Bernardo

2 Markovian Testing Equivalence and Exponentially Timed Internal Actions

When present, these actions must be carefully taken into account in order not to equate processes that
are distinguishable from a timing viewpoint. As an example, given € R~ q, processes<T1,A>.0"

— which can only execute an exponentially timed internal action whose average durdtjgn-sand
“<1,U>.0" — which can only execute an exponentially timed internal action whose average duration
is 1/u — should not be considered equivaleniif> u, as the durations of their actions are sampled
from different exponential probability distributions. Moreover, if they were considered equivalent, then
congruence with respect to alternative and parallel composition would not hold.

With the definition of Markovian testing equivalence given2h+ which compares the probabilities
of passing the same test within the same average time upper bound — there is no way to distinguish
between the two processes above, as they pass with probability 1 the test comprising only the success
state and with probability O any other test, independent of the fixed average time upper bound. In this
paper, we show that a simple way to distinguish between the two processes above consists of imposing
an additional constraint on the length of the successful computations to take into account.

For instance, if we take a test comprising only the success state, the two processes above pass the test
with probability 1 for every average time upper bound if we restrict ourselves to successful computations
of length 0. However, if we move to successful computations of length 1 and wig' ises average time
upper bound, it turns out that7,A >.0 reaches success with probability 1 — as it has enough time on
average to perform its only action — whereas, Li>>.0 does not — as it has not enough time on average
to perform its only action by the deadline. A similar idea applies to Markovian trace equivalence.

After introducing a Markovian process calculus that includes exponentially timed internal actions
(Sect.2), we present a new definition of Markovian testing equivalence that embodies the idea illustrated
above (Sect3). Then, we show thaf) it coincides with the equivalence defined 2 jvhen exponen-
tially timed internal actions are abseltii,) its discriminating power does not change if we introduce
exponentially timed internal actions within tests, giid) it inherits the fully abstract characterization
studied in P] (Sect.4). Furthemore, we show that it is a congruence with respect to typical dynamic
and static operators (Se&). and has a sound and complete axiomatization for nonrecursive processes
(Sect.6), thus overcoming the limitation to dynamic operators of analogous results contairgdix [
nally, we show that it has a modal logic characterization (S&¢twhich is based on the same modal
language a<4], and that it can be decided in polynomial time (S&}t.

2 Markovian Process Calculus

In this section, we present a process calculus in which every action has associated with it a rate that
uniquely identifies its exponentially distributed duration. The definition of the syntax and of the seman-
tics for the resulting Markovian process calculus — MPC for short — is followed by the introduction of
some notations related to process terms and their computations that will be used in the rest of the paper.

2.1 Durational Actions and Behavioral Operators

In MPC, an exponentially timed action is represented as amiA >. The first element, is the name
of the action, which ig in the case that the action is internal, otherwise it belongs to Blaets of
visible action names. The second elemang R-q, is the rate of the exponentially distributed random
variableRV quantifying the duration of the action, i.2f{RV <t} =1—e *!fort € R.o. The average
duration of the action is equal to the reciprocal of its rate, L&\, If several exponentially timed actions
are enabled, the race policy is adopted: the action that is executed is the fastest one.

M. Bernardo 3

The sojourn time associated with a process téris thus the minimum of the random variables
guantifying the durations of the exponentially timed actions enabld®l I8ince the minimum of several
exponentially distributed random variables is exponentially distributed and its rate is the sum of the rates
of the original variables, the sojourn time associated With exponentially distributed with rate equal
to the sum of the rates of the actions enabledPbyherefore, the average sojourn time associated with
P is the reciprocal of the sum of the rates of the actions it enables. The probability of executing one of
those actions is given by the action rate divided by the sum of the rates of all the considered actions.

Passive actions of the formia, x> are also included in MPC, where< R is the weight of the
action. The duration of a passive action is undefined. When several passive actions are enabled, the re-
active preselection policy is adopted. This means that, within every set of enabled passive actions having
the same name, each such action is given an execution probability equal to the action weight divided by
the sum of the weights of all the actions in the set. Instead, the choice among passive actions having
different names is nondeterministic. Likewise, the choice between a passive action and an exponentially
timed action is nondeterministic.

MPC comprises a CSP-like parallel composition operatprglying on an asymmetric synchroniza-
tion discipline p], according to which an exponentially timed action can synchronize only with a passive
action having the same name. In other words, the synchronization between two exponentially timed
actions is forbidden. Following the terminology dfZ], the adopted synchronization discipline mixes
generative and reactive probabilistic aspects. Firstly, among all the enabled exponentially timed actions,
the proposal of an action name is generated after a selection based on the rates of those actions. Secondly,
the enabled passive actions that have the same name as the proposed one react by means of a selection
based on their weights. Thirdly, the exponentially timed action winning the generative selection and the
passive action winning the reactive selection synchronize with each other. The rate of the synchroniza-
tion is given by the rate of the selected exponentially timed action multiplied by the execution probability
of the selected passive action, thus complying with the bounded capacity assurhgfion [

We denote byAct= Namex Ratethe set of actions of MPC, wheMame= Namg U{T} is the set of
action names — ranged over ayb — andRate= R.oU {* | W € R0} is the set of action rates — ranged
over by A, fi. We then denote bfRelaba set of relabeling functiong : Name— Namethat preserve
action visibility, i.e., such thap~*(t) = {r}. Finally, we denote byar a set of process variables ranged
over byX.,Y.

Definition 2.1 The set of process terms of the process langug@y® is generated by the following
syntax:

P:=0 inactive process
| <a,A>.P exponentially timed action prefix
| <a,*w>.P passive action prefix
| P+P alternative composition
| PJsP parallel composition
| P/H hiding
| P[o] relabeling
| X process variable
| recX:P recursion

wherea € Name A,w € R, SH C Namg, ¢ € Relah andX € Var. We denote by the set of closed
and guarded process terms#tZ .]

4 Markovian Testing Equivalence and Exponentially Timed Internal Actions

2.2 Operational Semantics

The semantics for MPC can be defined in the usual operational style, with an important difference with
respect to the nondeterministic case. A process term<iigA >.0+ <a,A>.0 is not the same as
<a,A>.0, because the average sojourn time associated with the latted,/ide.js twice the average
sojourn time associated with the former, i®/(A +A). In order to assign distinct semantic models to
terms like the two considered above, we have to take into account the multiplicity of each transition,
intended as the number of different proofs for the transition derivation. The semantic fRjdel a
process ternf? € P is thus a labeled multitransition system, whose multitransition relation is contained
in the smallest multiset of elements Bfx Act x P satisfying the operational semantic rules of Table

({- — -} denotes syntactical replacemefit;|} are multiset parentheses).

We observe that exponential distributions fit well with the interleaving view of parallel composition.
Due to their memoryless property, the execution of an exponentially timed action can be thought of as
being started in the last state in which the action is enabled. Due to their infinite support, the probability
that two concurrent exponentially timed actions terminate simultaneously is zero.

The CTMC underlying a process tetfne P can be derived fronjP] iff this labeled multitransition
system has no passive transitions, in which case we saf isgierformance closed. We denotelby
the set of performance closed process terma. of

2.3 Exit Rates of Process Terms

The exit rate of a process tefifne P is the rate at whicl? can execute actions of a certain naareName

that lead to a certain destinatiinC P and is given by the sum of the rates of those actions due to the
race policy. We consider a two-level definition of exit rate, with ledebrresponding to exponentially
timed actions and level 1 corresponding to passive actions:

7)‘ .
S{A€R.|3P €eD.P—P} ifl=0

rates(P,a,1,D) = Ak
S{weR.o|IP eD.P—=P} ifl=-1

where each summation is taken to be zero whenever its multiset is empty.
By summing up the rates of all the actions of a certain le¥lratP can execute, we obtain the total
exit rate ofP at levell:

ratg(Rl) = Y rate(Pa,l)

acName

where:

| rate;(Pa,l) = ratee(Pa,l,P) |

is the overall exit rate dP with respect ta at levell.
If P is performance closed, theate;(P,0) coincides with the reciprocal of the average sojourn time
associated witl?. Insteadrate,(P,a, —1) coincides withweigh{P,a).

2.4 Probability and Duration of Computations

A computation of a process terfe P is a sequence of transitions that can be executed startingdfrom
The length of a computation is given by the number of transitions occurring in it. We den@ig Ry

the multiset of finite-length computations Bf We say that two distinct computations are independent
of each other if neither is a proper prefix of the other one. In the following, we concentrate on finite

M. Bernardo

(PRE])) (PRED) T
<a,A>P——P <a, xy>.P——P
aA aA
PL——P Pp——P
(ALTy) — (ALT2) 3
P+P—P P+P——P
5 al " ‘s B, al " ‘s
— a — a
(PARy) — - (PAR7) 2
aA y aA ,
PllsP—— Py IsP PillsPo——Pi||sP;
a, A xy
PL——P] P,—— P acsS
(SYNy) g —
PilsP PilisPs
a,*y aA
PP—— P P——P acs
(SYN2) CY g
PlsP PilisPs
a*w. a,*w,
PL——P] P,—— P acsS
(SYN3) A, *norm(wy ,wy,a,P1,Py)
PL|sP. Pr||sPs
al al
P— P acH P——P a¢H
(HiDq) = (HiD2) =
P/H——P//H P/H——P//H
P——P
(REL) 5@
Pl¢] —— P'[¢]
ai
P{recX :P— X} —— P
(REC) .
recX :P——P
a,*ky
weighi{Pa) = S{{weR.o|IP e P.P——P'|}
norn‘(WZbWZ’av Pl; PZ) = Weigwéplﬁa) : We|g\|{]v(2P2a) ' (Welgh(P17a> +We|gh(P27 a))

Table 1:Operational semantic rules for MPC

6 Markovian Testing Equivalence and Exponentially Timed Internal Actions

multisets of independent, finite-length computations. Below we define the probability and the duration
of a computatiort € %;(P) for P € Py, using_o _ for sequence concatenation gndor sequence length.
The probability of executing is the product of the execution probabilities of the transitions of

1 if [c/]=0

prob(c) = { . "
ey PrObE) ifc=P——¢

We also define the probability of executing a computatio@ i 4;(P) as:

prob(C) = 3 prob(c)

ceC

whenevec is finite and all of its computations are independent of each other.
The stepwise average durationis the sequence of average sojourn times in the states traversed
by c:

€ if |c|=0
timey(c) = N

rate; (P,0)

aA
otimey(c)) fc=P——(

whereg is the empty stepwise average duration. We also define the multiset of computa@onitP)
whose stepwise average duration is not greater éhar{R-o)* as:

[Coo = {ceC[[d < [B]AVi=1,....|c]-timex(C)[i] < O[]} |

Moreover, we denote b@' the multiset of computations i@ C ¢:(P) whose length is equal foc N.

We conclude by observing that the average duration of a finite-length computation has been defined as
the sequence of average sojourn times in the states traversed by the computation. The same quantity could
have been defined as the sum of the same basic ingredients, but this would not have been appropriate as
explained in L9, 2].

3 Redefining Markovian Testing Equivalence

The basic idea behind testing equivalence is to infer information about the behavior of process terms by
interacting with them by means of tests and comparing their reactions. In a Markovian setting, we are
not only interested in verifying whether tests are passed or not, but also in measuring the probability with
which they are passed and the time taken to pass them. Therefore, we have to restrict ourBgives to

As in the nondeterministic setting, the most convenient way to represent a test is through a process
term, which interacts with any process term under test by means of a parallel composition operator
that enforces synchronization on the d&tme of all visible action names. Due to the adoption of
an asymmetric synchronization discipline, a test can comprise only passive visible actions, so that the
composite term inherits performance closure from the process term under test.

From a testing viewpoint, in any of its states a process term under test generates the proposal of an
action to be executed by means of a race among the exponentially timed actions enabled in that state. If
the name of the proposed actiorrishen the process term advances by itself. Otherwise, the test either
reacts by participating in the interaction with the process term through a passive action having the same
name as the proposed exponentially timed action, or blocks the interaction if it has no passive actions
with the proposed name.

M. Bernardo 7

Markovian testing equivalence relies on comparing the process term probabilities of performing suc-
cessful test-driven computations within arbitrary sequences of average amounts of time. Due to the
presence of these average time upper bounds, for the test representation we can restrict ourselves to
nonrecursive process terms. In other words, the expressiveness provided by finite-state labeled multi-
transition systems with an acyclic structure is enough for tests.

In order not to interfere with the quantitative aspects of the behavior of process terms under test, we
avoid the introduction of a success acti@n The successful completion of a test is formalized in the
text syntax by replacin@ with a zeroary operator s denoting a success state. Ambiguous tests including
several summands among which at least one equal to s are avoided through a two-level syntax.

Definition 3.1 The sefl'r of reactive tests is generated by the following syntax:

T = s|T
T = <a#>T|T'+T

wherea € Namg andw € R+. [

Definition 3.2 Let P € Ppc andT € Tr. The interaction system &f andT is process term® ||name T €
Ppc and we say that:

¢ A configuration is a state dfP ||name T], Which is formed by a process and a test projection.

¢ A configuration is successful iff its test projection is s.

A test-driven computation is a computation[éf||name T |-

A test-driven computation is successful iff it traverses a successful configuration.
We denote by”% (P, T) the multiset of successful computationsRifname T- [

If a process tern® € P, under test has no exponentially timeehctions as it was inZ], then for
all reactive testy e Tr it turns out that:(i) all the computations i”¢’ (P, T) have a finite length due
to the restrictions imposed on the test synt@¥; all the computations it”% (P, T) are independent of
each other because of their maximalityi;) the multiset?# (P, T) is finite becaus® andT are finitely
branching. Thus, all definitions of Se2t4are applicable to”% (P, T) and also to” % <¢(P, T) for any
sequencd € (R.o)* of average amounts of time.

In order to cope with the possible presence of exponentially timadtions withinP in such a
way that all the properties above hold — especially independence — we have to consider subsets of
€ <o(P, T) including all successful test-driven computations of the same length. This is also necessary
to distinguish among process terms comprising only exponentially trredions — like<1,A >.0 and
<T,4>.0, with A > u, mentioned in Sectl — as there is a single test, s, that those process terms can
pass. The only option is to compare them after executing the same numbacténs.

Since no element 0”4 <¢(P,T) can be longer thaff|, we should consider every possible subset
€ o(P,T) for 0 <1< |6|. However, it is enough to considaﬁ%‘f‘e(P, T), as shorter successful
test-driven computations can be taken into account when imposing prefifeaéverage time upper
bounds. Therefore, the novelty with respect2pig simply the presence of the additional constraght

Definition 3.3 Let Py, P, € Pp.. We say thaP; is Markovian testing equivalent @&, writtenPy ~yt P,
iff for all reactive testsl' € Tr and sequenceé® € (R-o)* of average amounts of time:

prob(.7 %% (P, T)) = prob(#%'% (P>, T)) =

8 Markovian Testing Equivalence and Exponentially Timed Internal Actions

Note that we have not defined a may equivalence and a must equivalence as in the nondeterministic
case L1]. The reason is that in this Markovian framework the possibility and the necessity of passing
a test are not sufficient to discriminate among process terms, as they are qualitative concepts. What we
have considered here is a single quantitative notion given by the probability of passing a test (within
an average time upper bound); hence, the definition of a single equivalence. This quantitative notion
subsumes both the possibility of passing a test — which can be encoded as the probability of passing the
test being greater than zero — and the necessity of passing a test —which can be encoded as the probability
of passing the test being equal to one.

Although we could have defined Markovian testing equivalence as the kernel of a Markovian testing
preorder, this has not been done. The reason is that such a preorder would have boiled down to an
equivalence relation, because for each reactive test passgdiithin 6 with a probability less than the
probability with whichP, passes the same test wittnin general it is possible to find a dual reactive
test for which the relation between the two probabilities is inverted.

Another important difference with respect to the nondeterministic case is that the presence of average
time upper bounds makes it possible to decide whether a test is passed or not even if the process term
under test can execute infinitely many exponentially timexttions. In other words,-divergence does
not need to be taken into account.

4 Basic Properties and Characterizations

First of all, we observe that, whenever exponentially tintegictions are absent, the new Markovian
testing equivalence/yt coincides with the old one defined ig][which we denote by oig. In the
following, we usePy.y to refer to the process termsBf that contain no exponentially timadactions.

Proposition 4.1 Let P,P> € Ppcy. ThenPL ~yt Po <= Py ~mT 01d Po.]

Then, we have two alternative characterizations-gfr, which provide further justifications for the
way in which the equivalence has been defined. The first one establishes that the discriminating power
does not change if we consider a g, of tests with the following more liberal syntax:
T:=s|<axw>T|T+T
provided that by successful configuration we mean a configuration whose test projection includes s as
top-level summand. Let us denote By ib the resulting variant of Markovian testing equivalence.

Proposition 4.2 Let Py, P, € Ppe. ThenPy ~ut jib P> <= PL ~mT Po. [|

The second characterization establishes that the discriminating power does not change if we consider
a setTr ; of tests capable of moving autonomously by executing exponentially tiadions:
T = s|T
T = <ax>T|<,A>T|T+T
Let us denote by ; the resulting variant of Markovian testing equivalence.

Proposition 4.3 Let Py, P, € Ppe. ThenPy ~y1 ¢ P> <= PL~mT Po.]

Finally, we have two further alternative characterizations-gfr coming from p]. The first one
establishes that the discriminating power does not change if we consider the (more accurate) probability
distribution of passing tests within arbitrary sequences of amounts of time, rather than the (easier to work
with) probability of passing tests within arbitrary sequences of average amounts of time.

The second characterization fully abstracts from comparing process term behavior in response to
tests. This is achieved by considering traces that are extended at each step with the set of visible action

M. Bernardo 9

names permitted by the environment at that step (not to be confused with a ready set). A consequence
of the structure of extended traces is the identification of &'ggtof canonical reactive tests, which is
generated by the following syntax:

Ti=s|<ax>T+ S <b¥x>.<z%1>5
be&—{a}

wherea € &, & C Namg finite, the summation is absent whene¥er= {a}, and z is a visible action

name representing failure that can occur within tests but not within process terms under test. Similar
to the case of probabilistic testing equivalenegl(], each of these canonical reactive tests admits a
single computation leading to success, whose intermediate states can have additional computations each
leading to failure in one step. We point out that the canonical reactive tests are name deterministic, in the
sense that the names of the passive actions occurring in any of their branches are all distinct.

5 Congruence Property

Markovian testing equivalence is a congruence with respect to all MPC operators. In particular, un-
like [2], we have a full congruence result with respect to parallel composition.

Theorem 5.1 Let P, P, € Ppc. WheneveP, ~yt P, then:

1. <a,A>.PL~ut <a,A>.P forall <a,A> € Act

2. PL+P~y1 P2+ PandP+ Py ~yr P+P> forall P € Pp..

3. Pi||sP ~m1 P2 ||sP andP||sPy ~ut P||sP: for all P € P andSC Namg s.t.P;||sP, P2 ||sP € Ppc.
4. Pi/H ~ut P>/H for allH C Name,.

5. Pi[¢] ~mT P[¢] for all ¢ € Relab |

It is worth stressing that the additional constraint on the length of successful test-driven computa-
tions present in Def3.3is fundamental for achieving congruence with respect to alternative and paral-
lel composition. As an example, if it weret, A >.0 ~y1 <T,u>.0 for A > p, then we would have
<T,A>.0+<a,y>.0 Ayt <T,Uu>.0+ <a,y>.0. In fact, when the average time upper bound is high
enough, the probability of passinga, x1>.s is% for the first term, whereas it iﬁf’r—y for the second
term. We also mention that Progk2and4.3are exploited in the congruence proof for static operators.

6 Sound and Complete Axiomatization

Markovian testing equivalence has a sound and complete axiomatization over Hygnsgtof nonre-
cursive process terms B, given by the set#yr of equational laws of Tabl2.

Apart from the usual laws for the alternative composition operator and for the unary static operators,
unlike the axiomatization 0§ we now have laws dealing with concurrency. In particular, axief s
concerning the parallel compositionBt= ¥ic <aj,Ai>.R andQ = ¥ .; <bj, fi;>.Q; — wherel andJ
are nonempty finite index sets and each summation on the right-hand side of the axiom is takén to be
whenever its set of summands is empty — is the expansion law when enforcing generative-reactive and
reactive-reactive synchronizations. This axiom applies to non-performance-closed process terms too;
e.g., the last addendum on its right-hand side is related to reactive-reactive synchronizations.

10 Markovian Testing Equivalence and Exponentially Timed Internal Actions
(T 1) PP+P = R+P
(A 2) (PL+P)+P; = P+ (P +P3)
(«Q{MT,S) P+0 =P
(JZ{MTA) z<a)\> z <b|] IJ|J>FJ|J - <a, ZAk> z z <b|],zk)\k I‘l|J> Plj
i€l JEJ kel i€l jed
if: 1 is a finite index set withl | > 2;
foralli €I, index setj; is finite and its summation Bif J, = 0;
foralliy, i € | andb € Name
Z {‘ Hiy,j ’ bl17J = b‘} = 2 {| Hi,j | biz-,j = b|}
i€, j€d,
(oArs) Y <aA>Rlls ¥ <bj[i>.Q =
i€l jed
s <ak,3\k>-<F1<Hs_Z <bjaﬂj>-Qj> +
kel a¢S
> <bn, fin>. (Z <a,Ai>R ||SQh>
heJ bh¢S
<@, Ak gty > (P [ls Qn) +
kel,aeSAERo NEJ,bh=ay, Ih="*w, ngh(Q br)
<bn, i - wergnpas > (P lls Qn) +
heJ,bheéﬂheRw kEl,akzghjk**vk weightPay)
<8k, *norm(Vi,Wh,a,P,Q) > (H(HS Qh)
kel aeS A=y, NEIPh=ak, n="w,
(AT 6) > <a,Ai>R(s0 = 3 <anhoF
i€l kel,ac¢S
(<t ,7) Olls ¥ <bj,@j>.Qj = 5 <bn, [h>.Qn
jed hed,bn¢S
(A 8) 0[s0 =0
(T 9) ~ OH=0 _
(9T 10) (<a,A>.P)/H = <1,A>.(P/H) ifacH
(ST 11) (<a,A>.P)/H = <a,A>.(P/H) ifa¢H
(AT 12) (PL+P)/H = PL/H+P/H
(T 13) _ O] = Q 3
(AT 14) (<a,A>.P)[9] = <¢(a),A>.(P[¢])
(2T 15) (PL+P)[¢] = Pi[¢] +P[¢]

Table 2:Equational laws foreyt

M. Bernardo 11

Like in [2], the law characterizing-ut is the axiom schemazt 4, which in turn subsumes the law
<a,A\1>.P+<a, Ay>.P = <a, A1+ Ax>.P characterizing Markovian bisimilarity. The simplest instance
of axiom schemawyr 4 is depicted below:

“MT

a,)\1 a,)\2 a,)\1+)\2
A A
b, b, o A S 2.
" H ot Ny VDS
R) R)

As emphasized by the figure aboveyr allows choices to be deferred in the case of branches that start
with the same action name (see the tabranches on the left-hand side) and are followed by sets of
actions having the same names and total rates{(sbeu >} after each of the twa-branches).

Theorem 6.1 Let P1,P> € Ppcpree Thenaiyt =P =P <= PL~yT Po. [

7 Modal Logic Characterization

Markovian testing equivalence has a modal logic characterization that, df is pased on a modal
language comprising true, disjunction, and diamond. A constraint is imposed on formulas of the form
@V @, which does not reduce the expressive power as it is consistent with the name-deterministic nature
of branches within canonical reactive tests (see 3gct.

Definition 7.1 The set of formulas of the modal languagé.Z v is generated by the following syntax:

@ = true| ¢
¢ = @V

wherea € Namg and each formula of the formy V ¢ satisfies:

init(¢n) Ninit(@) = 0
with init(@) being defined by induction on the syntactical structure af follows:

init(true) = 0
init((a)p) = {a}
init(@ v @) = init(@)Uinit(g) n

Probabilistic and temporal information do not decorate any operator of the modal language, but come
into play through a quantitative interpretation function inspired 1§} fhat replaces the usual boolean
satisfaction relation. This interpretation function measures the probability that a process term satisfies
a formula quickly enough on average. The constraint imposed byDEeén disjunctions guarantees
that their subformulas exercise independent computations of the process term, thus ensuring the correct
calculation of the probability of satisfying the overall formula. In order to manage exponentially timed
T-actions, unlike 4] the length of the computations satisfying the formula has to be taken into account
as well.

Definition 7.2 The interpretation functioff.j,; of .#Z.%ut overPye x (R-0)* is defined by letting:

0 if |6| =0A @ # true or
[[‘P]]L?I‘T(R 0) = |6] > OAratey(P,init(p)U{1},0) =0
1 if |8] =0A@=true

12 Markovian Testing Equivalence and Exponentially Timed Internal Actions

otherwise by induction on the syntactical structureo@nd on the length of as follows:

A K
06 2 fate,(PT0) [truelr (P,60) if gy <t
[truely? (Ptod) = { p-Lp
0 it reero >t
°]
2 A PET [@]r (P, 0) +
P p
o6 6 .
[(@@lyr (PtoB) = > mEF T (@I (P.6) if mepharro <t
PA——>P’
(© it e >t

\t109\<

[ov @l (Pto8) = pri-[@lir (Podnitrstio8) + P2 [@elir (Prodnitr.t20 6)

6
+ z rateo(Rinit(QVq)z)U{r}ﬁo) [[(Pl\/ (Pzﬂ‘ ‘(6)

P——P

wherePq-init-r IS P devoid of all of its computations starting withraransition — which is assumed to be

0 whenever all the computations Bfstart with ar-transition — and foj € {1,2}:

o rateo(Pyinit(¢;),0) t = t+(1 - 1)
Pi = Tt (Pinit(@ven)U{T].0) j rateo (Pinit(@)).0) ~ rates(Pint(¢1Ve)U{T}.0) "

In the definition abovep; represents the probability with whi¢hperforms actions whose name is in
init(¢y) rather than actions whose name isriit(¢) U {1}, k= 3 — j, given thatP can perform actions
whose name is imit(¢ vV @) U{1}. These probabilities are used as weights for the correct account of
the probabilities with whiclP satisfies onlyp, or ¢ in the context of the satisfaction ¢f v ¢. If such
weights were omitted, then the fact thatv ¢, offers a set of initial actions at least as large as the ones
offered by, alone and byp, alone would be ignored, thus leading to a potential overestimate of the
probability of satisfyingp V .

Similarly, tj represents the extra average time grante@lfior satisfying onlyg;. This extra average
time is equal to the difference between the average sojourn tifigvhmen only actions whose name is in
init(¢;) are enabled and the average sojourn timwhen also actions whose name isriit (@) U {1},
k=3—j, are enabled. Since the latter cannot be greater than the former due to the race policy — more
enabled actions means less time spent on average in a state — congigesiead ot; in the satisfaction
of ¢, in isolation would lead to a potential underestimate of the probability of satistgingg, within
the given average time upper bound,Ramay satisfyg Vv ¢ within t o 8 even if P satisfies neitheq
nor ¢» taken in isolation withirt o 6.

Theorem 7.3 Py ~yt Po <= Y@ € .4 Lyr.V0 € (Roo)™. [0S (PL, 6) = [@] Sk (P, 0). =

8 Verification Algorithm

Markovian testing equivalence can be decided in polynomial time. The reason is that Markovian testing
equivalence coincides with Markovian ready equivalence and, given two process terms, their underlying
CTMCs in which action names have not been discarded from transition labels are Markovian ready
equivalent iff the corresponding embedded DTMCs in which transitions have been labeled with suitably

M. Bernardo 13

augmented names are related by probabilistic ready equivalence. The latter equivalence is decidable in
polynomial time [L5] through a reworking of the algorithm for probabilistic language equivaleb@le [
Following [19], the transformation of a name-labeled CTMC into the corresponding embedded name-
labeled DTMC is carried out by simply turning the rate of each transition into the corresponding execu-
tion probability. Then, we need to encode the total exit rate of each state of the original name-labeled
CTMC inside the names of all transitions departing from that state in the associated embedded DTMC.

Acknowledgment This work has been funded by MIUR-PRIN projéRaCo — Performability-Aware
Computing: Logics, Models, and Languages

References

[1] C. Baier, J.-P. Katoen, H. Hermanns, and V. WéGpomparative Branching-Time Semantics for Markov
Chains”, in Information and Computation 200:149-214, 2005.

[2] M. Bernardo,“Non-Bisimulation-Based Markovian Behavioral Equivalences? Journal of Logic and
Algebraic Programming 72:3-49, 2007.

[3] M. Bernardo,“Towards State Space Reduction Based on T-Lumpability-Consistent Relatiof&’bc. of
EPEW 2008, Springer, LNCS 5261:64-78, Palma de Mallorca (Spain), 2008.

[4] M. Bernardo,“Uniform Logical Characterizations of Testing Equivalences for Nondeterministic, Proba-
bilistic and Markovian Processesin Proc. of QAPL 2009, Elsevier, ENTCS, York (UK), 2009.

[5] M. Bernardo and M. Bravetti|Performance Measure Sensitive Congruences for Markovian Process Alge-
bras”, in Theoretical Computer Science 290:117-160, 2003.

[6] M. Bravetti, “Revisiting Interactive Markov Chains’in Proc. of MTCS 2002, Elsevier, ENTCS 68(5):1-
20, Brno (Czech Republic), 2002.

[7] S.D. Brookes, C.A.R. Hoare, and A.W. Rosct&,Theory of Communicating Sequential Processdr”
Journal of the ACM 31:560-599, 1984.

[8] P. Buchholz,'Exact and Ordinary Lumpability in Finite Markov Chainsin Journal of Applied Probabil-
ity 31:59-75, 1994.

[9] I. Christoff, “Testing Equivalences and Fully Abstract Models for Probabilistic ProcessgsProc. of
CONCUR 1990, Springer, LNCS 458:126-140, Amsterdam (The Netherlands), 1990.

[10] R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yu&@resting Preorders for Probabilistic Processesih
Information and Computation 154:93-148, 1999.

[11] R. De Nicola and M. HennessyJesting Equivalences for Processesih Theoretical Computer Sci-
ence 34:83-133, 1983.

[12] R.J. van Glabbeek, S.A. Smolka, and B. StefféReactive, Generative and Stratified Models of Proba-
bilistic Processes,"in Information and Computation 121:59-80, 1995.

[13] H. Hermanns!Interactive Markov Chains’ Springer, LNCS 2428, 2002.
[14] J. Hillston,“A Compositional Approach to Performance ModellingCambridge University Press, 1996.

[15] D.T. Huynh and L. Tian;;On Some Equivalence Relations for Probabilistic Process@sFundamenta
Informaticae 17:211-234, 1992.

[16] M.Z. Kwiatkowska and G.J. NormafiA Testing Equivalence for Reactive Probabilistic Processen”
Proc. of EXPRESS 1998, Elsevier, ENTCS 16(2):114-132, Nice (France), 1998.

[17] R. Milner,“Communication and Concurrency’Prentice Hall, 1989.

[18] W.-G. Tzeng,“A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata’ SIAM
Journal on Computing 21:216-227, 1992.

[19] V. Wolf, C. Baier, and M. Majster-CederbaufiTrace Machines for Observing Continuous-Time Markov
Chains”, in Proc. of QAPL 2005, Elsevier, ENTCS 153(2):259-277, Edinburgh (UK), 2005.

14 Markovian Testing Equivalence and Exponentially Timed Internal Actions

A Appendix

This appendix contains the proofs of the results shown in S&cks6, 7, and8. Some of these results
are based on a necessary condition for establishing whether two process terms are Markovian testing
equivalent, which we now recall after introducing the notion of trace associated with a computation.

Definition A.1 Let P € P andc € %;(P). The concrete trace associated with the executionisfthe
sequence of action names labeling the transitiorts of

€ if |c]=0

trace;(c) = al
aotrace;(c) fc=P——(

whereg is the empty trace. We denote byce(c) the visible part otrace.(c), i.e., the subsequence of
trace(c) obtained by removing all the occurrencesrof |

The above mentioned necessary condition requires that for each computation of any of the two terms
there exists a computation of the other term with the same concrete trace and stepwise average duration,
such that any pair of corresponding states traversed by the two computations have the same overall exit
rates with respect to all action names.

Proposition A.2 Let P, P € Py.. WhenevelP, ~ut P, then for allc, € 6 (F), k € {1,2}, there exists
Ch € 6:(Ph), h € {1,2} — {k}, such that:
trace;(ck) = traces(cp)
timey(ck) = timey(cn)
and for alla € Nameandi € {0, ..., |c|}:
rate, (P}, a,0) = rate,(F},a,0)
with P} (resp.P!) being thei-th state traversed by (resp.ch).

Proof A reworking of the proof of Prop. 4.6/Cor. 4.7 d][that proceeds by induction doy|:

e Let|cy =0. Then it trivially existsc, € 4:(P,) such that:
trace.(ck) = € = trace:(ch)
timey(ck) = € = timey(ch)
with cx andc, being unique an@? = R ~ur P, = PY.
Suppose that for sonec Name
rate,(P2,a,0) > rate,(P?,a,0)
If a= 1, for T’ = s andd’ = 1/rate,(P?, 7,0) we would have:
prob(# % g (R, T')) = 1 # 0 = prob(-#%L g, (R, T))
which contradict$k ~wr Ph; hence, it must beate, (P2, T,0) = ratey (PP, T,0).
If as 1, for T” = <a,+1>.s andf” = 1/(ratey (P, a,0) + rate, (P2, 7,0)) we would have:
prob(.# 6% g (R, T")) > 0 = prob(.7 €% g (P, T"))
which again contradictB ~wt Ph; hence, it must beate, (P2, a,0) = rate, (PP, a,0) also for all
ac Name.

e Let |cx] = n > 0 and assume that the result holds for all computations;(#) of length less

thann. Supposey = cl’(l R.. Sincec, belongs taé: (F) and has length equal to- 1, by the
induction hypothesis there existse 4;(P,) such that:

trace:(c,) = traces(c)

timey(c) = times(c,)

M. Bernardo 15

and for alla € Nameandi € {0,...,n—1}: _
rate,(Py,a,0) = ratey(P,,a,0)
As a consequence, we have:

trace;(ck) = trace(cg)od =
= trace(c,)cd = trace(cn)
and:
timey(ck) = timea(c’k)om =
— tim%(%)om — timea(ch)

wherecy = ¢, i P belongs td4:(B,), otherwise — i.e., i, could not be extended with an
a-transition inR, — a test whose only trace coincides withce(ck) would be enough to distin-
guishR, from B, when considering successful test-driven computations of lamgth
It remains to establish whetheate, (P, a,0) = rate, (B, a,0) for all a € Name Unlike the base
case of the inductiorg andc;, above are not necessarily unique — with respect to their concrete
trace, their stepwise average duration, and the overall exit rates of their traversed states except
for the last one — ir6;(R) and%;:(R,), respectively. Since we are focusing on a spedcifiove
now show that if for eacle, ; € 4t(F,) having the same characteristics@sabove there exists
aj € Namesuch that:

rate; (R, aj,0) # rateo(Ry;,a;,0)
then we can build a test that distinguistiegrom R,.
In fact, consider a set of computations of lengttvith the same concrete trace and stepwise av-
erage duration asc andc;, above that intersects bo#t(F) and%:(R,). We say that this set is
maximal iff it comprises all and only such computations with corresponding states — including the
last one — that pairwise enable actions with the same names and have the same total exit rate. Since
R ~mT P, the computations of a maximal set belongin@t0R) have the same probability as the
computations of the maximal set belonging4dh,), as can be seen by taking a test that enables
at each step all the visible actions occurringdinand R, and reaches success only along a trace
coinciding with the trace characterizing the maximal set (the successful test-driven computations
to consider are those of lengtiHor increasing average time upper bounds of lemjth
We also say that a maximal set (of computations of lemgthith the same concrete trace and
stepwise average duration @sandcy, above) is rate matching iff for each computation of the set
belonging tos; (R) there exists a computation of the set belongin@d},) such that their corre-
sponding states — including the last one — pairwise have the same overall exit rates with respect to
all action names, and vice versa. Sife-yt P, for all a € Namethe probability of performing
a computation of a rate-matching maximal set belongirig; {6x) extended with a@a-transition is
the same as the probability of performing a computation of the rate-matching maximal set belong-
ing to %:(F) extended with a@-transition.
After removing every rate-matching maximal set from the sets of computations (belonging to
¢:(F) and%;(R,)) of lengthn with the same concrete trace and stepwise average duratign as
andc, above, at least one of the two s€sandC;, of remaining computations will be nonempty
because of the assumption tieais not matched by ang, j. There are two cases.
In the first case, there exist some remaining computations in the same s€f, sagh that the
last state of each of them has the same swhthe overall exit rates with respect to a nonempty
subsetby,...,bn} of Name while the last state of each of the other remaining computations has a
lower sum of the overall exit rates with respect to the same action names. If there are several such
groups of remaining computations, we take one whose nonempty subi$eategiving rise tor

16

Markovian Testing Equivalence and Exponentially Timed Internal Actions

is minimal. In this case, we build a téBtwhose only trace coincides withace(cy) extended with
a choice among passive transitions labeled with, . .., by each leading to s. ff € {bs,...,bn},
then there will be onlyn— 1 branches at the end of.
In the second case, there is no nonempty subggtaaiegiving rise to a maximum sum of overall
exit rates in the last state of remaining computations belonging &j tor all to C,. We then
take the non-rate-matching maximal set such that the last state of each of its computations has the
maximum total exit rate. If the last state of the computations of several non-rate-matching max-
imal sets has the same total exit rateve take one set in which the last state of its computations
enables actions whose set of names is minimal{bet...,bn} be the set of names of the actions
enabled by the last state of each of these computations, winerd otherwise the considered
maximal set would be rate matching. In this case, we build aTteshose only trace coincides
with trace(ck) extended with a choice amomgpassive transitions labeled wilf, . . ., by, — with
the branches being— 1 if 7 € {by,...,bn} — such that only some of them leads to s, while the
others lead tecz, x1>.s. Those leading to s have to be chosen on the basis of the different overall
exit rates with respect thy, ..., by exhibited by the last state of the computations of the consid-
ered non-rate-matching maximal set, so that the one-step extended versions of the computations
of the set belonging to, sagy get a higher probability than the one-step extended versions of
the computations of the set belonging3g@ The existence of a maximal set allowing for such a
choice is guaranteed by the validity of the non-rate-matching property within the maximal set and
the absence of a nonempty subseNaimegiving rise to a maximum sum of overall exit rates in
the last state of remaining computations belonging alitor all toC,.
In each of the two cases, for some suitaBlef lengthn we would have:

prob(.7 €™ (R, T)) = Pk+0k > Ph+Gh = prob(.7 ¢ (B, T))
wherepy = 0 in the first case andk, gn > 0 are the possible contributions of rate-matching max-
imal sets (whose stepwise average duration does not eXcaad whose computations have last
states such that the sum of their overall exit rates with respdut, to. , by, does not exceed),
with gx = gy by virtue of B ~mt Bh. Since the above inequality contradi€is~yvr B, for at least
onecy j it must be:

rate,(P, a,0) = ratey(Ry;,a,0)

for all a € Name]

Corollary A.3 LetPy, P, € Pyc. WhenevelP, ~yt P, then for alla € Name

rate,(P1,a,0) = ratey (P>, a,0) n

The condition expressed in Prof.2 is necessary but not sufficient. The following two process terms:

<a,A1>.<b,u>.0+<a,A2>.<c,y>.0
<a,A;>.<b,u>.0+<a,A;>.<c,y>.0

satisfy the condition whehy +A> = A + A5, but are not Markovian testing equivalendif# A7, A2 # A,
andb=£coru #Y.

A.1 Proofs of Results of Sect4

Proof of Prop. 4.1 Let us preliminarily observe that, givéhe Ppcy, T € Tr, and@ € (R.q)*, due to
the absence of actions of the forar,A > within P, every successful test-driven computation is maxi-
mal, i.e., it cannot be further extended. Denotingdty the prefix off of lengthn, it thus holds:

16
prob(S€ <9(PT)) = zoprob(jﬂ%gem(P,T))
n=

M. Bernardo 17

GivenPy, P, € Ppcy, We now proceed in two steps:
= Supposing? ~m7 P, from the initial observation we immediately derive that forak Tr and

16
prob(.7¢ <g(P1,T)) = z prob(y(fgeln(Pl,T)) =

= z PrOD(S G (P2, T)) = prob(.# % <o(Fs,T)
henceP, ~uT oid Po.
< Supposind ~mr old P2, let us prove that for all € Tgr and6 € (R-o)*:

prob(.#%'% (P, T)) = prob(.#% (P, T))
by proceeding by induction oif|:

— Let|6| = 0. From the initial observation arf®| ~uT oilq P>, we immediately derive:
prob(.7 €%, (P, T)) = prob(.-#€ <¢(P1,T)) =
= prob(.7 € <(Po,T)) = prob(.7 62 (P, T))
— Let|6] =n> 0and assume that forath=0,...,n—1:
prOb(y(gge\m(PlvT)) = prob(f‘fge'm(%,T))
from which it foIIows
Z pI‘Ob(y%<9|m(P1,) = Z pr0b<y<€<9|m(P27T))
From the initial observatlon ane) ~mr old P>, we then obtain:
prob(.7 %lgeg(Pl,)) = prob(S€<g(P, T))—:Eoprob(/%%‘m(,T))

-1
~ PIOD(% <o(Po.T)) — 3 prob(# €Ty () = prob(#€h(PoT))
Proof of Prop. 4.2 We preliminarily observe that for &t € Ppc, T € Tr— {S}, andB € (R-o)* it holds:
prob(y%‘geg(P, s+T)) = prob(y‘ﬁlg(lg(l:’, s)) + prob(ﬂ(flgg(RT))
In fact, for|6|=0we haveprob(y%‘fg(P S+T))= prob(Y%fg(P s))=1 andprob(f%'fg(P T))=0,
while for |8 > Owe haveprob(y%‘el (Ps) = Oandprob(y%‘el (Ps+T)) = prob(Y%‘e‘ (PT)).
GivenPy, P, € Py, we now proceed in two steps:
= It follows from the fact thaflr C TR ip.

< In order to avoid trivial cases, we consider a f€st Trjip, — Tr and we derive from it a set of
testshrealks(T) C Tr by proceeding by induction on the syntactical structur& af follows:

({s} fT=s
{<a,*«w>.T" | T" € break(T’)} if T=<a*w>.T
break(T’) U {s} fT=T+sorT=s+T'

break(T) = {T]+T} | T € break(Ty) — {s}, if T=Ti+T,andTy Zs# T, and

(Ta)
T, € break(Tz) — {s}} U{s} s € break(T;) Ubreak(T»)
{T{+T; | T{ € break(T1), if T=Ty+T,and

T, € break(T,)} s ¢ break(T;) Ubreak(T2)

18 Markovian Testing Equivalence and Exponentially Timed Internal Actions

From the initial observation arf ~yt P, it follows that for all@ € (R-)* it holds:
6] 16|

prob(S ¢ (P, T)) = S prob(.7 € Zg(PL, T')) =
- T'ebreak(T) -
= bzks(T)prob(V%ﬁe(Pz,T’)) = prob(.#% %(P,,T))
'ebrea
from which we can conclude th& ~ut jib Po. [

Proof of Prop. 4.3. We proceed in two steps:

= It follows from the fact thaflr C Tr ;.

< In order to avoid trivial cases, we consider a t€st Tr; — Tr and we derive from it a test
remove(T) € Trjip by proceeding by induction on the syntactical structur& af follows:

S ifT=s
3 <a,*y>.remove(T’) if T=<a, *yw>.T' (withac Namg)
remove(T) =
remove(T’) ifT=<1,A>T

remove(T1) +remove(Ty) fT=T1+T

Sinceremove(T) € Tryip, from the proof of Prop4.2 and P, ~ut P, we obtain that for all
0 € (R>o)* it holds:

prob(f%‘fg(Pl,remove(T))) = 5 prob(y%‘f‘e(Pl,T/)) =
- T’ebreak(remove(T)) -
= 5 prob(.#% %(Po, T')) = prob(.7% % (P2, remove(T)))

T’cbreak(remove(T))
Due toPy ~yt P, for eachT’ € break(remove(T)) we have:

prob(&”%'fg(Pl,T’)) = 3 prob(zfycffg(Pl,T’,c’)) =
= cet(T) =
=2)prob(éaf%lfe(Pz,T’,c’)) = prob(.7€'% (P, T'))
eG(T! = =
where%s(T') is the multiset of computations @f ending with s an&”.%¢ (R, T',c), k€ {1,2},
is the multiset of successful computationsfdriven by T’ that exercis&’. Moreover, for each
¢ € €s(T') we have:

prob(@ﬁy%zg(Pl,T’,c’)) = prob(é”ycf‘gg(Pz,T’,c’))

When moving fromT to remove(T), for all c € 65(T) it holds that the computations &,

k € {1,2}, exercisingc are the same as those exercisiegiove(c), which is the computation
obtained front by removing all of itst-transitions. Therefore, it is possible to establish a bijec-
tive correspondence betweéh” ¢ (R, T,c) and 8.7 %€ (P, remove(T),remove(c)) and hence
with &€ (R, T’,remove(c)) for eachT’ € break(remove(T)) such thatemove(c) € Gs(T’).

SinceP; ~y1 P, by virtue of PropA.2 we have that for each computation®f (resp.P.) exer-
cisingremove(c) there exists a computation Bf (resp.P;) exercisingemove(c), such that both
computations have the same concrete trace, have the same stepwise average duration, and traverse
states having pairwise the same overall exit rates with respect to the various action names.

As a consequence, when fraemove(c) we go back tac, i.e., when we reintroduce the expo-
nentially timedt-actions that had been removed, each of these actions comes into play in a pair
of corresponding states & andP, having the same overall exit rates with respect to the various
action names. No reintroduced test action of the fermA > can discriminate between those two

M. Bernardo 19

states, because it does not disable any of their actions but simply increases their total exit rates —
which are equal — by the same vallie
GivenT’ € break(remove(T)) such thatemove(c) € €5(T’), from:
prob(gy%fg(Pl,T’,remove(c))) = prob(éay%‘fg(Pz,T’,remove(c)))
and the bijective correspondence betw&er ¢ (R, T,c) and&’ € (R, T',remove(c)), ke {1,2},
it then follows:
prob(éay%fg(Pl,T,c)) = prob(é"y(ﬁ‘fg(Pz,T,c))
and hence:
prob(Y%f(L(Pl,T)) = 3 prob(fY%fg(Pl,T,c)) =
- ce%s(T) -
=2 prob(&.7%'% (P, T,c)) = prob(.7€'% (R, T))
cebs(T B B
from which we can conclude thi{ N(M)TJ P.. [

As regards the first of the two further alternative characterizations coming #jpmég have the follow-
ing. WhenP € Py, the stepwise duration afis defined as the sequence of random variables quantifying
the sojourn times in the states traversedby

€ if |c[=0

timey(c) = {

A
EXPata(po) © timeu(c) ifc=P—— ¢

wheree is the empty stepwise duration whisxp, o) is the exponentially distributed random variable
with raterate(P,0) € R.o. We also define the probability distribution of executing a computation in
C C %;:(P) within a sequencé < (R-)* of time units as:

Icl<|6] Ic|

proby(C,0) = Cgc prob(c)-iglPr{timed(c)[i] < 0[i]}

whenevelC is finite and all of its computations are independent of each other. In the definition above,
Pr{timey(c)[i] < 0]i]} = 1 — e °ll/ima(9)li] js the cumulative distribution function of the exponentially
distributed random variabkmey(c)]i], whose expected valuetisne,(c)]i].

Definition A.4 LetPy, P, € Py.. We say thaP; is Markovian distribution-testing equivalent®y, written
PL ~wmT.d P, iff for all reactive testsT € Tr and sequence® € (R~o)* of amounts of time:

proby(%'%(PL,T), 8) = proby(.# %% (P2, T),) n

Proposition A.5 LetP;,P, € Ppc. WheneveP, ~yt 4 P, then for allc, € 6;(F), k € {1,2}, there exists
Ch € 6t (Ph), h e {1,2} — {k}, such that:
trace.(ck) = trace:(ch)
timey(c) = timey(ch)
and for alla € Nameandi € {0, ..., |c|}:
rate;(P.,a,0) = rate,(P!,a,0)
with P! (resp.P!) being thei-th state traversed hy (resp.ch).

Proof Similar to the proof of PropA.2.]

20 Markovian Testing Equivalence and Exponentially Timed Internal Actions

Proposition A.6 Let PP € Ppc. ThenPy ~y1 g P <= Py ~nT Po.

Proof A reworking of the proof of Thm. 4.20/Cor. 4.21 df][that proceeds as follows. Recalled that
timey(_)[.] is the expected value of random variabfee;(_)[.], givenT € T, and8 € (R-o)* the result
follows from the fact that the first (resp. last) equality below implies all the subsequent (resp. preceding)
ones undePy ~y1 g P> (resp.PL ~ut P):

16| . . . 6| . . .
> probcy)- [Pr{timey(ca)[i] < 8fi]} = 3 prob(ca) - [] Pr{timeu(cz)fi] < 6]}
c1e7%1% (PLT) i=1 Coe €1 (P, T) i=1
9] 4o g 161 4y R
ze PrOb(Cl)'_D Pf{t'meg(ec[li])[']é iy _ Zg prob(cz)-_D Pr{tlmez(jj(ec[zi])mg il
c1e ¢ (PT) i=1 e/ E(P,T) =1
16| . . 16| . .
) prob(cy) -] gm.de{t'mE‘g(&lﬂ)[']SG[I]} _ > prob(cz) - e[i]‘dPr{tlme?j(ec[zﬂ)[l]geh]}
c1e.sEP(PLT) i=1 e/ E % (P,T) =1
6] oo 4 o 6] oo . o
3 prob(cy) - [/ Ofi]- SPLmU=Cl dgfi) — 5 probicy)-] [Ofi]- LA EN=OI) ggjj
e s CPRI(PLT) i=10 e/ E % (P,T) =10
6] . I .
> prob(cy) - [times(ca)[i] = > prob(cz) - [times(C2)[i]
ces?!%(PT) =1 e €% (P, T) =1
16| . . . 6| . . .
> prob(cy) - [Pr{times(cy)[i] < 6]i]} = > prob(cy) - [Pr{times(c2)[i] < 6]i]}
e s e (PLT) i=1 e 7610 (P, T) =1
S prob(cy) = S prob(cz)
cle e (PLT) e E 0 (PT)

In fact, supposing that all the computationsst#'!° (P, T) and in.# %1% (P, T) with the same duration
are counted only once with their total probability — which implies té&’'®! (P, T) and.# %1%/ (P, T)
can be viewed as sets rather than multisets — the double implication is established below in two steps:

= Assume that the computations (with different durationsyia’'®/ (P, T) and in.7% % (P, T) are
such that the products of the correspondj@gelements in the first equality — which expresses
PL ~wv1.d P — are all different. If this were not the case, without loss of generality we could focus

on any two maximal subsets of ¢/ (P, T) and.#%1° (P, T) satisfying this constraint.
Then the first equality is of the form:
n n
2 P1j-D1j(0) = 5 p2j-D2(6)
i= i=
where:
= Prj,P2j ERgy for1<j<n.
n n
- Ymj<landy ppj <1
=1 =1
— Dy j andDy; are strictly increasing nonlinear continuous functions fr@.o)* to Ryo,1
forl<j<n.
— All functions Dy j’s are different from each other.
— All functions D, j’s are different from each other.
— Due to PropA.5,Dyj =Dy j =Dj for 1 < j <nbecausd; ~ytd P>.

Therefore, if we rewrite the form of the first equality as follows:
n

jgl(pu —p2j)-Dj(6) =0

M. Bernardo 21

we get a homogeneous linear system composed of uncountably many equations whose unknowns
are the(pyj — p2,j)’s. Since the values belonging to tir¢h column,1 < j <n, of the coefficient

matrix of the system are all positive and taken from the strictly increasing nonlinear fuigtion

with suchDj’s being all different from each other, the rows of the coefficient matrix are all linearly
independent. Thus, the system admits only the solution zeropi.~ p,j for 1 < j < n. As

a consequence, when proving the implication of the equalities from the first one to the sixth one,
we can exploit the fact that “=" is a congruence with respect to addition and multiplication, which
allows us to substitute equals for equals within the same congegtdb(_) - []” of both sides of

the equalities.

From the sixth equality, it then follows the last one, iR..omt P, because fok € {1,2} it holds:

1 ifoesE%RT)

1 Pr{times(c)] < 0[]} = -
-1 0 ifa¢seRm.T)

< Using the same argument as the one at the end of the previous step, we defyetfiat, i.e.,
the last equality, implies the sixth one. The latter equality is of the form:

n n
2 Prjvaj(0) = 3 paj-Va(6)
j= i=
where:
- plj,pgJ € Ry for1<1<n
- z p1]<1andz p2j < 1.
— vl,J andv, j are functlons from{R-o)* to {0,1} for1 < j <n.
— Due to PropA.2, vy j =Vvyj =V for 1 < j < nbecausé®; ~yt P..
Therefore, if we rewrite the form of the sixth equality as follows:
JZ (P1j—P2j)-vj(8) =0
and we choose increasing values@fwe obtainpyj = p2j for 1 < j <n. As a consequence,
when proving the implication of the equalities from the sixth one to the first one — which expresses
PL ~u1 4 P> —we can exploit the fact that “=" is a congruence with respect to addition and multi-
plication, which allows us to substitute equals for equals within the same corytexob(_) - 1"
of both sides of the equalities. [|
We now address the second of the two further alternative characterizations comin@ffrom [
Definition A.7 An element of (Nameg x 2NaMe)* s an extended trace iff:
e eitheré is the empty sequenee

e or é = (ag,61)0(a,62)0...0(an,én) for somen € N.g, with g € & and & finite for each
i=1,...,n

We denote by¢’.7 the set of extended traces. [|

Definition A.8 Let & € £.. The trace associated withis defined by induction on the length éf
through the following Name)*-valued function:

£ e
aotracex(&’) ifé=(a&)o&’

wheree is the empty trace. [|

traces(§) = {

22 Markovian Testing Equivalence and Exponentially Timed Internal Actions

Definition A.9 LetP € Py, ¢ € %;(P), andé € &£.7. We say that is compatible withé iff:

trace(c) = tracex(&)
We denote bye'é (P, &) the multiset of computations i (P) that are compatible with. |

GivenP € Py, & € £.7, andc € €¢'(P,), we have to consider the probability and the duratioe of
with respect tcf, which are defined by taking into account the action names permitted at each gtep by
The probability of executing with respect tcf is defined as:

1 if [c/]=0
A . aA
W'prob&(c’) |fc_z P——¢
with & = (a,&) 0 &’
rob; (c) = A
probe (¢) -probg (') ifc=P— "¢

A
Tate(PEU{T].0) with & = (a,&) 0 &’

. T,A
e P Probe (€) fc=P——dAé=¢

We also define the probability of executing a computatio@ in €% (P,) with respect tcf as:

prob; (C) = 3 probg(c)

ceC

whenevec is finite and all of its computations are independent of each other.
The stepwise average durationaivith respect tcf is defined as:

c if |c]=0
. ') B aA
riepeor o °iMeag () f Svﬁhpfj(ag) o0&
timeag (C) = . . T,A
Iy
.) T,A
motlme‘if(d) fc=P——CdAé=¢

where € is the empty stepwise average duration. We also define the multiset of computations in
C C % (P, &) whose stepwise average duration with respeéti®not greater thaf € (R-o)* as:

[Copg = {ICECTIE[< [B]AVI = L,....[c]. ey ()] < B[]} |

Moreover, as before we denote BY the multiset of computations i@ C €% (P,&) whose length is
equal tol € N.

Definition A.10 Let Py, P> € Ppe. We say thaP; is Markovian extended-trace equivalentRg written
Py ~mTr e P2, iff for all extended traceé € £.7 and sequence® € (R.o)* of average amounts of time:

probg (66'% ¢ (PL, £)) = probg (4" (P>, £)) .

M. Bernardo 23

Theorem A.11 Let Py, P € Ppe. ThenPy ~ptre P <= Py ~ut Po.

Proof A reworking of the proof of Thm. 4.35 of] that proceeds in two steps:

= Letus denote b¥s(T) the multiset of computations df € Tr ending with s and by’ % (P, T, ¢)
the multiset of successful computationsRoE Py driven by T that exercise € €5(T). Given an
arbitrary8 € (R-o)*, fork € {1, 2} it holds:
prob(.7%'% (R, T)) = b)prob(£Y$€fe(R<,T,c))
n cees(T B
Let us define the extended trace associated avitlés(T) as follows:

€ if [c|=0
trace;(c) = _ _ i a*w

(a,{b € Namg | weigh{T,b) > 0}) otrace,(c) ifc=T——¢
We now prove that for alf € (R-o)*, P € Py, T € Tr, andc € 65(T):

]]
prob(&.7% %5 (P,T,c)) = proby(c) - Probyracec) (€% yrace,c (P races(c)))
where the reactive probability afis defined as follows:
1 if |c[=0

prOk}(C) - w . a,*y
{ weightTa * Probx(¢)) ifc=T——¢

There are two cases:

— Let|c| =0. Thenc=T = s,trace:(c) = &, andprob,(c) = 1. There are two subcases.
If |6 =0, then:
6]
prob(&.7%'55(P.T,¢)) = 1= proby(C) - Probyace, o) (€6 oh yrace, o) (P race()))
If 6] > 0, then the only computations that exerciser are compatible withraces(c) are
those composed aftransitions performed b, hence:

prob(&.7€ % (P.T,c)) = proby(C) - Probyace,c) (6" yrace o (P race(c)))

a,*y i .
— Let|c| > O0withc=T —— ¢/, ac Namg, andT’ being the first state af. Let us proceed
by induction on|6|:

+ Let|6] = 0. Then&.#%' % (P T,c) =0 =¢%"",

<6.trace;
prob(&.5% % (P.T,c)) = 0= proty(c) - Probirace, (€6 2 yace, o) (P Iracex(c))
+ Let |8] > 0 with 8 =t0 @', t € R.o, and assume that for at € Py, T € Tg, and
ce Gs(T): / /
prob(&.7 €%, (P, T,8)) = Proby(C) - Probyace,s) (6% g yaca g (P race()))
For some € Ry, it holds:
rate(P|lnamg T.0) =1 = 3 ratey(P,b,0)
bedU{r}
whereé = {b € Namg | weigh{T,b) > 0}. There are two subcases.
If r=00r >t, then:
prob(&.7% %5 (P,T,c)) = 0= proby(C) - Probyace,(c) (€% % yrase,(c) (P Tace(C)))
If r >0and? <t, then:
prob(. 7€ (PT,c)) = 3 AWWOTa) poby %1% (P T,)
P—P
+ 3 Aoprob(6.76%),(P . T,c)

TA
P——P

(o (P.trace,(c)) and hence:

24

Markovian Testing Equivalence and Exponentially Timed Internal Actions

From the induction hypothesis, it follows:
prob(&.7 G p(PT.0) = 3 g PIOBE) Probrace e (66 L. yragae (P race(C)

P—P

L, e
+ 3 %.probr(c).probtracee((gﬁle‘, traca(c)(P’,tracag(c))) =

T,
PP

])\? -proly (c) - prOQracee(c’ (%%Lg/ traces(c >(P/,traceb(c')))

P—p

[¢]
3 PrOB(©) PrObyace o (66 Ty, raca o) (P HaCE(C))) =

P*—» P

= POBy()- (5} PrOBrace,c) (%%, yage,e) (P 1aCR(C)))

P p

6
T3 PObace (o) (€7 g age o (P race(©)) =

P—> P
= proby(c) - probyace,(c) (%"ﬁ‘f}a traces(c >(P,tracee(c)))

SinceP; ~utre P, forall 8 € (R-o)* andc € 65(T), T € Tr, we have:
f--)r(:)btrace\E (%(glf‘e Jtraces(c)(Pl’trac%(c))) = prObtracea(c)((giglf‘e traces(c (P'Z tracee()))
As a consequence, it holds:
prob(gy%‘fg(Pl,T, c) = prob(éi?%‘e' (P, T,c))
from which it follows:
prob(.#¢'% (P, T)) = prob(.#%'%(P,T))
and hencé;, ~yt Po.

Let us define the test associated Witk &7 as follows:

S if |€]
A
tes(§) = { <a,x1>.tes(&’)+ 5 <b,x1>.<z,%1>.s ifé=(ad&)o&’
be&—{a}
where the summation is absent wheneser {a} and z is a visible action name representing fail-
ure that can occur within tests but not within process terms under test. We den®te:lilie
resulting set of tests.
We now prove that for alf € (R-o)*, P € Py, andé € £.7:
prob(.7% %, (P.tes())) = probg (¢¢'% ,(P.£))
There are two cases:
— Let|&| =0. Thené = € andtes{ &) = s. There are two subcases.
If |8] =0, then:
prob(.# % % (P test£))) = 1= probg (6'6'% ,(P€))
If |6] > 0, then the only computations that exerdies{ £) or are compatible witl§ are those
composed of -transitions performed b, hence:
prob(.7¢'%} (Ptest£))) = probe (¢¢'% (P,&))
— Let|&| > O0with £ = (a,&)0&’, ac Namg. Let us proceed by induction df|:

x Let]|6| =0. Theny%fle(Ptes(E)) 0= %%ELE(RE) and hence:

prob(.%'% (P.tes(£))) = 0= prob; (%%‘fgf(PE)
x Let|6) >0withB8=to0',t € R, and assume that for @l € Ppc andé € &7
prob(.7%'% (P, test&))) = probg(¢'¢'%), (P.&))

<@',¢

M. Bernardo 25

For some € Ry, it holds:

rate;(P||namg teS(€),0) =1 = ¥ rate,(Pb,0)
besU{T}

There are two subcases.
If r=00r1 >t, then:
prob(.7¢ %} (P.test())) =0 = probe (%% , (P,&))
If r >0and? <t, then:
prob(.7¢ % (Ptesté))) = 5 A-prob(.7¢ % (P test&")))
aA -
PP
+ 3 %-prob(y%ge‘,(P’,tes(E)))
P——P
From the induction hypothesis, it follows:
0 o
prob(¢ Cy(Pes(€)) = 3 +-probg (€6 % 5 (P &)
PL P
9/
+ 3 L. probe (%%, (P, &)) =
P—P

probe (4¢'% ; (P.€))

SinceP; ~ut P, forall T € Trc and8 € (R-o)* we have:
prob(&”%g}(Pl,T)) = prob(y%gg(Pz,T))
which is equivalent to say that for &lc £.7 and6 € (R-o)*:
prob(.#%'% (PL,test))) = prob(.#% % (P, tes(£)))
As a consequence, it holds:
probe (66'% (PL, £)) = probg (66" (P2, £))
and hencd; ~tr e Po. [}
Corollary A.12 LetP;,P, € Pyc. ThenPy ~yr R iffforall T € Tre and6 € (R-o)*:

prob(Y%gg(Pl,T)) = prob(y‘flgeg(Pz,T)) n

A.2 Proofs of Results of Sectb

Proof of Thm. 5.1 In the case of the action prefix operator and of the alternative compaosition operator,
it is a reworking of the proof of Thm. 4.53 o] that proceeds as follows:
e AssumingP, ~yt P> for P, P, € Py, let us demonstrate that for alla,A > € Act, T € Tg, and
S <R>o)*i
prob(ﬁ”ﬁfgka,/\ >.P,T)) = prob(yfg‘fg(<a,/\ >.P,T))
There are two cases:
— Let T =s. Then there are two subcases.
If |8] =0, then:
prob(y%fg@a,)\ >P,T)) =1= prob(Y%fgka,A >.P,T))
If |8] > 0with 6 =to6',t € R.o, we have two further subcases:
« If a€ Namg or + > t, then:

prob(ﬂ%‘géka,/\ >.P,T)) =0= prob(y%”lgeg@a,)\ >.P,T))

26 Markovian Testing Equivalence and Exponentially Timed Internal Actions

« If a=rand <t, then:
prob(.# 6/ (<a,A>.Py,T)) = prob(.# 61 (P1,T)) =
= prob(.# %% (P, T)) = prob(.#%'% (<a,A>.P,, T))
becaus®; ~yt P>. B B
— LetT #s. Then there are two subcases.
If |6] =0, then:
prob(y%fgka,)\ >.P;,T)) =0= prob(.¥ ‘fg(<a,)\ >.P,T))

If 6] > 0with 8 =to6’,t € R.g, we have three further subcases:
« If }% >t ora € Namg andweigh{(T,a) = 0, then:
prob(y%z'g@a,)\ >.P,T)) =0= prob(y%z‘,@a,)\ >.P,T))
« If $+ <tandae Namg andweigh{(T,a) > 0, then:
prob(y%gg(<a,)\>.P1,T)) = MZWW(T@prOb(f%Eg,(PLT’)) =
T—T

prob(.#'%, (P, T')) = prob(# %% (<a,A>.P>,T))

T—T
becausd; ~yt P>.
« If £ <tanda=rT, then:
prob(# %% (<a A>.Py,T)) = prob(.7%'%) (PL.T)) =
= prob(.# %%, (P, T)) = prob(.#%'% (<a,A>.P,, T))
becaus®;, ~yt P>. - B
e AssumingPy ~ut P> for P,P € Ppc, let us demonstrate that for &t € Ppe, T € Tr, and
prob(.# /% (P, +P,T)) = prob(.#%'% (R + P T))
There are two cases:

— LetT =sand|6| =0. Then:
prob(Y%‘gg(PlJrP,T)) =1= prob(&”%lge(‘g(Pz+P,T))

— LetT #sor|0| > 0. Fork € {1,2}, we have:
Pk - prob(ﬂ%?gk(ﬁ(ﬁ)) + Py - prob(f%ggk,(P,T)) if rg>0AT >0

prob(.7 €%, (R+P.T)) = prob(.#¢ %y (R T)) if re>0AT =0
- prob(y%”lz‘_)(RT)) if ry=0Ar>0
0 a if re=0Ar=0
where:
re = rate(F||name T,0) r = rate(P||name T,0)
— Ik / r
aqi] = { O+ —r5s) ifi=1 gii) = { O+ (G —75%) =1
0[i] ifi>1 K 0[i] ifi>1

In fact, in the case in which both ||namg T @ndP||namg T can perform at least one action
— deriving from a synchronization with or from art-action of the subprocess under test —
Pk (resp.py) is the probability that the first transition in a succes3fdriven computation is
originated byR (resp.P). Similarly, 6 (resp.6,) takes into account the extra average time
that is available td (resp.P) in the context of + P when executing the first transition of
a successfur -driven computation.

M. Bernardo 27

SincePy ~ut P, from Cor.A.3 we derive that; = r, and hencep, = pp, p) = p), 61 = 6,
andf; = 8. FromP; ~yt P> and6; = 6,, we also derive:

prob(.7%'%) (P, T)) = prob(.#¢'% (P, T))
prob(Y%;ee(Pl,T)) = prob(y%fg(Pz T))
As a consequence:
prob(Y‘g‘gg(PlJrP,T)) = prob(ycfg‘;(PerRT))

With regard to the three static operators, assurRingur P> for P, P, € P, we proceed as follows:

¢ In the case of the parallel composition operator, the congruence result follows from the fact that,
for k € {1,2} and for allP € P andSC Name such thaf ||sP € Ppe, T € T, and6 € (R.o)*,
prob(&’%fg(& IsP,T)) is equal toprob(y%‘fg(&,f)) for someT e Tg derived fromT.
To this purpose, we observe tiat|sP can synchronize witil ona € Nameg iff:

— eithera ¢ SandP can synchronize witil ona or P can synchronize (through an exponen-
tially timed action) withT ona;

— orae SandR can synchronize witft onaandP can synchronize (through a passive action)
with T ona.

With respect to the set of actions enabled®wnd its derivatives, the contextsP can:

— restrict the set by disabling exponentially timed action®pside whose name belongs$p
restrictions can be managedTirby simply introducing suitable passive actions representing
failure, whose visible name z cannot occur in process terms under test;

— enlarge the set by enabling exponentially timed actior® side whose name does not belong
to S, no such enlargement will ever be caught by the derivativé tifat do not enable those
actions, unless we introduce suitable exponentially timedtions within the derivatives of
T that can be reached after executing at mésactions.

Restrictions and enlargements of the set of actions enablefg land its derivatives are dealt
with by placingT in the context ||sP through a family of functiong€ombingpn(.) yielding T.
For|8| = n=0, we letcombingpn(T) =T, whereas for6| = n > 0 we have three cases:

— If T =s, then:

combingpn(T) =s+ § <T,A>.combingp n_1(9)
T,A
P——P

where the second summand is abse/¢annot execute exponentially timeeactions.

— If T £ s andT can perform actions whose names do not belong tr P can perform ex-
ponentially timed visible actions whose names do not belorfgigoch thafl can perform
passive actions with the same names, or BondT can perform passive actions with the
same names belonging $or P can execute exponentially timeeactions, then:

combingpn(T) = Z <a,*y>.combingpn_1(T’) +
agSnT
z <T,A- W(Ta)>.combingp/7n,l(T’) +
a¢SlJ{T}AP—> PAT =
. > <a >"norm(vwa pT)>.cOmbingp n- 1(T") +
acsP L paT ST
> <T,A>.combingp n_1(T)

T,A
P——P

28

Markovian Testing Equivalence and Exponentially Timed Internal Actions

— If T # s and none of the conditions of the previous case hold (i.€.c#n perform only ac-
tions whose names belong $with P enabling no passive visible actions with those names
andP cannot execute exponentially timeeactions), then:

combingpn(T) = <z,%1>.S

As can be noted, subterms of the resulting feeqUivalent tol may belong tdl'r jip UTR ¢, but at
that point we can exploit the proofs of Progs2 and4.3to derive a set of tests that is equivalent
to T, each element of which belongsTg.

In the case of the hiding operator, the congruence result follows from the fact that,
for k € {1,2} and for allH C Namg, T € Tgr, and6 € (R-o)*, prob(y%g(a/H,T)) is equal

to prob(.#¢'?, (R, T)) for someT & Tr derived fromT.

To this purpose, on the test side we observe that every computatiothat comprises an action
whose name belongs té cannot be exercised B%/H, and hence cannot leddl/H to success.
When derivingT, that action must not be removed from the test — in order not to alter the quanti-
tative T-driven behavior oR with respect to the quantitativie-driven behavior oR/H, in which

the t-action corresponding to that action can be executed anyway — but mus¥léadail im-
mediately afterwards — which is achieved by introducing a passive action whose visible name z
cannot occur inside processes under test. Tastthus yielded by a family of functionisidg, (.)
defined by induction on the syntactical structurd ads follows:

S ifT=s
<a, *w>.<Z,%1>.S if T = <a,*w>.T"andac H
hide; (T) = <a, *y>.hide, (T') if T=<a,*,>.T' anda¢ H

hidd_| (Th) + hidd.| (T2) fT=T1+T

On the process side, we observe that each derivativieldf (T) different from<z,*;>.s that does
not enable actions whose names belongitmay erroneously block a derivative Bf enabling
some of those actions, in the sense that the corresponding derivaliveaild not block the cor-
responding derivative d&/H as the latter would move autonomously by performingctions.
When buildingT, we thus need to extend each such derivativieidd], (T) by offering all the pos-
sible sequences of length at m¢8t of actions whose names belongHo with each such action
followed by the derivative itself. More precisely, we define a family of functioias; () with
H’ being the set of names h for which there are no enabled actions. Fér=0or || =n=0
or a derivativel’ of hidg, (T) equal to<z,*1>.s, we lethidg;, ,(T’) = T’, otherwise:
hidd} o(T") = T'+ 5 <a,x1>.hide; ,_1(T")
acH’ i

Since s does not enable any action whose namehs ihe resulting test equivalent toT may
belong toTRjip, but at that point we can exploit the proof of Prdp2to derive a set of tests that
is equivalent tal', each element of which belongsTa.

In the case of the relabeling operator, the congruence result follows from the fact that,
for ke {1,2} and for all¢ € Relah T € Tg, and6 € (R-o)", prob(ﬂ‘é‘é"e(ﬂ[m,T)) is equal
to prob(f%‘fg(ﬂ,'r_)) for someT e Tr derived fromT.

In fact, observed thal[¢] can perform<a, A > iff B can perform<b,A> for b € ¢ 1(a), we
have thatR[¢] can synchronize witfl ona c Namg iff B can synchronize withinrelabe} (T)

onb € ¢~1(a), whereunrelabe} (T) — which yieldsT —is defined by induction on the syntactical

M. Bernardo 29

structure ofT as follows:

S ifT=s
<Z,%1>.S if T =<a*>.T andp—1(a)=0
unrelabe (T) = <b, *y>.unrelabel (T) if T=<a*>.T andg(a)#0
bep~1(a)
unrelabe} (T1) + unrelabe} (T,) fT=T1i+T,
where z is a visible action name that cannot occur inside process terms under test. |

A.3 Proofs of Results of Sect6
Proof of Thm. 6.1 A reworking of the proofs of Thms. 4.54 and 4.57 &f fhat proceeds in two steps:

= Since~yT is an equivalence relation and a congruence with respect to all the operators of MPC, in
any deduction based a#yT it is correct to use reflexivity, symmetry, transitivity, and substitutivity
with respect to all the operators of MPC.
As far as the set of specific axioms is concerned, apart fedi 4 it is trivial to prove their
soundness with respecttayr. In particular, we observe that the five summands on the right-hand
side ofaay 5 are in full accordance with the operational semantic rules for the parallel composition
operator.
With regard taeiur 4, it suffices to observe what follows:

— Both terms occurring iazvr 4 can initially execute onlg-actions.

— The average time to execute thenmijsy | Ak in both terms.

— If 3 =0foralli €1, then thea-derivative term i€ with probability 1 both on the left and on
the right, so no test can distinguish between the two original terms.

—If J# 0 foralli€l, then thea-derivative term isy ;. <bj j, i j>.R j with probability
Ai/ Sket Ak on the left, while itisyic; ¥ ey <bij, Ai/ Ykel Ak Hi,j>-R,j with probability1 on
the right. Not even at this point can a test make a distinction for the following reasons:

« All the a-derivative terms can initially execute the same set of action ndmes ., b,},
where theby-actions,1 < h < n, have the same total ratg in all thea-derivative terms.

* Thea-by-derivative term g j with the same probabilityA; / 3 yc; Ax) - (Hi.j/ S 1<h<n Hn)
both on the left and on the right.

x Since thebp-actions have the same total raigin all thea-derivative terms, the denom-
inator of the second fraction above changes in the same way on the left and on the right
depending on the actions that are enabled by a specific test.

< We say that a nonrecursive process t&rm P is in testing-minimal sum normal form (tmsnf) iff:

— eitherP =0;
— orP =5 <&, Ai>.R with | finite and nonempty initially minimal with respect taur 4,
andP, in tmsnf for alli € 1.

By initial minimality of P with respect toeir 4, Wwe mean that no subset of summandsPof
matches the left-hand side term.@fyr 4. From the definition, it follows that the initial minimality

holds with respect tezyr 3 as well.

We also introduce the size of a nonrecursive process term as an upper bound to the length of its
longest computation, which is inductively defined as follows:

Markovian Testing Equivalence and Exponentially Timed Internal Actions

siz€0) = 0
siz§<a,A>.P) = 1+sizdP)
sizgPy+P) = max(sizgPy),sizdP))
siz€Py||sP) = sizePy) +sizeP,)
sizdP/L) = siz&P)

sizdP[¢]) = siz&P)
We now prove that for each nonrecursive process termP there exists a honrecursive process
termQ € P in tmsnf such thatAyt - P = Q, by proceeding by induction on the syntactical struc-

ture of P;

— If P=0, the result follows by takin@ = 0 (which is in tmsnf) and using reflexivity.

— If P=<aA>.P, then by the induction hypothesis there exi§sin tmsnf such that
ayr = PP = Q. From substitutivity with respect to action prefix, we obtain that
gt B <a,A>.P = <a,A>.Q, from which the result follows asa,A >.Q' is in tmsnf.

— If P=P1+ P, then by the induction hypothesis there exgstandQ, in tmsnf such that
oyt F PL=Qq andagyt F P, = Q,. From substitutivity with respect to alternative compo-
sition, we obtain thatAyt - P, + P>, = Q1 + Q2. There are two cases.

If Q1+ Q2 is in tmsnf, then we are done.

If Q1+ Q2 is notin tmsnf (because it is not initially minimal with respect#T 3 or 2T 4),
the result follows after as many applications .@f;t 3 and 24yt 4 as needed — possibly
preceded by applications ofjyr 1 and.ziyt 2> — by virtue of substitutivity with respect to
alternative composition as well as transitivity.

— If P=Py||sP, then by the induction hypothesis there ex@stand Q. in tmsnf such that
ot B PL= Qq andaiyt F P, = Q. From substitutivity with respect to alternative composi-
tion, we obtain thatAyr - P ||sP. = Q1 ||sQ2. Letus proceed by induction @izg Q1 ||sQ2):

* If sizdQ1[|sQ2) =0, thenQ = Q. = 0 and hence the result follows fromt g and
transitivity.

* Letsiz€ Q1 ||sQ2) =n > 0and assume that the result holds for every pair of nonrecursive
process term@; andQ), in tmsnf such thasiz€ Q] ||sQ,) < n. There are two cases.
If exactly one betwee@®; andQ; is O, then the result follows fromyr ¢ or 24yt 7 and
transitivity.
If neitherQq nor Q2 is 0, we rewriteQ1 ||sQ2 by means ofyr 5. Since the size of each
parallel compositioi®, ||sQ, occurring in one of the summands of the resulting process
term is less than, by the induction hypothesis each su@h||sQ, can be rewritten into
a nonrecursive process term in tmsnf. The result then follows after as many applications
of eyt 3 and.efut 4 as needed (possibly preceded by applicationsigf 1 and.ciur 2)
by virtue of substitutivity with respect to alternative composition as well as transitivity.

— If P=P'/H, then by the induction hypothesis there ex@3t&n tmsnf such thatayr - P'=Q'.
From substitutivity with respect to hiding, we obtain thayr - P'/H = Q//H. Let us
proceed by induction osiz§ Q' /H):

« If siz§Q'/H) =0, thenQ' = 0 and hence the result follows fromiyT 9 and transitivity.

* Let siz§d@Q'/H) = n> 0 and assume that the result holds for every nonrecursive pro-
cess ternQ” in tmsnf such thasiz§Q”/H) < n. In this case, we distribute/H among
all the summands off by means of repeated applications.@fr 12, then we apply
2T 10 OF @yt 11 t0 each summand augmented wiflid. Since the size of ead’ /H

M. Bernardo 31

occurring in one of the summands of the resulting process term is less,thgrhe in-
duction hypothesis each su€li/H can be rewritten into a nonrecursive process term in
tmsnf. The result then follows after as many applications/f 4 as needed (possibly
preceded by applications of\yt 1 and.ciuT 2) by virtue of substitutivity with respect to
alternative composition as well as transitivity.

— If P=P'[¢], then by the induction hypothesis there ex@tin tmsnf such thata - P'=Q'.
From substitutivity with respect to relabeling, we obtain thair - P'[¢] = Q'[¢]. Let us
proceed by induction osizd Q'[¢]):

« If siz&Q'[¢]) =0, thenQ' = 0 and hence the result follows fromiyr 13 and transitivity.

x Letsiz€Q'[¢]) = n> 0and assume that the result holds for every nonrecursive process
term Q" in tmsnf such thasiz§Q"[¢]) < n. In this case, we distributg¢] among
all the summands off by means of repeated applications.@fr 15, then we apply
2T 14 to each summand augmented wifth]. Since the size of ead®’[¢] occurring
in one of the summands of the resulting process term is lessrthiay the induction
hypothesis each sud®’[¢] can be rewritten into a nonrecursive process term in tmsnf.
The result then follows after as many applications#yfr 4 as needed (possibly preceded
by applications ofAt 1 and.eiur 2) by virtue of substitutivity with respect to alternative
composition as well as transitivity.

GivenPy, P> € Ppcnrec sSuch thaPy ~yr P, we prove that#vr F PL = P, by assuming without loss
of generality that botl?, andP, are in tmsnf. In fact, if this were not the case, we could derive
Q1,Q2 € Ppenrec in tmsnf such thakyr F Py = Q1 and.aut - P> = Q2 (henceP, ~yr Q1 and

P, ~ut Q2 due to the soundness of the axioms with respesty®), with Q1 ~yt Q2 (because it
also holdsP; ~y7 P, and~yr is a transitive relation). So, if we proved thaf,r F Q1 = Qo, it
would then follow.eAyt - P = P> by transitivity.

Let us proceed by induction on the syntactical structurie af tmsnf:

— If PL=0, from P, ~y1 P> andP, in tmsnf it follows that? = 0, hence the result by reflexivity.
— If PL= 5o, <a&,Ai>.Pyj with I finite and nonempty, fror®, ~yt P> andP; in tmsnf it fol-
lows thatP, = 3 ¢, <bj, 4j>.P,j with I, finite and nonempty. By virtue of CoA.3, from
P, ~ut P> we derive that:
{a|ieli} ={bj|jela} = {cy,...,cn}
with:
ratey(Py,Ck,0) = ratey(Py, ¢k, 0)
for eachk=1,...,n. We can then concentrate on a geneti@nd on the two sets of sum-
mands ofP, andP, enablingcg-actions:
S1 = {<a,A>Plieling =c}
S2 = {<bj,uj>.Pj|jelnbj=c
which satisfy the following two properties:

1. Ypes, rateo(P c,0) = 3 pes, rateo(P, ¢, 0).

2. The derivative termBy; (resp.P, j) occurring inSc 1 (resp.S¢ 2) are all inequivalent with
respect to~yr due to the initial minimality ofP; (resp.P>) with respect tacyr 4. In
fact, due to such an initial minimality, taken two derivative terms in the same summand
set, it must be the case that their sets of initial action names are different or the total exit
rate with respect to one of these initial action names is different in the two derivative
terms, thus violating the necessary condition{gsr stated by CorA.3.

32 Markovian Testing Equivalence and Exponentially Timed Internal Actions

Let us prove that for each summar@;, Ai>.P1j € S 1 there exists exactly one summand
<bj, uj>.P>j € S such thaiA; = yj andPyj ~mt P j, by proceeding by induction 1|
(the reverse can be proved in the same way):

« If |Sc1| =1, thenS 1 contains a single summand, saw;, Ai>.Py;. As a consequence,
S must contain a single summand as well, salp;,u;>.P>j, and it must be
Ai = Hj andPyj ~vt Poj becauséP, ~vt P> (e.9.,PL andP, cannot be distinguished
by tests starting with ac-action if ¢, # 7). The reason why » cannot contain several
summands starting with@-action is that their inequivalent derivatives would either vi-
olate the necessary condition fek,r stated by CorA.3, thus contradicting?, ~ut P>,
or satisfy that necessary condition, thus contradicting the initial minimalif e¥ith
respect tavr 4.

* Let |Sc1| > 1 and assume that the result holds for any two proper subse§g; aind
S 2 satisfying properties 1 and 2. '—%1 be the set of the summands &f; whose
derivative terms have — among all the derivative terms occurrin§ in— the max-
imum total exit rated with respect to an action namte By virtue of property 2,

d can be chosen in such a way t@it1 # Sc1. Then the derivative term of each sum-
mand of$.1 passes with probability 1 the tesd, x1>.s (or simply s ifd = 1) within

the minimum average tim&/& when considering successful test-driven computations
of length 1, henc®; passes with probabilitzpeg1 rateo(P, €k, 0)/ 3 pes,, rateo(P, ¢, 0)

the test<cy,*1>.<d,*1>.s (or simply <c,*x1>.s if ¢c # 17 andd = 1, <d,*1>.S

if cx =1 andd # 1, or s if cx = d = 1) within the minimum average time sequence
1/ 3 pes,, rates(P, ¢k, 0) 0 1/6 when considering successful test-driven computations of
length 2. SincdP, ~uyt P2, alsoP, must pass the same test in the same waf?as
hence there must exist a sub%itz of S.» whose derivative terms all have the max-

imum total exit rated with respect tad, with Sﬁz # S and EPE% ratey (P, ¢k, 0) =

Y pest, ratey (P, ck, 0).

Since$_1 and$~2 are proper subsets &f 1 andS; > satisfying properties 1 and 2, by the
induction hypothesis it follows that for each summana , A >.P; € Sil there exists
exactly one summandbj, uj>.Pyj € $72 such thatA; = p; andPy; NMT'PZ_,J-.

Likewise, since§ ; = Sc1—§(; andS , = Sc2 — S, are proper subsets & ; andS»
satisfying properties 1 and 2, by the induction hypothesis it follows that for each sum-

mand<ag;,Ai>.Pyj € § ; there exists exactly one summand;, 4j>.P,j € § , such
thatA; = yj andPyj ~ut P2 j. Thus, the result follows for the whotg 1 andS;».

As a consequence, a bijective correspondence can be established between(&y,[Sai).
For each pair of corresponding summanrds, Ai >.Pyj and<bj, 4j>.P j, sSincePyj ~m1 P
and both subterm®,; and P, ; are in tmsnf, by the induction hypothesis it follows that
@t b Pri =Py j. Thusaur F <&, Ai>.Pri = <bj, ;> .P> j by substitutivity with respect to
action prefix & = bj andA; = ;) and hencesur & ¥ i), <&, Ai>.Pri = Y jei, <bj, Uj>.Py |

by substitutivity with respect to alternative composition. [|

A.4 Proofs of Results of Sect7

Proof of Thm. 7.3, A reworking of the proof of Thm. 5.4 of4] that proceeds as follows. We de-
note byinit(T) the set of names of actions enabled by Tr. We also denote b{f'r get the set of

M. Bernardo 33

name-deterministic reactive tests (which is a supersélraj), i.e., the set of reactive tests in which
every subterm of the forrify + T, satisfiegnit(T;) Ninit(T2) = 0. The result follows from the bijective
correspondence between classes of testige: differring only for their action weights and formulas
of .# % w7, which is established below in two steps:

e Firstly, we prove that for all € Tr get there existspr € .Z .2yt such thainit(¢r) = init(T) and
for all P € Ppc and6 € (R-o)*:

[or e (P.6) = prob(.# /% (P.T))
by proceeding by induction on the syntactical structure of
— Let T = s and takepr = true. We prove that for af? € Ppc and6 € (R-o)*:
[truelyr (P,8) = prob(.#¢'% (P.s))
by proceeding by induction off|:

« If |8] =0, then:
[truelgr (P.6) = 1= prob(.#¢'%(Rs))

* Let|6] > O0with 8 =to8',t € R.o, and assume that for &l € Ppc:

[trueley (P, 6) = prob(.7%'%).(P.s)
There are two cases.

If rates(P, 7,0) = Oorm > t, then:
[truer (P.6) = 0= prob(.#% % (P.s))
If ratey(P, 7,0) > OandW <t, then:
6 6’
[truelir(P.6) = 3 ey [ruelir (P'6)

P%P/
-2 im0 - PIOB(6 5 (P5) = prob(.7% % (Ps))

P—>P’

by the induction hypothesis.
— Let T = <a,*w>.T’. From the induction hypoAthesis, it follows that there exists
o € A Lyt such thainit(¢gr) = init(T’) and for allP € Ppc and6 € (R-o)":
e Tigk (B.8) = prob(:#%°(B.T"))
Take@r = (a)@r. We prove that for alP € Ppc and6 € (R-o)*:
]]
[@r]ar (P.6) = prob(% 55(P.T))
by proceeding by induction of®|:
« If |8] =0, then:
]]
[¢rlar (P.6) = 0= prob(.#¢'%,(P.T))
« Let|6] > 0with 8 =to8',t € R.o, and assume that for &l € Ppc:
o 5]
[er]her (P 8') = prob(#% %) (P,T))
There are two cases.
If rateo(P, {a,7},0) = 00r - prazyo > b then:

[or]iar (P.6) = 0= prob(.#%'%,(P.T))

34 Markovian Testing Equivalence and Exponentially Timed Internal Actions

If rates(P,{a,7},0) >0 andm <t, then:
6 6
[or e (P.6) = 3 e [l (P8

P

9/
t3 R PETT0) [or] (P, 6')
P—>P’
e/
= 3 mwpage PO ¢ o (P.T)
P p
o 9

P—>F”

by the induction hypotheses.

— LetT =Ty +To. From the induction hypothesis, it follows that there exist ¢r, € .# L wr
such thatnit(¢r,) = init(T1),init(¢r,) = init(T2) and for allP € Pyc andd € (R-o)™:
6 A 8 /5
[or.Thr (B.8) = prob(.7 %% (B, T1))
[rior (P.6) = prob(.7 %% (B.Tz)
Takegr = ¢r, V ¢r,, which satisfiesnit (¢r,) Ninit(¢r,) = 0 becausd is name deterministic
and hencénit(Ty) Ninit(T,) = 0. We prove that for alP € Ppc and6 € (R-o)*:
[or Thar (P.6) = prob(.#¢ 5 (RT))
by proceeding by induction off|:
x If |6] =0, then:
[9r]\t (P.6) = 0= prob(.7% % (P.T))
x Let|6] > O0with 8 =to#,t € R.o, and assume that for &fl € Ppc:
o5 o 5
[@r a7 (P.6") = prob(.# €% (P.T))
There are two cases.
If rates(P,init(¢r) U{7}.0) = 0 0r e mimiigroroye > b then:
[¢rlar (P.6) = 0= prob(.# ¢/, (P.T))

If ratey(Pinit(¢r) U {r},0) > 0 and rateo(Rinit(lwr)U{r} 5 =L then after posing for

je{12}:
o rateo(Pjinit(¢r;),0) _ rate(Rinit(T;),0)
pj = rate, (Pinit(¢r)u{t},0) ~ ratey(RPinit(T)u{r} 0)
A 1 1 _ 1 1
tJ = t+ (rateo(F{init(tprj)A,O) - rateo(Rinit((pr)U{T}A,O)) = t+ (ratey (P.init(T;),0) rateo(P,init(T)U{T}A,O))
we havee -
[WTH‘ | Pe) = [[‘PH]]‘ 4 (Pno-init—ntl 08

+p2 [[(Pl'zﬂ‘ o0 ‘(Pno-init-rytZO 0')
+ 3 W [or i (P 6")

P‘—> P
= pr-prob(# % 0y (Froinier.)
+p2- prob(.# % %% (Proinitr, T2))
A 10| _ /16|
+ Z rate, (Pinit(T)u{r},0) -prob(jﬂ%ge,(P’,T)) = prOb(y%gg(PvT))

P

by the induction hypotheses.

e Secondly, we prove that for af} € .#Z £t there existsTy € TR det SUch thatnit(T,) = init(¢)
and for allP € Pyc and € (R-0)*:

prob(.-7¢'% (P Tg)) = [@lur (P.6)

M. Bernardo 35

by proceeding by induction on the syntactical structure.ofrhe proof is completely symmetri-
cal with respect to the proof of the first step, in the sense that the roles of formulas and tests are
exchanged: the former are given, the latter are built on the basis of the former. |

A.5 Proofs of Results of Sect8
The result exploited in that section is related to Markovian ready equivalence.

Definition A.13 LetP € Py, c € ¢;(P), anda € (Namg)*. We say that is compatible witho iff:
tracec) = a
We denote bye'é (P, a) the multiset of computations id; (P) that are compatible with traae. |

Definition A.14 LetP € Py, ¢ € 6;(P), andp = (a,R) € (Namg)* x 2\aM%_ We say that computation
cis compatible with the ready pairiff c € €¢ (P, a) and the set of names of visible actions that can be
performed by the last state reacheddxyoincides with the ready s& We denote byZ%¢% (P, p) the
multiset of computations if#; (P) that are compatible witjp. |

Definition A.15 LetPy, P, € Ppc. We say thaP; is Markovian ready equivalent 8, writtenPy ~yr P,
iff for all ready pairsp € (Nameg)* x 2¥8M¢ and sequence < (R-¢)* of average amounts of time:

prob(,%%%w' (P,p)) = prob(%’%%‘geg(Pz,P)) -

Proposition A.16 Let PP € Pyc. ThenPy ~yr P> <= PL~ut Po.

Proof A reworking of the proof of Prop. 5.42 of] that proceeds in two steps:

= We prove the contrapositive, so we assume Biatyt P.. Then by virtue of ThmA.11 there
existé € &7 andf € (R-o)* such that:
]]
prob; (%% . (PL,&)) # probg (6%} (P2, €))
Let us consider an extended tracavith minimal length among those satisfying the above inequal-

ity, together with a corresponding sequerttef average amounts of time with minimal length.
There are two cases:

—If E=¢, thenfora =¢ and|6\ > 0 the inequality above can be rewritten as follows:
prob(%%f};(Pl, a)) # prob(% %'9‘ L(Pe,a))
which in turn can be rewritten as follows: 5
5 prob(%%%' (P, (a,R)) # > prob(% ¢¢'"°L(P,, (a,R)))
Re2Namg

<6
Re2Name =
As a consequence, there must be at leastfoa@Name sayR, for which it holds:
6 3 6 3
prob(%#% % °L(PL, (a,R))) # prob(¢ % °S(P, (a,R)))
hencePy %R P.. - -
-Ifé= E’ o(a,&) with traceet(f) = a’, then by virtue of the minimality of the length &f
we have that for alb’ € (R~)*:
probo , (€6'% ; (P1, &) = probe,, (6%, ; (P, &)
whereé, is an extended trace obtained frarhby including at each step the set of visible
action names occurring i, or P,. Therefore:
prob(%‘fge',(Pl,a’)) = prob(%%'&.'/(Pz,a’))
There are two subcases:

36

Markovian Testing Equivalence and Exponentially Timed Internal Actions

% |fthe last states reached by the computatioﬁg%gg,(Pl, a’) and the last states reached

by the computations iﬁf‘ﬁ‘fg,(Pz, a’) result in the same family of ready sets, then by

virtue of the initial inequality there must exist a visible action name in the family of

ready sets, sag, such that for somé € (R.o)" not lexicographically less thaf
prob(¢¢'%L (P, a’ 08)) # prob(©¢'%, Py, a’ 0 &)

which can be rewritten as follows: .

S prob(#¢ ¢ (P (a'0aR) # 5 prob# e (P, (a' 04 R)))

Re2Name Re2Namey)
As a consequence, there must be at leastoa@Na™e sayR, for which it holds:

6 A B F oA
prob(%%cg‘gg(a,(a'oa, R))) # prob(#%¢ % (P, (a' 04 R)))
hencePl 7(’MR P.

% |fthe last states reached by the computatior?é%ge‘,(Pl, a’) and the last states reached
by the computations iﬁf%gg,(Pz, a’) result in two different families of ready sets, then
there is at least one ready set, $ythat is possessed by only one of the two sets of
computations, say the former. Therefore, for sdine (R-o)" it holds:

prob(2% %%, (PL. (a'.R))) > 0= prob(#%¢'%, (P, (o', R)))
henceP; 7Z‘MR P.. B a

< By virtue of Prop.A.2, from P, ~u1 P, it follows that for allc, € 4:(F), k € {1,2}, there exists

Ch € Gt (Ph), h € {1,2} — {k}, such that:
trace;(ck) = trace:(ch)
timey(ck) = timey(cn)
and for alla € Name
rate, (P2, a,0) = rate, (P2, a,0)
with P2t (resp.P/asY) being the last state reached &y(resp.c,). Therefore, given an arbitrary
a € (Namg)*, for all ¢, € €€ (R, a), k€ {1,2}, there existg, € €¢ (P, o), he {1,2} — {k},
such that:
timey(ck) = timey(cp)
and for alla € Name
rate, (P2 a,0) = rate, (P2t a,0)
with the equality above meaning that every pair of matching computations (i.e., with the same trace
and the same stepwise average duration) end up in states with the same ready set.
Let us consider the computations ©f¢ (P, a) and ¢4 (P2,) on the basis of their extended

stepwise average duration, which is given by their stepwise average duration concatenated with

the inverse of the total exit rate of their last state, or simply by their stepwise average duration
whenever the total exit rate of their last state is zero. This results in two disjoint partitions of
€€ (P,a) UEE (P, a) whose classes intersect both multisets: each class of the first partition

collects all the matching computations with the same extended stepwise average duration ending

in states with zero total exit rate, while each class of the second partition collects all the match-

ing computations with the same extended stepwise average duration ending in states with nonzero

total exit rate. We denote t@/l, ...,6;, AN, the extended stepwise average durations listed in in-
creasing order resulting from the classes of the first partition artid by. , 65, n € N, the extended

stepwise average durations listed in increasing order resulting from the classes of the second parti-

tion, wherefi+n > 0. In turn, every class of the second partition will be formed by several groups
of matching computations, with each group being characterized by a different ready set.

M. Bernardo 37

Let us examine the class of matching computations of the second partition whose associated ex-
tended stepwise average duration is the minimum onepi.es, 6; oty with t; € R.o. Assuming

that R7171,...,§17m1 be the ready sets characterizing the groups of matching computations of the
considered class listed in order of nondecreasing size, let us focus on the smallest dRg,.i.e.,
There are two cases:

— If F\7171 = 0 (which means that only invisible actions can be executed in the last state of the
considered computations), we take a Tagtcomposed of a sequence terminated by s of pas-
sive visible actions whose names and order are the same as those of the actions occurring in
o, which at every step also enables passive actions with all the other visible names occurring
in P, or P, each followed by z, x1>.s (with z being the usual visible action name admitted
within tests but not within process terms under test). FRamyt P, we derive:

prob(Y%‘eﬂ (P, To1)) = prob(Y%‘ bl (Pz,ﬂﬁl))
where — due to the structureﬁfl —fork e {1,2} it holds:
prob(Y%‘ggl (R, Tra)) = prob(%%%fgi(&, (@,0))) — prob(///%%‘fle‘, (A, a))
with .# €% (R, o) being the multiset of maximal (i.e., terminating in a state without outgo-
ing transitions) computations i& (P) that are compatible witkr. SincePy ~yt P> implies

P, ~u1r P> and the latter is equivalent #® ~y1rc P, it holds prob(//%%fg,(Pl,a)) =
’ =0
prob(.#¢%'%.

<6;

(P, a)) and hence:
prob(%%ng,(Pl, (a,0))) = prob(%%%Lg,(Pz, (a,0)))
- If R71,1 =% 0, we take a tesTLl composed of a sequence terminatedyg, , <a,*1>.s of
passive visible actions whose names and order are the same as those of the actions occurring
in a, which at every nonfinal step also enables passive actions with all the other visible names
occurring inPy or P, each followed by z, x1>.s. FromP, ~y1 P>, we derive:

prob(.7 %% (P, Ta1)) = prob(.7 %% (P, T1))
where — due to the structure of; —fork € {1,2} it holds:
prob(y%‘*’l‘ (R, Tr1)) = prob(%’%%fg,(&, (a,Re1)))
and hence:

prob(746/l (Py, (¢, R11))) = prob(# ¢4 % (P, (o, Ru1)))

<6;
If we focus on a generic group of matching computations of the first class of the second partition,
say the one whose ready seRg; (which cannot be empty) witB < j < m, we take a testy |
composed of a sequence terminatedzlgggl,j <a,*1>.S of passive visible actions whose names
and order are the same as those of the actions occurringwhich at every nonfinal step also
enables passive actions with all the other visible names occurriRg an P, each followed by
<z,%1>.S. FromP, ~ut P2, we derive:

prob(.7 %' 6 (P, Ty) = prob(.7¢'% 6l (P, 1))

where — due to the structureiﬁij‘J - for ke {1,2} it holds:

prob(.# 1% (R, Ti)) = prob(#¢ % (R (a,R1 1)) + Gea <)
In the equality abovegy 1 < represents the contribution of the groups of matching computatlons
of the first class characterized by ready sléi_s_, Rl, j—1, With the contribution of groug’,

1<’ < j, being eitheprob(.” %'9” (Pk le 1)) or zero depending on whethR_[?j/ C F\TLJ- or not.

38 Markovian Testing Equivalence and Exponentially Timed Internal Actions

Therefore, fronPy ~ut P» it follows Q1,1 <j = Op,1,<j and hence:

prob(# %6 %L (Py, (a,Ry))) = prob(%%g‘fg,(&,(a,ﬁl,,-)))

If we focus on a generic glassiof the second patrtition, say the one whose associated extended step-
wise average duration i§ = 6/ ot; with t; € R.o, 2 <i < n, and whose groups of matching
computations are characterized by the ready Bets...,R i listed in order of nondecreasing

size, we can reason in a similar way for the first group and for a generic group of the considered
class by taking suitable tesEs;, 1 < j <m, built in the same way as tesks;. The only difference

is that, in the equalities relating the probability .&f4’-multisets with the probability of2%¢ % -
multisets, we have to take into account the contribution of the classes of the second partition whose

associated extended stepwise average duratioré are, 6. Fork € {1,2}, the contribution of
groupj’, 1< j’ <my, of classi’, 1 <’ < i, to groupj of classi is eltherprob(y%le‘ (H<,T|f -,))
or zero depending on whethiy N R = 0 or not, whereT. { i is obtained fromT./ - by enabling
at the final step only passive visible actions whose name beIorR;;s,tow R| FromP, ~yt P> it

foIIowsprob(Y%w'(Pl,T’) = prob(y%le‘(Pz,T’ ,)) and hence:

prob(%%%fg,(Pl, (a,R))) = prob(%%%fg,(a (a,R)
We finally consider the classes of the first partition, each of which is formed by a single group of
matching computations characterized by the empty ready set as the total exit rate of their final
state is zero. Let us examine a generic class of matching computations of the first partltlon say
the one whose associated extended stepwise average durdiph is| < A. If we take a test
composed of a sequence terminated by s of passive visible actions whose names and order are the
same as those of the actions occurringrirwhich at every step also enables passive actions with
all the other visible names occurringia or P, each followed by z, x1>.s, then fromP, ~yt P
we derive: .
prob(.#% %) (P, T)) = prob(.#

where — due to the structure jﬁf— fork € {1,2} it holds:)

prob(.#%' %) (R, T)) = prob¢¢'% (A @) = prob(%%?é(mw,m))+§z#0prob<%%%§g (R (@, Rj)))
Sincezﬁﬂé@prob(%’%%'e" (P, (a,R)))) = SR, ﬂ)prob(%‘f‘é'a‘ (P, (a,R:}))), it holds:

pmu%%%muaxao»>—pmu%%%MW%<am»
Due to the generality off and the consideration of all the pOSSIble ready sets af@rcurring in
P, or P, together with their threshold stepwise average durations, we can concluée that P>.
[

7% (o, 1))

We conclude by showing the algorithm (based on PRop6) for checking whetheP, ~yt Po:
1. Transform[P;]] and[[P;] into their equivalent discrete-time versions:

(a) Divide the rate of each transition by the total exit rate of its source state.
(b) Augment the name of each transition with the total exit rate of its source state.

2. Compute the equivalence relatighthat equates any two states of the discrete-time versions of
[P.]] and[[P;] whenever the two sets of augmented action names labeling the transitions departing
from the two states coincide.

3. For each equivalence claBinduced byZ, considerR as the set of accepting states and check
whether the discrete-time versions|#f]] and[[P.]] are probabilistic language equivalent.

M. Bernardo 39

4,

Return yes/no depending on whether all the checks performed in the previous step have been

successful or at least one of them has failed.

Each iteration of step 3 above requires the application of the algorithm for probabilistic language equiv-
alence. Denoted bilameReal p, the set of augmented action names labeling the transitions of the
discrete-time versions dff;] or [P.]], the algorithm visits in breadth-first order the tree containing a
node for each element gNameRea&l p,)* and studies the linear independence of the state probability
vectors associated with a finite subset of the tree nodes:

1.
2.
3.

Create an empty setof state probability vectors.
Create a queue whose only element is the empty string
While the queue is not empty:

(a) Remove the first element from the queue, say siring

(b) If the state probability vector of the discrete-time version§Raf and[[P.] after readingg
does not belong to the vector space generated, ilgen:

i. For eacha € NameReal p,, add¢oato the queue.
ii. Add the state probability vector 4.

Build a three-valued state vectowhose generic element is:

(a) Oifit corresponds to a honaccepting state.
(b) 1ifit corresponds to an accepting state of the discrete-time versipiy pf
(c) —1ifit corresponds to an accepting state of the discrete-time versifbf

5. For eactv €V, check whethev-u™ = 0.

6. Return yes/no depending on whether all the checks performed in the previous step have been

successful or at least one of them has failed.

The time complexity of the algorithm 9(n®), wheren is the total number of states {iP]] and[[P.].

