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Part I:
Introduction



Performance-Oriented Notations

• Building performance-aware models of computing systems:

¯ Predicting the satisfiability of QoS requirements.

¯ Choosing among alternative designs based on their expected QoS.

• Theory :

¯ Queueing networks (1950’s).

¯ Stochastic Petri nets (1980’s).

¯ Stochastic process calculi (1990’s).

• Practice:

¯ System/software performance engineering approaches.

¯ Object-oriented modeling languages (UML profiles).

¯ Architectural description languages (Æmilia).

¯ Formal modeling languages (Modest).

¯ Coordination languages (StoKlaim).



• Performance-oriented notations usually produce behavioral models.

• These models can be uniformly expressed as state transition graphs.

• Representation of the current state:

¯ Current number of customers in each service center.

¯ Current Petri net marking.

¯ Current process term.

• Cause of the state change associated with a transition:

¯ Execution of a certain activity.

¯ Occurrence of a certain event.

• Adoption of an interleaving view of concurrency in which independent

activities can be executed in any order but not simultaneously.



Behavioral Equivalences

• Behavioral models are equivalent whenever they represent systems that

behave the same.

• Need for the introduction of behavioral equivalences.

• Useful for theoretical and applicative purposes:

¯ Comparing models that are syntactically different on the basis of

the behavior they exhibit.

¯ Relating models of the same system at different abstraction levels

(top-down modeling).

¯ Manipulating models in a way that preserves certain properties

(state space reduction before analysis).



• Most studied approaches developed in a purely functional framework:

¯ Bisimilarity: two models are equivalent if they are able to mimic

each other’s behavior stepwise.

¯ Testing: two models are equivalent if an external observer cannot

distinguish between them by interacting with them by means of tests

and comparing their reactions.

¯ Trace: two models are equivalent if they are able to perform the

same sequences of activities.

• How to extend behavioral equivalences to performance-aware models?

• It is necessary to take into account quantitative aspects related to system

evolution over time (event probabilities, activity durations, costs/gains, . . . ).



Markovian Framework

• A Markov chain is a discrete-state stochastic process {RV (t) | t ∈ R≥0}
such that for all n ∈ N, time instants t0 < t1 < . . . < tn < tn+1, and

states s0, s1, . . . , sn, sn+1 ∈ S:

Pr{RV (tn+1) = sn+1 | RV (t0) = s0 ∧ RV (t1) = s1 ∧ . . . ∧ RV (tn) = sn}
= Pr{RV (tn+1) = sn+1 | RV (tn) = sn}

• The past history is completely summarized by the current state.

• Equivalently, the stochastic process has no memory of the past.

• Time homogeneity: probabilities independent of state change times.

• The solution of a Markov chain is its state probability distribution π()

at an arbitrary time instant (CTMC vs. DTMC).



• Representation and solution of a continuous-time Markov chain (CTMC):

¯ State transitions are described by a rate matrix Q.

¯ The sojourn time in any state is exponentially distributed.

¯ Given π(0), the transient solution π(t) is obtained by solving:

π(t) ·Q = dπ(t)
dt

¯ The stationary solution π = lim
t→∞

π(t) is obtained (if any) by solving:

π ·Q = 0
∑
s∈S

π[s] = 1

• Exponentially distributed random variables are the only continuous

random variables satisfying the memoryless property:

Pr{RV ≤ v + v′ | RV > v′} = Pr{RV ≤ v}



• Every CTMC (time-aware model) has an embedded DTMC (time-abstract model):

¯ State transitions are described by a probability matrix P .

¯ P is obtained from Q by dividing the rate of each transition by the

sum of the rates of the transitions that depart from the source state.

¯ The sojourn time in any state is geometrically distributed.

¯ Given π(0), the transient solution π(n) is computed as follows:

π(n) = π(0) · P n

¯ The stationary solution π= lim
n→∞

π(n) is obtained (if any) by solving:

π = π · P
∑
s∈S

π[s] = 1



• A CTMC is a state transition graph in which every transition is labeled

with a positive real number expressing the rate at which the state change

takes place.

• Rates subsume both time information and probability information:

¯ The sojourn time in a state is exponentially distributed with rate

given by the sum of the rates of the outgoing transitions.

¯ The probability of executing a transition is proportional to its rate.

• A CTMC can thus be viewed as a state transition graph in which:

¯ Every state has an exponentially distributed random variable

associated with it that expresses the sojourn time.

¯ Every transition has a positive real number not greater than 1

associated with it that expresses the execution probability.



Markovian Behavioral Equivalences

• Focus on exponential distributions for activity durations.

• Their memoryless property results in a simpler mathematical treatment:

/ Compliance with the interleaving view of concurrency.

/ Easy calculation of state sojourn times and transition probabilities.

without sacrificing expressiveness:

. Adequate for modeling the timing of many real-life phenomena like

arrival processes, failure events, and chemical reactions.

. Most appropriate stochastic approximation in the case in which only

the average duration of an activity is known.

. Proper combinations (phase-type distributions) approximate most

of general distributions arbitrarily closely.

• How to define Markovian behavioral equivalences?



Process Algebraic Markovian Modeling

• Behavioral equivalences abstract from the specific kind of model but . . .

• . . . are better investigated and understood in a process algebraic setting.

• Action-based modeling relying on a set of behavioral operators.

• Performance-oriented process calculi with CTMC semantics:

¯ TIPP [Götz, Herzog, Rettelbach].

¯ PEPA [Hillston].

¯ MPA [Buchholz].

¯ EMPAgr [Bernardo, Bravetti, Gorrieri].

¯ Sπ [Priami].

¯ IMC [Hermanns].

¯ PIOA [Stark, Cleaveland, Smolka].



• Markovian process calculi differ for the action representation.

• Durational actions (integrated time):

¯ An action is executed while time passes.

¯ Single action prefix operator comprising the name a of the action and

the rate λ ∈ R>0 of the exponentially distributed random variable

quantifying the duration of the action: <a, λ>.

¯ The choice among several actions is probabilistic.

¯ TIPP, PEPA, MPA, EMPAgr, Sπ, PIOA.

• Action names separated from time (orthogonal time):

¯ An action is instantaneously executed after some time has elapsed.

¯ Two action prefix operators: (λ). and a.

¯ The choice among several actions is nondeterministic.

¯ IMC.



• Markovian process calculi also differ for the discipline adopted for

action synchronization.

• In the orthogonal time case, action synchronization is governed as in

nondeterministic process calculi.

• In the integrated time case, action synchronization can be handled in

different ways.

• The more natural choice for deciding the duration of the synchronization

of two exponentially timed actions would be to take the maximum of

their durations.

• The maximum of two exponentially distributed random variables is not

exponentially distributed (phase-type: IMC).



• Symmetric synchronizations:

¯ The synchronization of two exponentially timed actions is assumed

to be exponentially timed.

¯ Its rate is defined through an associative and commutative operator

applied to the two original rates (multiplication, min, max).

¯ TIPP, PEPA, MPA, Sπ.

• Asymmetric synchronizations:

¯ Passive actions of the form <a, ∗w> whose duration is unspecified.

¯ An exponentially timed action can synchronize only with a passive

action, thus determining the duration of the synchronization.

¯ PEPA, EMPAgr, PIOA.

• Bounded capacity assumption: the rate of an action should not increase

when synchronizing that action with other actions.



Markovian Process Calculus: Syntax

• Basic design choices: durational actions (more natural modeling style) and

asymmetric synchronizations (exp. timed action can synch. only with passive actions).

• Namev: set of visible action names.

• Name = Namev ∪ {τ}: set of all action names.

• Rate = R>0 ∪ {∗w | w ∈ R>0}: set of action rates.

• ActM = Name × Rate: set of exponentially timed and passive actions.

• Relab = {ϕ : Name → Name | ϕ−1(τ) = {τ}}: set of visibility-preserv.

relabeling functions.

• Var : set of process variables (Const: set of process constants).



• Process term syntax for process language PLM:

P ::= 0 inactive process

| <a, λ>.P exp. timed action prefix (a ∈ Name, λ ∈ R>0)

| <a, ∗w>.P passive action prefix (a ∈ Name, w ∈ R>0)

| P + P alternative composition

| P ‖S P parallel composition (S ⊆ Namev)

| P / H hiding (H ⊆ Namev)

| P \L restriction (L ⊆ Namev)

| P [ϕ] relabeling (ϕ ∈ Relab)

| X process variable (X ∈ Var)

| rec X : P recursion (X ∈ Var)

(process constants are defined by means of equations of the form B
∆= P ).



• The duration of <a, λ> is the exponentially distributed random variable

Expλ, where Pr{Expλ ≤ t} = 1− e−λ·t and E{Expλ} = 1 / λ.

• The choice among exp. timed actions is generative (prob. over arbitrary names)

and is solved by applying the race policy (exec. prob. proportional to action rates).

• The duration of <a, ∗w> is unspecified (synch. with exponentially timed action).

• The choice among passive actions is reactive (prob. restricted to same name):

¯ Probabilistic for passive actions with the same name and solved by

applying the preselection policy (exec. prob. proportional to action weights).

¯ Nondeterministic for passive actions with different names.

• The choice between an exponentially timed action and a passive action

is nondeterministic.



• Applying the race policy to the exponentially timed actions (λ1, . . . , λh)

enabled by a process term means executing the fastest of those actions.

• The sojourn time associated with that term is thus the minimum of the

random variables quantifying the durations of those actions.

• The sojourn time is exponentially distributed because:

min(Expλ1
, . . . ,Expλh

) = Expλ1+...+λh

• The average sojourn time is therefore given by 1 / (λ1 + . . . + λh).

• The execution probability of exponentially timed action with rate λi is

λi / (λ1 + . . . + λh).



• P1 + P2 behaves as P1 or P2 depending on which executes first.

• The choice among several enabled actions is solved by applying either

the race policy or the preselection policy.

• The choice is internal if the enabled actions are all invisible, otherwise

the choice can be influenced by the external environment.

• P1 ‖S P2 behaves as P1 in parallel with P2 under synchronization set S.

• Actions whose name does not belong to S are executed autonomously

by P1 and by P2 (order determined by race/preselection policy).

• Synchronization is forced between any action enabled by P1 and any

action enabled by P2 that have the same name belonging to S, in which

case the resulting action has the same name as the two original actions

(S = ∅ implies P1 and P2 fully independent, S = Namev implies P1 and P2 fully synchronized).



• 0 is a terminated process and hence cannot execute any action.

• <a, λ̃>.P can perform action a at rate λ̃ and then behaves as P

(action-based sequential composition).

• P / H behaves as P but every action belonging to H is turned into τ

(abstraction mechanism; can be used for preventing a process from communicating).

• P \L behaves as P but every action belonging to L is forbidden

(same effect as P ‖L 0).

• P [ϕ] behaves as P but every action is renamed according to function ϕ

(redundance avoidance; encoding of the previous two operators if ϕ is non-visib.-pres./partial).

• Operator precedence: unary operators > + > ‖.
• Operator associativity: + and ‖ are left associative.



• rec X : P behaves as P with every free occurrence of process variable X

being replaced by rec X : P .

• A process variable is said to occur free in a process term if it is not in

the scope of a rec binder for that variable, otherwise it is said to be

bound in that process term.

• A process term is said to be closed if all of its occurrences of process

variables are bound, otherwise it is said to be open.

• A process term is said to be guarded iff all of its occurrences of process

variables are in the scope of action prefix operators.

• PM: set of closed and guarded process terms (fully defined, finitely branching).



• Running example (MPC syntax):

¯ Producer-consumer system: producer, finite buffer, consumer.

¯ The producer deposits items into the buffer at rate λ ∈ R>0 as long

as the buffer capacity is not exceeded.

¯ Stored items are then withdrawn by the consumer at rate µ ∈ R>0

according to some predefined discipline (like FIFO or LIFO).

¯ Assumption 1: the buffer has only two positions.

¯ Assumption 2: identical items, hence the discipline is not important.



¯ The only observable activities are deposits and withdrawals.

¯ Names of visible actions: deposit and withdraw .

¯ Structure-independent process algebraic description:

ProdConsM
0/2

∆
= <deposit , λ>.ProdConsM

1/2

ProdConsM
1/2

∆
= <deposit , λ>.ProdConsM

2/2 +

<withdraw , µ>.ProdConsM
0/2

ProdConsM
2/2

∆
= <withdraw , µ>.ProdConsM

1/2

¯ Specification to which every correct implementation should conform.



Markovian Process Calculus: Semantics

• State transition graph expressing all computations and branching points

and accounting for transition multiplicity (<a, λ>.0 + <a, λ>.0 vs. <a, λ>.0).

• Every P ∈ PM is mapped to a labeled multitransition system [[P ]]M:

¯ Each state corresponds to a process term into which P can evolve.

¯ The initial state corresponds to P .

¯ Each transition from a source state to a target state is labeled with

the action that determines the corresponding state change.

• Every P ∈ PM,pc is mapped to a CTMC (performance closure if no passive trans.):

¯ Dropping action names from all transitions of [[P ]]M.

¯ Collapsing all the transitions between any two states of [[P ]]M into a

single transition by summing up the rates of the original transitions.



• Derivation of one single transition at a time by applying suitable

operational semantic rules to the source state of the transition.

• Rules defined by induction on the syntactical structure of process terms.

• Basic rules for action prefix, inductive rules for all the other operators.

• Different formats: dynamic operators (. +), static operators (‖ / \ [ ]).

• The multitransition relation −−−→M,P of [[P ]]M is contained in the

smallest multiset of elements of PM ×ActM × PM that:

– Satisfy the operational semantic rules.

– Keep track of all the possible ways of deriving each transition.

• No rule for 0: [[0]]M has a single state and no transitions.



• Operational semantic rules for action prefix:

<a, λ>.P
a,λ−−−→M P

<a, ∗w>.P
a,∗w−−−→M P

• Operational semantic rules for alternative composition:

P1

a,λ̃−−−→M P ′

P1 + P2

a,λ̃−−−→M P ′

P2

a,λ̃−−−→M P ′

P1 + P2

a,λ̃−−−→M P ′

• Operational semantic rule for recursion:

P{rec X : P ↪→ X} a,λ̃−−−→M P ′

rec X : P
a,λ̃−−−→M P ′

(
B

∆= P P
a,λ̃
−−−→M P ′

B
a,λ̃
−−−→M P ′

)



• Classical interleaving semantics for parallel composition:

¯ Due to the memoryless property of the exponential distribution,

the execution of an exponentially timed action can be thought of as

being started in the last state in which the action is enabled.

¯ Due to the infinite support of the exponential distribution,

the probability of simultaneous termination of two concurrent

exponentially timed actions is zero.

• Operational semantic rules for parallel execution:

P1

a,λ̃−−−→M P ′1 a 6∈ S

P1 ‖S P2

a,λ̃−−−→M P ′1 ‖S P2

P2

a,λ̃−−−→M P ′2 a 6∈ S

P1 ‖S P2

a,λ̃−−−→M P1 ‖S P ′2



• The following process terms represent structurally different systems:

<a, λ>.0 ‖∅ <b, µ>.0

<a, λ>.<b, µ>.0 + <b, µ>.<a, λ>.0

but they are indistinguishable by an external observer.

• Black-box semantics given by the same labeled multitransition system:

µ

λ µ

λ

a, b,

b, a,

• Interleave concurrent exponentially timed actions without the need of

adjusting their rates inside transition labels.



• Synchronization admitted among several actions with the same name,

provided that at most one of them is exponentially timed.

• Generative-reactive or reactive-reactive synchronizations.

• The rate of the synchronization of an exponentially timed action with

a passive action is given by the rate of the former multiplied by the

execution probability of the latter (complies with the bounded capacity assumption).

• Weight of a process term P with respect to passive actions of name a:

weight(P, a) =
∑{|w ∈ R>0 | ∃P ′ ∈ PM. P

a,∗w−−−→M P ′ |}

• Normalizing function for reactive-reactive synchronizations:

norm(w1, w2, a, P1, P2) = w1
weight(P1,a)

· w2
weight(P2,a)

· (weight(P1, a) + weight(P2, a))



• Operational semantic rules for generative-reactive synchronization:

P1

a,λ−−−→M P ′1 P2

a,∗w−−−→M P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2,a)

−−−−−−−−−−−−→M P ′1 ‖S P ′2

P1

a,∗w−−−→M P ′1 P2

a,λ−−−→M P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1,a)

−−−−−−−−−−−−→M P ′1 ‖S P ′2

• Operational semantic rule for reactive-reactive synchronization:

P1

a,∗w1−−−→M P ′1 P2

a,∗w2−−−→M P ′2 a ∈ S

P1 ‖S P2

a,∗norm(w1,w2,a,P1,P2)

−−−−−−−−−−−−−−−−−−−−−→M P ′1 ‖S P ′2



• Operational semantic rules for hiding, restriction, relabeling:

P
a,λ̃−−−→M P ′ a ∈ H

P / H
τ,λ̃−−−→M P ′ / H

P
a,λ̃−−−→M P ′ a /∈ H

P / H
a,λ̃−−−→M P ′ / H

P
a,λ̃−−−→M P ′ a /∈ L

P \L
a,λ̃−−−→M P ′ \L

P
a,λ̃−−−→M P ′

P [ϕ]
ϕ(a),λ̃

−−−→M P ′[ϕ]

• [[P ]]M is finite state if no recursive definition in P contains static ops.



• Running example (MPC semantics):

¯ Labeled multitransition system [[ProdConsM
0/2]]M with explicit states:

ProdCons1/2

ProdCons2/2

withdraw,

withdraw,

λ

λ

M

M

M

ProdCons0/2

deposit,

deposit, µ

µ

¯ Obtained by mechanically applying the operational semantic rules

for process constant, alternative composition, and action prefix.



Part II:
The Markovian Spectrum



Relating Classical Behavioral Equivalences

• Most studied approaches to the definition of behavioral equivalences:

¯ Trace approach: two process terms are equivalent if they are able to

execute the same sequences of actions (≈Tr).

¯ Abstraction from branching points leads to deadlock insensitivity.

¯ Testing approach: two process terms are equivalent if no difference

can be discovered when interacting with them by means of tests and

comparing their reactions (≈T).

¯ Checking whether every test may/must be passed.

¯ Bisimulation approach: two process terms are equivalent if they are

able to mimic each other’s behavior after each action execution (∼B).

¯ Faithful account of branching points leads to overdiscrimination.



• Variants of bisimulation equivalence:

¯ Simulation equivalence: it is the intersection of two preorders, each

of which considers the capability of stepwise behavior mimicking in

one single direction (∼S).

¯ Ready-simulation equivalence: same as simulation equivalence, with

in addition the fact that each of the two preorders checks for the

equality of the sets of actions that are stepwise enabled (∼RS).

• Less discriminating than bisimulation equivalence.

• The distinctions they make can be traced provided that reasonable

operators are included in the process language.



• Deadlock-sensitive variants of trace equivalence:

¯ Completed-trace equivalence: it compares process terms also with

respect to traces that lead to deadlock (≈Tr,c).

¯ Failure equivalence: it takes into account the set of visible actions

that can be refused after executing a trace (≈F).

¯ Ready equivalence: it takes into account the set of visible actions

that can be performed after executing a trace (≈R).

¯ Failure-trace equivalence: it takes into account the sets of visible

actions that can be refused at each step of a trace (≈FTr).

¯ Ready-trace equivalence: it takes into account the sets of visible

actions that can be performed at each step of a trace (≈RTr).



• Linear-time/branching-time spectrum (for processes without invisible actions):

~RS

~B

~~Tr,c

~~Tr

~S

~~RTr

~~R

~~F
T~~

~~FTr



Relating Markovian Behavioral Equivalences

• Markovian linear-time/branching-time spectrum:

∼MB =∼MRS =∼MS ⊂
∼MRTr =∼MFTr ⊂

∼MR =∼MF =∼MT ⊂
∼MCTr =∼MTr

• Similar to the probabilistic spectrum.

• More linear than the nondeterministic spectrum.

• The considered processes do not exhibit nondeterministic behavior.



Part III:
Properties of Markovian Behavioral Equivalences



Comparison Criteria

1. Discriminating power:

which of them is finer/coarser than the others?

2. Congruence:

do they support compositional reasoning?

3. Sound and complete axiomatization:

what are their fundamental equational laws?

4. Modal logic characterization:

what behavioral properties do they preserve?

5. Complexity (of their verification algorithms):

can they be checked for efficiently?

6. Exactness (of their induced CTMC-level aggregations):

do they make sense from a performance viewpoint?



• Congruence enables the equivalence-based compositional reduction of

models obtained as the combination of submodels.

• Axioms can be used as rewriting rules that syntactically manipulate

models in a way that is consistent with the equivalence.

• The modal logic characterization provides diagnostic information in the

form of distinguishing formulas that explain model inequivalence.

• Exactness: the probability of being in a macrostate of an aggregated

CTMC is the sum of the probabilities of being in one of the constituent

microstates of the original CTMC (transient/stationary).

• Exactness guarantees the preservation of performance characteristics

when going from the original CTMC to the aggregated one induced by

the equivalence.



Markovian Bisimulation Equivalence

• Two process terms are equivalent if they are able to mimic each other’s

functional and performance behavior stepwise.

• Whenever a process term can perform actions with a certain name that

reach a certain set of terms at a certain speed, then any process term

equivalent to the given one has to be able to respond with actions with

the same name that reach an equivalent set of terms at the same speed.

• Comparison of process term exit rates rather than individual transitions

(different from bisimulation equivalence for nondeterministic processes).

• High sensitivity to the branching structure of process terms.



• The exit rate of a process term is the rate at which the process term

can execute actions of a given name that lead to a given set of terms

(sum of the rates of those actions due to the race policy).

• Exit rate at which P ∈ PM executes actions of name a ∈ Name and

level l ∈ {0,−1} (0 exp. timed, −1 passive) that lead to destination D ⊆ PM:

ratee(P, a, l, D) =





∑{|λ ∈ R>0 | ∃P ′ ∈ D. P
a,λ−−−→M P ′ |} if l = 0

∑{|w ∈ R>0 | ∃P ′ ∈ D. P
a,∗w−−−→M P ′ |} if l = −1

• Overall exit rate of P w.r.t. a at level l: rateo(P, a, l) = ratee(P, a, l,PM).

• Total exit rate of P at level l: ratet(P, l) =
∑

a∈Name

rateo(P, a, l).

• 1 / ratet(P, 0) is the average sojourn time of P when P ∈ PM,pc.



• The exit probability of a process term is the probability with which the

process term can execute actions of a given name that lead to a given

set of terms.

• Generative probability for exponentially timed actions (arbitrary names).

• Reactive probability for passive actions (restriction to same name).

• Exit probability with which P ∈ PM executes actions of name a ∈ Name

and level l ∈ {0,−1} that lead to destination D ⊆ PM:

probe(P, a, l, D) =





ratee(P, a, l, D) / ratet(P, l) if l = 0

ratee(P, a, l, D) / rateo(P, a, l) if l = −1



• An equivalence relation B over PM is a Markovian bisimulation iff,

whenever (P1, P2) ∈ B, then for all action names a ∈ Name, levels

l ∈ {0,−1}, and equivalence classes D ∈ PM/B:

ratee(P1, a, l, D) = ratee(P2, a, l, D)

• Markovian bisimulation equivalence ∼MB is the union of all the

Markovian bisimulations.

• A consequence of the coinductive nature of ∼MB is that the derivatives

of two equivalent terms are still equivalent.



• Running example (∼MB):

¯ Concurrent implementation with two independent one-pos. buffers:

PCM
conc,2

∆
= ProdM ‖{deposit} (Buff M ‖∅ Buff M) ‖{withdraw} ConsM

ProdM ∆
= <deposit , λ>.ProdM

Buff M ∆
= <deposit , ∗1>.<withdraw , ∗1>.Buff M

ConsM ∆
= <withdraw , µ>.ConsM

¯ All the actions occurring in the buffer are passive, consistent with

the fact that the buffer is a passive entity.

¯ Is PCM
conc,2 a correct implementation of ProdConsM

0/2?

¯ Yes, because it turns out that PCM
conc,2 ∼MB ProdConsM

0/2.

¯ Proved by finding a suitable Markovian bisimulation.



¯ Markovian bisimulation proving PCM
conc,2 ∼MB ProdConsM

0/2, with

states of the same color belonging to the same equivalence class:

||{d} ||∅ ||{w} ||{d} ||∅ ||{w}

||{d} ||{w}

||{d} ||∅ ||{w}

||∅

µ
2

µ
2

2
λ

2
λ

M M MP B( B ) CM M M MP B( B ) CM

M M MP B( B ) CM

M M MP B( B ) CM

ProdCons1/2

ProdCons2/2

withdraw,λdeposit, µ

M

M

M

ProdCons0/2

withdraw,µ

withdraw,µwithdraw,µ

deposit,λdeposit,λ deposit,λwithdraw, withdraw,

deposit,deposit,

¯ The initial state on the left-hand side has both outgoing transitions

labeled with λ/2, not λ.

¯ The bottom state on the left-hand side has both outgoing transitions

labeled with µ/2, not µ.



• In order for P1 ∼MB P2, it is necessary that for all a ∈ Name and

l ∈ {0,−1}:
rateo(P1, a, l) = rateo(P2, a, l)

• A binary relation B over PM is a Markovian bisimulation up to ∼MB

iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name, levels

l ∈ {0,−1}, and equivalence classes D ∈ PM/(B ∪ B−1 ∪ ∼MB)+:

ratee(P1, a, l, D) = ratee(P2, a, l, D)

• Focus on important pairs of process terms that form a bisimulation.

• In order for P1 ∼MB P2, it is sufficient to find a Markovian bisimulation

up to ∼MB that contains (P1, P2).



• ∼MB has an alternative characterization in which time and probability

are kept separate (instead of being both subsumed by rates).

• An equivalence relation B over PM is a separate Markovian bisimulation

iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name and levels

l ∈ {0,−1}:
rateo(P1, a, l) = rateo(P2, a, l)

and for all equivalence classes D ∈ PM/B:

probe(P1, a, l, D) = probe(P2, a, l, D)

• Separate Markovian bisimulation equivalence ∼MB,s is the union of all

the separate Markovian bisimulations.

• For all P1, P2 ∈ PM:

P1 ∼MB,s P2 ⇐⇒ P1 ∼MB P2



• ∼MB is a congruence with respect to all the dynamic and static operators

as well as recursion.

• Let P1, P2 ∈ PM. Whenever P1 ∼MB P2, then:

<a, λ̃>.P1 ∼MB <a, λ̃>.P2

P1 + P ∼MB P2 + P P + P1 ∼MB P + P2

P1 ‖S P ∼MB P2 ‖S P P ‖S P1 ∼MB P ‖S P2

P1 / H ∼MB P2 / H

P1 \L ∼MB P2 \L

P1[ϕ] ∼MB P2[ϕ]



• Recursion: extend ∼MB to open process terms by replacing all variables

freely occurring outside rec binders with every closed process term.

• Let P1, P2 ∈ PLM be guarded process terms containing free occurrences

of k ∈ N process variables X1, . . . , Xk ∈ Var at most.

• We define P1 ∼MB P2 iff:

P1{Qi ↪→ Xi | 1 ≤ i ≤ k} ∼MB P2{Qi ↪→ Xi | 1 ≤ i ≤ k}

for all Q1, . . . , Qk ∈ PM:

• Whenever P1 ∼MB P2, then:

rec X : P1 ∼MB rec X : P2



• ∼MB has a sound and complete axiomatization over the set PM,nrec of

nonrecursive process terms of PM.

• Basic laws (commutativity, associativity, and neutral element of +):

(XMB,1) P1 + P2 = P2 + P1

(XMB,2) (P1 + P2) + P3 = P1 + (P2 + P3)

(XMB,3) P + 0 = P

• Characterizing laws (race policy and preselection policy, instead of + idempotency):

(XMB,4) <a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P

(XMB,5) <a, ∗w1>.P + <a, ∗w2>.P = <a, ∗w1+w2>.P



• Expansion law (interl. view of conc. supported by mem. prop.; I, J nonempty and finite):

(XMB,6)
∑
i∈I

<ai, λ̃i>.Pi ‖S

∑
j∈J

<bj , µ̃j>.Qj =

∑
k∈I,ak /∈S

<ak, λ̃k>.

(
Pk ‖S

∑
j∈J

<bj , µ̃j>.Qj

)
+

∑
h∈J,bh /∈S

<bh, µ̃h>.

(
∑
i∈I

<ai, λ̃i>.Pi ‖S Qh

)
+

∑
k∈I,ak∈S,λ̃k∈R>0

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, λ̃k · wh
weight(Q,bh) >.(Pk ‖S Qh) +

∑
h∈J,bh∈S,µ̃h∈R>0

∑
k∈I,ak=bh,λ̃k=∗vk

<bh, µ̃h · vk
weight(P,ak) >.(Pk ‖S Qh) +

∑
k∈I,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, ∗norm(vk,wh,ak,P,Q)>.(Pk ‖S Qh)

(XMB,7)
∑
i∈I

<ai, λ̃i>.Pi ‖S 0 =
∑

k∈I,ak /∈S

<ak, λ̃k>.Pk

(XMB,8) 0 ‖S

∑
j∈J

<bj , µ̃j>.Qj =
∑

h∈J,bh /∈S

<bh, µ̃h>.Qh

(XMB,9) 0 ‖S 0 = 0



• Distribution laws (for unary static operators):

(XMB,10) 0 / H = 0

(XMB,11) (<a, λ̃>.P ) / H = <τ, λ̃>.(P / H) if a ∈ H

(XMB,12) (<a, λ̃>.P ) / H = <a, λ̃>.(P / H) if a /∈ H

(XMB,13) (P1 + P2) / H = P1 / H + P2 / H

(XMB,14) 0 \L = 0

(XMB,15) (<a, λ̃>.P ) \L = 0 if a ∈ L

(XMB,16) (<a, λ̃>.P ) \L = <a, λ̃>.(P \L) if a /∈ L

(XMB,17) (P1 + P2) \L = P1 \L + P2 \L

(XMB,18) 0[ϕ] = 0

(XMB,19) (<a, λ̃>.P )[ϕ] = <ϕ(a), λ̃>.(P [ϕ])

(XMB,20) (P1 + P2)[ϕ] = P1[ϕ] + P2[ϕ]



• DED(XMB): deduction system based on all the previous axioms plus:

¯ Reflexivity: XMB ` P = P .

¯ Symmetry: XMB ` P1 = P2 =⇒ XMB ` P2 = P1.

¯ Transitivity: XMB ` P1 = P2∧XMB ` P2 = P3 =⇒ XMB ` P1 = P3.

¯ Substitutivity: XMB ` P1 = P2 =⇒ XMB ` <a, λ̃>.P1 = <a, λ̃>.P2∧. . .

• The deduction system DED(XMB) is sound and complete for ∼MB

over PM,nrec; i.e., for all P1, P2 ∈ PM,nrec:

XMB ` P1 = P2 ⇐⇒ P1 ∼MB P2



• ∼MB has a modal logic characterization based on a variant of the

Hennessy-Milner logic.

• Basic truth values and propositional connectives, plus modal operators

expressing how to behave after executing actions with certain names.

• Diamond operator decorated with a lower bound on the rate/weight

with which exponentially timed/passive actions with the given name

should be executed (consistent with capturing step-by-step behavior mimicking).

• Syntax of the modal language MLMB (a ∈ Name, λ, w ∈ R>0):

φ ::= true basic truth value

| ¬φ negation

| φ ∧ φ conjunction

| 〈a〉λφ exponentially timed possibility

| 〈a〉∗wφ passive possibility



• Interpretation of MLMB over PM:

P |=MB true

P |=MB ¬φ if P 6|=MB φ

P |=MB φ1 ∧ φ2 if P |=MB φ1 and P |=MB φ2

P |=MB 〈a〉λφ if ratee(P, a, 0, sat(φ)) ≥ λ

P |=MB 〈a〉∗wφ if ratee(P, a,−1, sat(φ)) ≥ w

where:

sat(φ) = {P ′ ∈ PM | P ′ |=MB φ}

• For all P1, P2 ∈ PM:

P1 ∼MB P2 ⇐⇒ (∀φ ∈MLMB. P1 |=MB φ ⇐⇒ P2 |=MB φ)



• ∼MB is decidable in polynomial time over the set PM,fin of finite-state

process terms of PM: Paige-Tarjan partition refinement algorithm.

• Based on the fact that ∼MB can be characterized as the limit of a

sequence of successively finer equivalence relations:

∼MB =
⋂

i∈N
∼MB,i

• ∼MB,0 = PM × PM hence it induces the trivial partition {PM}.
• Whenever P1 ∼MB,i P2, i ∈ N≥1, then for all a ∈ Name, l ∈ {0,−1},

and D ∈ PM/∼MB,i−1:

ratee(P1, a, l, D) = ratee(P2, a, l, D)

• ∼MB,1 refines {PM} by creating an equivalence class for each set of

process terms that satisfy the necessary condition for ∼MB.



• Steps of the algorithm for checking whether P1 ∼MB P2:

1. Build an initial partition with a single class including all the states

of [[P1]]M and [[P2]]M.

2. Initialize a list of splitters with the above class as its only element.

3. While the list of splitters is not empty, select a splitter and

remove it from the list after refining the current partition for

each a ∈ NameP1,P2 and l ∈ {0,−1}:
a. Split each class of the current partition by comparing the exit

rates of its states when performing actions of name a and level l

that lead to the selected splitter.

b. For each class that has been split, insert into the list of splitters

all the resulting subclasses except for the largest one.

4. Return yes/no depending on whether the initial states of [[P1]]M and

[[P2]]M belong to the same class of the final partition or not.

• The time complexity is O(m·log n) if a splay tree is used for representing

the subclasses arising from the splitting of a class (they can be more than two).



• ∼MB induces an exact aggregation known as ordinary lumping.

• A partition O of the state space of a CTMC is an ordinary lumping iff,

whenever s1, s2 ∈ O for some O ∈ O, then for all O′ ∈ O:

∑{|λ ∈ R>0 | ∃s′ ∈ O′. s1

λ−−−→ s′ |} =
∑{|λ ∈ R>0 | ∃s′ ∈ O′. s2

λ−−−→ s′ |}

• The probability of being in a macrostate of an ordinarily lumped CTMC

is the sum of the probabilities of being in one of its constituent

microstates of the original CTMC.

• Two Markovian bisimilar process terms in PM,pc are guaranteed to

possess the same performance characteristics.



Markovian Testing Equivalence

• Two process terms are equivalent if an external observer cannot

distinguish between them, with the only way for the observer to

infer information about their functional and performance behavior being

to interact with them by means of tests and compare their reactions.

• Was the test passed?

If so, with which probability?

And how long did it take to pass the test?

• Tests formalized as process terms.

• Interaction formalized as parallel composition of process term and test

with synchronization enforced on any visible action name.

• Comparison of process term probabilities of performing successful

test-driven computations within arbitrary time upper bounds.



• A computation of a process term P ∈ PM is a sequence of transitions

that can be executed starting from P .

• The length of a computation is given by the number of its transitions.

• Cf(P ): multiset of finite-length computations of P .

• Two distinct computations are independent of each other iff neither is

a proper prefix of the other one.

• Focus on finite multisets of independent, finite-length computations.

• Attributes of a finite-length computation:

¯ Trace.

¯ Probability.

¯ Duration.



• Given a set of sequences, we use:

¯ Operator ◦ for sequence concatenation.

¯ Operator | | for sequence length.

• The concrete trace associated with the execution of c ∈ Cf(P ) is the

sequence of action names labeling the transitions of c:

tracec(c) =





ε if |c| = 0

a ◦ tracec(c
′) if c ≡ P

a,λ̃−−−→M c′

• We denote by trace(c) the visible part of tracec(c), i.e., the subsequence

of tracec(c) obtained by removing all the occurrences of τ .



• For the quantitative attributes, we assume P ∈ PM,pc.

• The probability of executing c ∈ Cf(P ) is the product of the execution

probabilities of the transitions of c:

prob(c) =





1 if |c| = 0

λ
ratet(P,0)

· prob(c′) if c ≡ P
a,λ−−−→M c′

• Probability of executing a computation in C ⊆ Cf(P ):

prob(C) =
∑

c∈C

prob(c)

assuming that C is finite and all of its computations are independent.



• The stepwise average duration of c ∈ Cf(P ) is the sequence of average

sojourn times in the states traversed by c:

timea(c) =





ε if |c| = 0

1
ratet(P,0)

◦ timea(c
′) if c ≡ P

a,λ−−−→M c′

• Multiset of computations in C ⊆ Cf(P ) whose stepwise average duration

is not greater than θ ∈ (R>0)
∗:

C≤θ = {| c ∈ C | |c| ≤ |θ| ∧ ∀i = 1, . . . , |c|. timea(c)[i] ≤ θ[i] |}

• Cl: multiset of computations in C ⊆ Cf(P ) having length l ∈ N.



• The stepwise duration of c ∈ Cf(P ) is the sequence of random variables

quantifying the sojourn times in the states traversed by c:

timed(c) =





ε if |c| = 0

Expratet(P,0) ◦ timed(c′) if c ≡ P
a,λ−−−→M c′

• Probability distribution of executing a computation in C ⊆ Cf(P ) within

a sequence θ ∈ (R>0)
∗ of time units:

probd(C, θ) =
|c|≤|θ|∑
c∈C

prob(c) ·
|c|∏

i=1

Pr{timed(c)[i] ≤ θ[i]}

assuming that C is finite and all of its computations are independent.

• Factor Pr{timed(c)[i] ≤ θ[i]} = 1 − e−θ[i]/timea(c)[i] stems from the

cumulative distribution function of the exponentially distributed

random variable timed(c)[i] (whose expected value is timea(c)[i]).



• Why not summing up sojourn times? (standard duration instead of stepwise one)

• Consider process terms (λ 6= µ, b 6= d, identical nonmaximal computations):

<g, γ>.<a, λ>.<b, µ>.0 + <g, γ>.<a, µ>.<d, λ>.0

<g, γ>.<a, λ>.<d, µ>.0 + <g, γ>.<a, µ>.<b, λ>.0

• Maximal computations of the first term:

c1,1 ≡ .
g,γ−−−→M .

a,λ−−−→M .
b,µ−−−→M .

c1,2 ≡ .
g,γ−−−→M .

a,µ−−−→M .
d,λ−−−→M .

• Maximal computations of the second term:

c2,1 ≡ .
g,γ−−−→M .

a,λ−−−→M .
d,µ−−−→M .

c2,2 ≡ .
g,γ−−−→M .

a,µ−−−→M .
b,λ−−−→M .

• Same sum of average sojourn times 1
2·γ + 1

λ
+ 1

µ
and 1

2·γ + 1
µ

+ 1
λ

but ...

• . . . an external observer would be able to distinguish between the two

terms by taking note of the instants at which the actions are performed.



• Comparing probabilities of passing a test within a time upper bound.

• Syntax of the set TR of reactive tests (a ∈ Namev, w ∈ R>0):

T ::= s | T ′

T ′ ::= <a, ∗w>.T | T ′ + T ′

• Asymmetric action synchronization: only passive actions within tests.

• Performance closure: passive τ -actions not admitted within tests.

• Presence of a time upper bound: recursion not necessary within tests.

• Denoting test passing: zeroary success operator s (success action may interfere).

• Avoiding ambiguous tests like s + T : two-level syntax for tests.



• Interaction system of P ∈ PM,pc and T ∈ TR:

P ‖Namev T ∈ PM,pc

• In any of its states, P generates the proposal of an action to be executed

by means of a race among the exponentially timed actions enabled in

that state.

• If the name of the proposed action is τ , then P advances by itself.

• Otherwise T :

¯ either reacts by participating in the interaction with P through a

passive action having the same name;

¯ or blocks the interaction if it has no passive actions with the

proposed name.



• Let P ∈ PM,pc and T ∈ TR:

¯ A configuration is a state of [[P ‖Namev T ]]M.

¯ A test-driven computation is a computation of [[P ‖Namev T ]]M.

¯ A configuration is formed by process projection and test projection.

¯ A configuration is successful iff its test projection is s.

¯ A test-driven computation is successful iff it traverses a successful

configuration.

¯ SC(P, T ): multiset of successful computations of P ‖Namev T .



• If P has no exponentially timed τ -actions:

¯ All the computations in SC(P, T ) have a finite length due to the

restrictions imposed on the test syntax.

¯ All the computations in SC(P, T ) are independent of each other

because of their maximality.

¯ The multiset SC(P, T ) is finite because both P and T are finitely

branching.

• Same considerations for SC≤θ(P, T ).

• If there are exponentially timed τ -actions:

¯ Are the computations in SC≤θ(P, T ) independent of each other?

¯ How to distinguish among process terms having only exponentially

timed τ -actions, like <τ, λ>.0 and <τ, µ>.0 with λ > µ?



• Consider subsets of SC≤θ(P, T ) including all the successful test-driven

computations of the same length.

• They are SCl
≤θ(P, T ) for 0 ≤ l ≤ |θ|.

• SC|θ|≤θ(P, T ) is enough as shorter successful test-driven computations can

be taken into account when imposing prefixes of θ as time upper bounds.

• Process terms having only exponentially timed τ -actions are compared

after giving them the possibility of executing the same number of

τ -actions (λ > µ ⇒ 1
λ

< 1
µ

):

prob(SC1
≤ 1

λ
(<τ, λ>.0, s)) = 1 6= 0 = prob(SC1

≤ 1
λ
(<τ, µ>.0, s))



• P1 ∈ PM,pc is Markovian testing equivalent to P2 ∈ PM,pc, written

P1 ∼MT P2, iff for all reactive tests T ∈ TR and sequences θ ∈ (R>0)
∗

of average amounts of time:

prob(SC|θ|≤θ(P1, T )) = prob(SC|θ|≤θ(P2, T ))

• Not defined as the intersection of may- and must-equivalence as the

possibility and the necessity of passing a test are qualitative concepts,

hence they are not sufficient (probability > 0, probability = 1).

• Not defined as the kernel of a Markovian testing preorder as such a

preorder would have boiled down to an equivalence relation.

• The presence of time upper bounds makes it possible to decide whether

a test is passed or not even if the process term under test can execute

infinitely many exponentially timed τ -actions.



• In order for P1 ∼MT P2, it is necessary that for all ck ∈ Cf(Pk),

k ∈ {1, 2}, there exists ch ∈ Cf(Ph), h ∈ {1, 2} − {k}, such that:

tracec(ck) = tracec(ch)

timea(ck) = timea(ch)

and for all a ∈ Name and i ∈ {0, . . . , |ck|}:
rateo(P

i
k, a, 0) = rateo(P

i
h, a, 0)

with P i
k (resp. P i

h) being the i-th state traversed by ck (resp. ch).

• Process terms satisfying the necessary condition that are not Markovian

testing equivalent (λ1 + λ2 = λ′1 + λ′2 with λ1 6= λ′1, λ2 6= λ′2 and b 6= c or µ 6= γ):

<a, λ1>.<b, µ>.0 + <a, λ2>.<c, γ>.0

<a, λ′1>.<b, µ>.0 + <a, λ′2>.<c, γ>.0



• ∼MT has three alternative characterizations, each providing further

justifications for the way in which the equivalence has been defined.

• The first characterization establishes that the discriminating power

does not change if we consider a set TR,lib of tests with the following

more liberal syntax:

T ::= s | <a, ∗w>.T | T + T

• In this setting, a successful configuration is a configuration whose test

projection includes s as top-level summand.

• For all P1, P2 ∈ PM,pc:

P1 ∼MT,lib P2 ⇐⇒ P1 ∼MT P2



• The second characterization establishes that the discriminating power

does not change if we consider a set TR,τ of tests capable of moving

autonomously by executing exponentially timed τ -actions:

T ::= s | T ′

T ′ ::= <a, ∗w>.T | <τ, λ>.T | T ′ + T ′

• For all P1, P2 ∈ PM,pc:

P1 ∼MT,τ P2 ⇐⇒ P1 ∼MT P2



• The third characterization establishes that the discriminating power

does not change if we consider the probability distribution of

passing tests within arbitrary sequences of amounts of time.

• Considering the (more accurate) stepwise durations of test-driven

computations leads to the same equivalence as considering the (easier

to work with) stepwise average durations.

• P1 ∈ PM,pc is Markovian distribution-testing equivalent to P2 ∈ PM,pc,

written P1 ∼MT,d P2, iff for all reactive tests T ∈ TR and sequences

θ ∈ (R>0)
∗ of amounts of time:

probd(SC|θ|(P1, T ), θ) = probd(SC|θ|(P2, T ), θ)

• For all P1, P2 ∈ PM,pc:

P1 ∼MT,d P2 ⇐⇒ P1 ∼MT P2



• ∼MT has another alternative characterization that fully abstracts from

comparing process term behavior in response to tests.

• Based on traces that are extended at each step with the set of visible

action names permitted by the environment at that step.

• An element ξ of (Namev × 2Namev )∗ is an extended trace iff either ξ is

the empty sequence ε or:

ξ ≡ (a1, E1) ◦ (a2, E2) ◦ . . . ◦ (an, En)

for some n ∈ N>0 with ai ∈ Ei and Ei finite for each i = 1, . . . , n.

• ET : set of extended traces.



• Trace associated with ξ ∈ ET :

traceet(ξ) =





ε if |ξ| = 0

a ◦ traceet(ξ
′) if ξ ≡ (a, E) ◦ ξ′

• c ∈ Cf(P ) is compatible with ξ ∈ ET iff:

trace(c) = traceet(ξ)

• CC(P, ξ): multiset of computations in Cf(P ) compatible with ξ.

• The probability and the duration of any computation of CC(P, ξ) have

to be calculated by considering only the action names permitted at each

step by ξ.



• Probability w.r.t. ξ of executing c ∈ CC(P, ξ):

probξ(c) =





1 if |c| = 0

λ
rateo(P,E∪{τ},0)

· probξ′(c
′) if c ≡ P

a,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

λ
rateo(P,E∪{τ},0)

· probξ(c
′) if c ≡ P

τ,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

λ
rateo(P,τ,0)

· probξ(c
′) if c ≡ P

τ,λ−−−→M c′ ∧ ξ ≡ ε

• Probability w.r.t. ξ of executing a computation in C ⊆ CC(P, ξ):

probξ(C) =
∑

c∈C

probξ(c)

assuming that C is finite and all of its computations are independent.



• Stepwise average duration w.r.t. ξ of c ∈ CC(P, ξ):

timea,ξ(c) =





ε if |c| = 0

1
rateo(P,E∪{τ},0)

◦ timea,ξ′(c
′) if c ≡ P

a,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

1
rateo(P,E∪{τ},0)

◦ timea,ξ(c
′) if c ≡ P

τ,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

1
rateo(P,τ,0)

◦ timea,ξ(c
′) if c ≡ P

τ,λ−−−→M c′ ∧ ξ ≡ ε

• Multiset of computations in C ⊆ CC(P, ξ) whose stepwise average

duration w.r.t. ξ is not greater than θ ∈ (R>0)
∗:

C≤θ,ξ = {| c ∈ C | |c| ≤ |θ| ∧ ∀i = 1, . . . , |c|. timea,ξ(c)[i] ≤ θ[i] |}

• Cl: multiset of computations in C ⊆ CC(P, ξ) having length l ∈ N.



• Consider CC|θ|≤θ,ξ(P, ξ) in order to ensure independence.

• P1 ∈ PM,pc is Markovian extended-trace equivalent to P2 ∈ PM,pc,

written P1 ∼MTr,e P2, iff for all extended traces ξ ∈ ET and sequences

θ ∈ (R>0)
∗ of average amounts of time:

probξ(CC|θ|≤θ,ξ(P1, ξ)) = probξ(CC|θ|≤θ,ξ(P2, ξ))

• For all P1, P2 ∈ PM,pc:

P1 ∼MTr,e P2 ⇐⇒ P1 ∼MT P2



• Extended traces identify a set of reactive tests necessary and sufficient in

order to establish whether two terms are Markovian testing equivalent.

• Each canonical reactive test admits a main computation leading to

success, whose intermediate states can have additional computations

each leading to failure in one step.

• Failure is represented through a visible action name z that can occur

within tests but not within process terms under test.

• Syntax of the set TR,c of canonical reactive tests (a ∈ E, E ⊆ Namev finite):

T ::= s | <a, ∗1>.T +
∑

b∈E−{a}
<b, ∗1>.<z, ∗1>.s

• P1 ∼MT P2 iff for all T ∈ TR,c and θ ∈ (R>0)
∗:

prob(SC|θ|≤θ(P1, T )) = prob(SC|θ|≤θ(P2, T ))



• Running example (∼MT):

¯ Concurrent implementation with two independent one-pos. buffers:

PCM
conc,2

∆
= ProdM ‖{deposit} (Buff M ‖∅ Buff M) ‖{withdraw} ConsM

ProdM ∆
= <deposit , λ>.ProdM

Buff M ∆
= <deposit , ∗1>.<withdraw , ∗1>.Buff M

ConsM ∆
= <withdraw , µ>.ConsM

¯ All the actions occurring in the buffer are passive, consistent with

the fact that the buffer is a passive entity.

¯ Is PCM
conc,2 a correct implementation of ProdConsM

0/2?

¯ It turns out that PCM
conc,2 ∼MT ProdConsM

0/2.

¯ Proved by exploiting the fully abstract alternative characterization.



¯ Here are the underlying labeled multitransition systems:

||{d} ||∅ ||{w} ||{d} ||∅ ||{w}

||{d} ||{w}

||{d} ||∅ ||{w}

||∅

µ
2

µ
2

2
λ

2
λ

M M MP B( B ) CM M M MP B( B ) CM

M M MP B( B ) CM

M M MP B( B ) CM

ProdCons1/2

ProdCons2/2

withdraw,λdeposit, µ

M

M

M

ProdCons0/2

withdraw,µ

withdraw,µwithdraw,µ

deposit,λdeposit,λ deposit,λwithdraw, withdraw,

deposit,deposit,

¯ The initial state on the left-hand side has both outgoing transitions

labeled with λ/2, not λ.

¯ The bottom state on the left-hand side has both outgoing transitions

labeled with µ/2, not µ.



¯ The only sequences of visible actions that the two systems are able

to perform are the prefixes of the strings complying with:

(deposit ◦ (deposit ◦ withdraw)∗ ◦ withdraw)∗

¯ The only significant extended traces to be considered are those whose

associated traces coincide with such prefixes.

¯ Their nonempty finite sets of visible actions permitted at the various

steps necessarily contain at least one between deposit and withdraw .

¯ Any two computations of ProdConsM
0/2 and PCM

conc,2 compatible

with such a ξ traverse states that pairwise enable sets of actions

with the same names and total rates.

¯ Therefore the stepwise average durations with respect to ξ of the

considered computations are identical.



¯ Four basic cases for the execution probabilities with respect to ξ of

CC(PCM
conc,2, ξ) and CC(ProdConsM

0/2, ξ):

∗ If ξ ≡ (deposit , E), then for both sets of computations the

execution probability is 1.

∗ If ξ ≡ (deposit , E1) ◦ (withdraw , E2), then for both sets of

computations the execution probability is 1 if E2 does not

contain deposit , µ
λ+µ

otherwise.

∗ If ξ ≡ (deposit , E1) ◦ (deposit , E2), then for both sets of

computations the execution probability is 1 if E2 does not

contain withdraw , λ
λ+µ

otherwise.

∗ If ξ ≡ (deposit , E1) ◦ (deposit , E2) ◦ (withdraw , E3), then for both

sets of computations the execution probability is 1 if E2 does not

contain withdraw , λ
λ+µ

otherwise.



• ∼MT is a congruence over PM,pc with respect to all the dynamic and

static operators as well as recursion.

• Let P1, P2 ∈ PM,pc. Whenever P1 ∼MT P2, then:

<a, λ>.P1 ∼MT <a, λ>.P2

P1 + P ∼MT P2 + P P + P1 ∼MT P + P2

P1 ‖S P ∼MT P2 ‖S P P ‖S P1 ∼MT P ‖S P2

P1 / H ∼MT P2 / H

P1 \L ∼MT P2 \L

P1[ϕ] ∼MT P2[ϕ]

provided that P ∈ PM,pc for the alternative composition operator and

P1 ‖S P, P2 ‖S P ∈ PM,pc for the parallel composition operator.



• Recursion: extend ∼MT to open process terms by replacing all variables

freely occurring outside rec binders with every closed process term.

• Let P1, P2 ∈ PLM be guarded process terms containing free occurrences

of k ∈ N process variables X1, . . . , Xk ∈ Var at most.

• We define P1 ∼MT P2 iff there exist Q1, . . . , Qk ∈ PM such that both

P1{Qi ↪→ Xi | 1 ≤ i ≤ k} and P2{Qi ↪→ Xi | 1 ≤ i ≤ k} belong to

PM,pc and for each such group of process terms Q1, . . . , Qk ∈ PM:

P1{Qi ↪→ Xi | 1 ≤ i ≤ k} ∼MT P2{Qi ↪→ Xi | 1 ≤ i ≤ k}

• Whenever P1 ∼MT P2, then:

rec X : P1 ∼MT rec X : P2



• ∼MT has a sound and complete axiomatization over the set PM,pc,nrec

of nonrecursive process terms of PM,pc.

• The axioms for ∼MB are sound but not complete for ∼MT (P 6∼MB Q):

MT~
~MB/1λ 2λ +1λ 2λ

+1λ 2λ
b,_____ µ1λ .

+1λ 2λ
b,_____ µλ2 .

a, a,

µ µb, b,

a,

P Q P Q

• Possibility of deferring choices related to branches starting with the same

action name (see the two a-branches on the left-hand side) that are

immediately followed by sets of actions having the same names and total

rates (see {<b, µ>} after each of the two a-branches).



• Basic laws (identical to those for ∼MB):

(XMT,1) P1 + P2 = P2 + P1

(XMT,2) (P1 + P2) + P3 = P1 + (P2 + P3)

(XMT,3) P + 0 = P

• Characterizing law (subsumes ∼MB axiom for race policy):

(XMT,4)
∑
i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j ,
λi

Σk∈I λk
· µi,j>.Pi,j

if: I is a finite index set with |I| ≥ 2;
for all i ∈ I, index set Ji is finite and its summation is 0 if Ji = ∅;
for all i1, i2 ∈ I and b ∈ Name:∑

j∈Ji1

{|µi1,j | bi1,j = b |} =
∑

j∈Ji2

{|µi2,j | bi2,j = b |}



• Expansion law (identical to that for ∼MB):

(XMT,5)
∑
i∈I

<ai, λ̃i>.Pi ‖S

∑
j∈J

<bj , µ̃j>.Qj =

∑
k∈I,ak /∈S

<ak, λ̃k>.

(
Pk ‖S

∑
j∈J

<bj , µ̃j>.Qj

)
+

∑
h∈J,bh /∈S

<bh, µ̃h>.

(
∑
i∈I

<ai, λ̃i>.Pi ‖S Qh

)
+

∑
k∈I,ak∈S,λ̃k∈R>0

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, λ̃k · wh
weight(Q,bh) >.(Pk ‖S Qh) +

∑
h∈J,bh∈S,µ̃h∈R>0

∑
k∈I,ak=bh,λ̃k=∗vk

<bh, µ̃h · vk
weight(P,ak) >.(Pk ‖S Qh) +

∑
k∈I,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, ∗norm(vk,wh,ak,P,Q)>.(Pk ‖S Qh)

(XMT,6)
∑
i∈I

<ai, λ̃i>.Pi ‖S 0 =
∑

k∈I,ak /∈S

<ak, λ̃k>.Pk

(XMT,7) 0 ‖S

∑
j∈J

<bj , µ̃j>.Qj =
∑

h∈J,bh /∈S

<bh, µ̃h>.Qh

(XMT,8) 0 ‖S 0 = 0



• Distribution laws (identical to those for ∼MB):

(XMT,9) 0 / H = 0

(XMT,10) (<a, λ̃>.P ) / H = <τ, λ̃>.(P / H) if a ∈ H

(XMT,11) (<a, λ̃>.P ) / H = <a, λ̃>.(P / H) if a /∈ H

(XMT,12) (P1 + P2) / H = P1 / H + P2 / H

(XMT,13) 0 \L = 0

(XMT,14) (<a, λ̃>.P ) \L = 0 if a ∈ L

(XMT,15) (<a, λ̃>.P ) \L = <a, λ̃>.(P \L) if a /∈ L

(XMT,16) (P1 + P2) \L = P1 \L + P2 \L

(XMT,17) 0[ϕ] = 0

(XMT,18) (<a, λ̃>.P )[ϕ] = <ϕ(a), λ̃>.(P [ϕ])

(XMT,19) (P1 + P2)[ϕ] = P1[ϕ] + P2[ϕ]



• DED(XMT): deduction system based on all the previous axioms plus:

¯ Reflexivity: XMT ` P = P .

¯ Symmetry: XMT ` P1 = P2 =⇒ XMT ` P2 = P1.

¯ Transitivity: XMT ` P1 = P2∧XMT ` P2 = P3 =⇒ XMT ` P1 = P3.

¯ Substitutivity: XMT ` P1 = P2 =⇒ XMT ` <a, λ>.P1 = <a, λ>.P2∧. . .

• The deduction system DED(XMT) is sound and complete for ∼MT

over PM,pc,nrec; i.e., for all P1, P2 ∈ PM,pc,nrec:

XMT ` P1 = P2 ⇐⇒ P1 ∼MT P2



• ∼MT has a modal logic characterization over PM,pc based on a variant

of the Hennessy-Milner logic.

• Negation is not included and conjunction is replaced by disjunction

(decreased discriminating power with respect to ∼MB).

• Syntax of the modal language MLMT (a ∈ Namev):

φ ::= true | φ′

φ′ ::= 〈a〉φ | φ′ ∨ φ′

where each formula of the form φ1∨φ2 satisfies the following constraint

(consistent with the name-deterministic nature of canonical reactive tests):

init(φ1) ∩ init(φ2) = ∅
with init(φ) being defined as follows:

init(true) = ∅ init(φ1 ∨ φ2) = init(φ1) ∪ init(φ2) init(〈a〉φ) = {a}



• No quantitative decorations in the syntax because the focus is on entire

computations rather than on step-by-step behavior mimicking, but . . .

• . . . replacement of the boolean satisfaction relation with a quantitative

interpretation function measuring the probability with which a process

term satisfies a formula quickly enough on average.

• Interpretation of MLMT over PM,pc:

[[φ]]
|θ|
MT(P, θ) =





0 if |θ| = 0 ∧ φ 6≡ true

or |θ| > 0 ∧ rateo(P, init(φ) ∪ {τ}, 0) = 0

1 if |θ| = 0 ∧ φ ≡ true



otherwise:

[[true]]
|t◦θ|
MT (P, t ◦ θ) =





∑

P
τ,λ
−−−→M P ′

λ
rateo(P,τ,0)

· [[true]]
|θ|
MT(P ′, θ) if 1

rateo(P,τ,0)
≤ t

0 if 1
rateo(P,τ,0)

> t

[[〈a〉φ]]
|t◦θ|
MT (P, t ◦ θ) =





∑

P
a,λ
−−−→M P ′

λ
rateo(P,{a,τ},0)

· [[φ]]
|θ|
MT(P ′, θ) +

∑

P
τ,λ
−−−→M P ′

λ
rateo(P,{a,τ},0)

· [[〈a〉φ]]
|θ|
MT(P ′, θ)

if 1
rateo(P,{a,τ},0)

≤ t

0 if 1
rateo(P,{a,τ},0)

> t



[[φ1 ∨ φ2]]
|t◦θ|
MT (P, t ◦ θ) = p1 · [[φ1]]

|t1◦θ|
MT (Pno-init-τ , t1 ◦ θ) +

p2 · [[φ2]]
|t2◦θ|
MT (Pno-init-τ , t2 ◦ θ) +

∑

P
τ,λ
−−−→M P ′

λ
rateo(P,init(φ1∨φ2)∪{τ},0)

· [[φ1 ∨ φ2]]
|θ|
MT(P ′, θ)

where:

¯ Pno-init-τ is P without computations starting with a τ -transition.

¯ For j ∈ {1, 2}:
pj =

rateo(P,init(φj),0)

rateo(P,init(φ1∨φ2)∪{τ},0)

tj = t + ( 1
rateo(P,init(φj),0)

− 1
rateo(P,init(φ1∨φ2)∪{τ},0)

)

with pj representing the conditional probability with which P performs actions whose name

is in init(φj) and tj representing the extra average time granted to P for satisfying φj .



• The constraint on disjunctions guarantees that their subformulas

exercise independent computations of P (correct probability calculation).

• In the absence of p1 and p2, the fact that φ1 ∨ φ2 offers a set of initial

actions at least as large as the ones offered by φ1 alone and by φ2 alone

may lead to an overestimate of the probability of satisfying φ1 ∨ φ2.

• Considering t instead of tj in the satisfaction of φj in isolation may lead

to an underestimate of the probability of satisfying φ1 ∨ φ2 within the

given time upper bound, as P may satisfy φ1 ∨ φ2 within t ◦ θ even if

P satisfies neither φ1 nor φ2 taken in isolation within t ◦ θ.

• For all P1, P2 ∈ PM,pc:

P1 ∼MT P2 ⇐⇒ ∀φ ∈MLMT. ∀θ ∈ (R>0)
∗. [[φ]]

|θ|
MT(P1, θ) = [[φ]]

|θ|
MT(P2, θ)



• ∼MT is decidable in polynomial time over the set PM,pc,fin of finite-state

process terms of PM,pc.

• The reason is that:

¯ ∼MT coincides with the Markovian version of ready equivalence.

¯ Probabilistic ready equivalence can be decided in polynomial time

through a suitable reworking of Tzeng algorithm for probabilistic

language equivalence.

• Given two process terms, their name-labeled CTMCs are Markovian

ready equivalent iff the corresponding embedded name-labeled DTMCs

are probabilistic ready equivalent.

• Markovian ready equivalence and probabilistic ready equivalence

coincide on corresponding models if the total exit rate of each state

of a name-labeled CTMC is encoded inside the names of all transitions

departing from that state in the associated embedded DTMC.



• Steps of the algorithm for checking whether P1 ∼MT P2:

1. Transform [[P1]]M and [[P2]]M into their corresponding embedded

discrete-time versions:

a. Divide the rate of each transition by the total exit rate of its

source state.

b. Augment the name of each transition with the total exit rate of

its source state.

2. Compute the relation R that equates any two states of the discrete-

time versions of [[P1]]M and [[P2]]M whenever the two sets of

augmented action names labeling the transitions departing from the

two states coincide.

3. For each equivalence class R induced by R, consider R as the set

of accepting states and check whether the discrete-time versions of

[[P1]]M and [[P2]]M are probabilistic language equivalent.

4. Return yes/no depending on whether all the checks performed in

the previous step have been successful or not.



• Tzeng algorithm for probabilistic language equivalence visits in breadth-

first order the tree containing a node for each possible string and studies

the linear independence of the state probability vectors associated with

a finite subset of the tree nodes.

• Refinement of each iteration of step 3:

1. Create an empty set V of state probability vectors.

2. Create a queue whose only element is the empty string ε.

3. While the queue is not empty:

a. Remove the first element from the queue, say string ς.

b. If the state probability vector of the discrete-time versions of

[[P1]]M and [[P2]]M after reading ς does not belong to the vector

space generated by V , then:

i. For each a ∈ NameRealP1,P2 , add ς ◦ a to the queue.

ii. Add the state probability vector to V .



4. Build a three-valued state vector u whose generic element is:

a. 0 if it corresponds to a nonaccepting state.

b. 1 if it corresponds to an accepting state of [[P1]]M.

c. −1 if it corresponds to an accepting state of [[P2]]M.

5. For each v ∈ V , check whether v · uT = 0.

6. Return yes/no depending on whether all the checks performed in

the previous step have been successful or not.

• The time complexity of the overall algorithm is O(n5).



• ∼MT induces an exact aggregation called T-lumping.

• T-lumping is strictly coarser than ordinary lumping and graphically

definable as follows (name-abstracting axiom schema characterizing ∼MT):

λ1

|  |I

|  |Iλ

µ |  |,1Iµ1,1 |  |II J|  |, |      |
|  |Iλ

Σ λkk

λ1
Σ λkk

___ . µ1,1 |  |II J|  |, |      |

0s

1s s

µ1, J|   |1
µ

i,js

s’

s’’

Σ λkk

___ . µ

i,js

where for all i1, i2 ∈ I: ∑
j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

• Exact aggregation not previously known in the CTMC field, but entirely

characterizable in a process algebraic framework like ordinary lumping.

• Two Markovian testing equivalent process terms in PM,pc are

guaranteed to possess the same performance characteristics.



Markovian Trace Equivalence

• Two process terms are equivalent if they can perform computations with

the same functional and performance characteristics.

• Test passing replaced by trace acceptance (linear, unconstrained environment).

• Was the trace accepted?

If so, with which probability?

And how long did it take to accept the trace?

• Comparison of process term probabilities of performing trace-compatible

computations within arbitrary time upper bounds.

• Branching points in process term behavior are all overridden.



• Comparing probabilities of accepting a trace within a time upper bound.

• c ∈ Cf(P ) is compatible with α ∈ (Namev)
∗ iff:

trace(c) = α

• CC(P, α): multiset of computations in Cf(P ) compatible with α.

• If P has no exponentially timed τ -actions:

¯ All the computations in CC(P, α) are independent.

¯ The multiset CC(P, α) is finite.

• Same properties for CC≤θ(P, α).

• If there are exponentially timed τ -actions:

¯ Are the computations in CC≤θ(P, α) independent of each other?

¯ How to distinguish among process terms having only exponentially

timed τ -actions, like <τ, λ>.0 and <τ, µ>.0 with λ > µ?



• Consider subsets of CC≤θ(P, α) including all the trace-compatible

computations of the same length.

• They are CCl
≤θ(P, α) for 0 ≤ l ≤ |θ|.

• CC|θ|≤θ(P, α) is enough as shorter trace-compatible computations can be

taken into account when imposing prefixes of θ as time upper bounds.

• Process terms having only exponentially timed τ -actions are compared

after giving them the possibility of executing the same number of

τ -actions (λ > µ ⇒ 1
λ

< 1
µ

):

prob(CC1
≤ 1

λ
(<τ, λ>.0, ε)) = 1 6= 0 = prob(CC1

≤ 1
λ
(<τ, µ>.0, ε))

• P1 ∈ PM,pc is Markovian trace equivalent to P2 ∈ PM,pc, written

P1 ∼MTr P2, iff for all traces α ∈ (Namev)
∗ and sequences θ ∈ (R>0)

∗

of average amounts of time:

prob(CC|θ|≤θ(P1, α)) = prob(CC|θ|≤θ(P2, α))



• Running example (∼MTr):

¯ Concurrent implementation with two independent one-pos. buffers:

PCM
conc,2

∆
= ProdM ‖{deposit} (Buff M ‖∅ Buff M) ‖{withdraw} ConsM

ProdM ∆
= <deposit , λ>.ProdM

Buff M ∆
= <deposit , ∗1>.<withdraw , ∗1>.Buff M

ConsM ∆
= <withdraw , µ>.ConsM

¯ All the actions occurring in the buffer are passive, consistent with

the fact that the buffer is a passive entity.

¯ Is PCM
conc,2 a correct implementation of ProdConsM

0/2?

¯ It turns out that PCM
conc,2 ∼MTr ProdConsM

0/2.



¯ Here are the underlying labeled multitransition systems:

||{d} ||∅ ||{w} ||{d} ||∅ ||{w}

||{d} ||{w}

||{d} ||∅ ||{w}

||∅

µ
2

µ
2

2
λ

2
λ

M M MP B( B ) CM M M MP B( B ) CM

M M MP B( B ) CM

M M MP B( B ) CM

ProdCons1/2

ProdCons2/2

withdraw,λdeposit, µ

M

M

M

ProdCons0/2

withdraw,µ

withdraw,µwithdraw,µ

deposit,λdeposit,λ deposit,λwithdraw, withdraw,

deposit,deposit,

¯ The initial state on the left-hand side has both outgoing transitions

labeled with λ/2, not λ.

¯ The bottom state on the left-hand side has both outgoing transitions

labeled with µ/2, not µ.



¯ The only sequences of visible actions that the two systems are able

to perform are the prefixes of the strings complying with:

(deposit ◦ (deposit ◦ withdraw)∗ ◦ withdraw)∗

¯ The only significant traces to be considered are those coinciding with

such prefixes.

¯ Any two computations of ProdConsM
0/2 and PCM

conc,2 compatible

with such an α traverse states that pairwise have the same

average sojourn time.

¯ Therefore the stepwise average durations of the considered

computations are identical.



¯ Four basic cases for the execution probabilities of CC(PCM
conc,2, α)

and CC(ProdConsM
0/2, α):

∗ If α ≡ deposit , then for both sets of computations the execution

probability is 1.

∗ If α ≡ deposit ◦ withdraw , then for both sets of computations the

execution probability is µ
λ+µ

.

∗ If α ≡ deposit ◦ deposit , then for both sets of computations the

execution probability is λ
λ+µ

.

∗ If α ≡ deposit ◦ deposit ◦ withdraw , then for both sets of

computations the execution probability is λ
λ+µ

.



• In order for P1 ∼MTr P2, it is necessary that for all ck ∈ Cf(Pk),

k ∈ {1, 2}, there exists ch ∈ Cf(Ph), h ∈ {1, 2} − {k}, such that:

tracec(ck) = tracec(ch)

timea(ck) = timea(ch)

and for all i ∈ {0, . . . , |ck|}:
ratet(P

i
k, 0) = ratet(P

i
h, 0)

with P i
k (resp. P i

h) being the i-th state traversed by ck (resp. ch).

• Process terms satisfying the necessary condition that are not Markovian

trace equivalent (λ1 + λ2 = λ′1 + λ′2 with λ1 6= λ′1, λ2 6= λ′2 and b 6= c or µ 6= γ):

<a, λ1>.<b, µ>.0 + <a, λ2>.<c, γ>.0

<a, λ′1>.<b, µ>.0 + <a, λ′2>.<c, γ>.0



• ∼MTr has an alternative characterization showing that its discriminating

power does not change if we consider the probability distribution of

accepting traces within arbitrary sequences of amounts of time.

• Considering the (more accurate) stepwise durations of trace-compatible

computations leads to the same equivalence as considering the (easier

to work with) stepwise average durations.

• P1 ∈ PM,pc is Markovian distribution-trace equivalent to P2 ∈ PM,pc,

written P1 ∼MTr,d P2, iff for all traces α ∈ (Namev)
∗ and sequences

θ ∈ (R>0)
∗ of amounts of time:

probd(CC|θ|(P1, α), θ) = probd(CC|θ|(P2, α), θ)

• For all P1, P2 ∈ PM,pc:

P1 ∼MTr,d P2 ⇐⇒ P1 ∼MTr P2



• ∼MTr is a congruence over PM,pc w.r.t. all the dynamic operators.

• Let P1, P2 ∈ PM,pc. Whenever P1 ∼MTr P2, then:

<a, λ>.P1 ∼MTr <a, λ>.P2

P1 + P ∼MTr P2 + P P + P1 ∼MTr P + P2

• Not a congruence with respect to parallel composition.

• For instance, the Markovian trace equivalent process terms (b 6= c):

<a, λ1>.<b, µ>.0 + <a, λ2>.<c, µ>.0

<a, λ1 + λ2>.(<b, λ1
λ1+λ2

· µ>.0 + <c, λ2
λ1+λ2

· µ>.0)

are distinguished in the following context:

‖{a,b,c} <a, ∗1>.<b, ∗1>.0

by the following trace:

α ≡ a ◦ b



• ∼MTr has a sound and complete axiomatization over the set PM,pc,dyn

of process terms of PM,pc comprising only dynamic operators.

• The axioms for ∼MT are sound but not complete for ∼MTr (b 6= c):

1λ 2λ

~
~/ MT

MTr

+1λ 2λ

+1λ 2λ +1λ 2λ

a, a,

µ µb, c,

a,

b,_____ µ1λ . _____ µλ2 .c,

P Q P Q

• Possibility of deferring choices related to branches starting with actions

having the same name (a) that are immediately followed by process terms

having the same total exit rate (µ).

• Names and total rates of the initial actions of such derivative terms can

be different in the various branches.



• Basic laws (identical to those for ∼MT):

(XMTr,1) P1 + P2 = P2 + P1

(XMTr,2) (P1 + P2) + P3 = P1 + (P2 + P3)

(XMTr,3) P + 0 = P

• Characterizing law (subsumes ∼MT characterizing law):

(XMTr,4)
∑
i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j ,
λi

Σk∈I λk
· µi,j>.Pi,j

if: I is a finite index set with |I| ≥ 2;
for all i ∈ I, index set Ji is finite and its summation is 0 if Ji = ∅;
for all i1, i2 ∈ I: ∑

j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j



• DED(XMTr): deduction system based on all the previous axioms plus:

¯ Reflexivity: XMTr ` P = P .

¯ Symmetry: XMTr ` P1 = P2 =⇒ XMTr ` P2 = P1.

¯ Transitivity: XMTr ` P1 = P2 ∧ XMTr ` P2 = P3 =⇒ XMTr ` P1 = P3.

¯ Substitutivity: XMTr ` P1 = P2 =⇒ XMTr ` <a, λ>.P1 = <a, λ>.P2 ∧ . . .

• The deduction system DED(XMTr) is sound and complete for ∼MTr

over PM,pc,dyn; i.e., for all P1, P2 ∈ PM,pc,dyn:

XMTr ` P1 = P2 ⇐⇒ P1 ∼MTr P2



• ∼MTr has a modal logic characterization over PM,pc based on a variant

of the Hennessy-Milner logic.

• Neither negation nor any binary connective is included, only diamond

(decreased discriminating power with respect to ∼MT).

• Syntax of the modal language MLMTr (a ∈ Namev):

φ ::= true | 〈a〉φ

• No quantitative decorations in the syntax because the focus is on entire

computations rather than on step-by-step behavior mimicking, but . . .

• . . . replacement of the boolean satisfaction relation with a quantitative

interpretation function measuring the probability with which a process

term satisfies a formula quickly enough on average.



• Interpretation of MLMTr over PM,pc:

[[φ]]
|θ|
MTr(P, θ) =





0 if |θ| = 0 ∧ φ 6≡ true

or |θ| > 0 ∧ ratet(P, 0) = 0

1 if |θ| = 0 ∧ φ ≡ true

otherwise:

[[true]]
|t◦θ|
MTr (P, t ◦ θ) =





∑

P
τ,λ
−−−→M P ′

λ
ratet(P,0)

· [[true]]
|θ|
MTr(P

′, θ) if 1
ratet(P,0)

≤ t

0 if 1
ratet(P,0)

> t



[[〈a〉φ]]
|t◦θ|
MTr (P, t ◦ θ) =





∑

P
a,λ
−−−→M P ′

λ
ratet(P,0)

· [[φ]]
|θ|
MTr(P

′, θ) +

∑

P
τ,λ
−−−→M P ′

λ
ratet(P,0)

· [[〈a〉φ]]
|θ|
MTr(P

′, θ)

if 1
ratet(P,0)

≤ t

0 if 1
ratet(P,0)

> t

• For all P1, P2 ∈ PM,pc:

P1 ∼MTr P2 ⇐⇒ ∀φ ∈MLMTr. ∀θ ∈ (R>0)
∗. [[φ]]

|θ|
MTr(P1, θ) = [[φ]]

|θ|
MTr(P2, θ)



• ∼MTr is decidable in polynomial time over the set PM,pc,fin of finite-state

process terms of PM,pc.

• Reworking of Tzeng algorithm for probabilistic language equivalence.

• Given two process terms, their name-labeled CTMCs are Markovian

trace equivalent iff the corresponding embedded name-labeled DTMCs

are probabilistic trace equivalent.

• Probabilistic trace equivalence is decidable in polynomial time through

the algorithm for probabilistic language equivalence.

• Markovian trace equivalence and probabilistic trace equivalence coincide

on corresponding models if the total exit rate of each state of a name-

labeled CTMC is encoded inside the names of all transitions departing

from that state in the associated embedded DTMC.



• Steps of the algorithm for checking whether P1 ∼MTr P2:

1. Transform [[P1]]M and [[P2]]M into their corresponding embedded

discrete-time versions:

a. Divide the rate of each transition by the total exit rate of its

source state.

b. Augment the name of each transition with the total exit rate of

its source state.

2. Check whether the discrete-time versions of [[P1]]M and [[P2]]M are

probabilistic language equivalent when all of their states are

considered as accepting states.

3. Return yes/no depending on whether the check performed in the

previous step has been successful or not.



• Tzeng algorithm for probabilistic language equivalence visits in breadth-

first order the tree containing a node for each possible string and studies

the linear independence of the state probability vectors associated with

a finite subset of the tree nodes.

• Refinement of step 2:

1. Create an empty set V of state probability vectors.

2. Create a queue whose only element is the empty string ε.

3. While the queue is not empty:

a. Remove the first element from the queue, say string ς.

b. If the state probability vector of the discrete-time versions of

[[P1]]M and [[P2]]M after reading ς does not belong to the vector

space generated by V , then:

i. For each a ∈ NameRealP1,P2 , add ς ◦ a to the queue.

ii. Add the state probability vector to V .



4. Build a three-valued state vector u whose generic element is:

a. 0 if it corresponds to a nonaccepting state.

b. 1 if it corresponds to an accepting state of [[P1]]M.

c. −1 if it corresponds to an accepting state of [[P2]]M.

5. For each v ∈ V , check whether v · uT = 0.

6. Return yes/no depending on whether all the checks performed in

the previous step have been successful or not.

• The time complexity of the overall algorithm is O(n4).



• ∼MTr induces an exact aggregation called T-lumping.

• T-lumping is strictly coarser than ordinary lumping and graphically

definable as follows (name-abstracting axiom schema characterizing ∼MTr):

λ1

|  |I

|  |Iλ

µ |  |,1Iµ1,1 |  |II J|  |, |      |
|  |Iλ

Σ λkk

λ1
Σ λkk

___ . µ1,1 |  |II J|  |, |      |

0s

1s s

µ1, J|   |1
µ

i,js

s’

s’’

Σ λkk

___ . µ

i,js

where for all i1, i2 ∈ I: ∑
j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

• Exact aggregation not previously known in the CTMC field, but entirely

characterizable in a process algebraic framework like ordinary lumping.

• Two Markovian trace equivalent process terms in PM,pc are guaranteed

to possess the same performance characteristics.



Summary of Known Results

• Comparing Markovian behavioral equivalences based on given criteria:

congruence sound & complete modal logic verification exact

property axiomatization characteriz. complexity aggreg.

∼MB
√ √ √

O(m · log n)
√

∼MT
√ √ √

O(n5)
√

∼MTr dynamic dynamic
√

O(n4)
√

• Not only intuitively appropriate from the functional viewpoint,

but also meaningful and useful from the performance standpoint.

• Aggregating the state space of a model by exploiting symmetries

or reducing the state space of a model before analysis takes place

without altering the performance properties to be assessed.



Part IV:
What Remains To Do?



Open Problems

• Markovian behavioral equivalence inducing the coarsest exact nontrivial

CTMC-level aggregation?

• Minimization algorithms for ∼MT and ∼MTr (and T-lumping)?

• Uniform definitions for nondeterministic, probabilistic, and Markovian

processes? [Bernardo - De Nicola - Loreti, 2010]

• Approximated versions of ∼MB, ∼MT, and ∼MTr that relax the

comparison on exit rates or execution probabilities? [Aldini, 2010]

• Weaker versions of ∼MB, ∼MT, and ∼MTr that abstract from internal

exponentially timed actions while preserving nontrivial exactness?



Abstracting from Internal Actions

• When comparing nondeterministic processes, internal actions can be

abstracted away via weak behavioral equivalences : a . τ . b . 0 ≈ a . b . 0.

• Abstraction not always possible when comparing Markovian processes.

• Immediate internal actions: invisible and take no time [Her,Ret,MT,AB].

• An exponentially timed internal action is invisible but takes time.

• <a, λ>.<τ, γ>.<b, µ>.0 is not equivalent to <a, λ>.<b, µ>.0 because

a nonzero delay can be observed between a and b in the first case.

• However <a, λ>.<τ, γ1>.<τ, γ2>.<b, µ>.0 ≈ <a, λ>.<τ, γ>.<b, µ>.0

if the average duration of the sequence of the two τ -actions on the left is

equal to the average duration of the τ -action on the right: 1
γ1

+ 1
γ2

= 1
γ

or equivalently γ = γ1·γ2
γ1+γ2

.



• To what extent can we abstract from exp. timed internal actions?

Only from sequences (of at least two) or also from branches?

• How to define a Markovian behavioral equivalence abstracting from

sequences/branches of exponentially timed internal actions?

• Will it be a congruence with respect to typical operators?

• Will it have a sound and complete axiomatization?

• Will it induce an exact CTMC-level aggregation?

• Any tradeoff among these properties?

• Conduct the study in a process algebraic framework.



Definition of Weak Markovian Bisimilarity

• Basic idea: weaken the distinguishing power of ∼MB by viewing every

sequence of exponentially timed τ -actions as a single exponentially timed

τ -action with the same average duration as the sequence.

• PM,s: set of stable process terms, which can perform no exponentially

timed τ -action.

• PM,u: set of unstable process terms, which can perform at least one

exponentially timed τ -action.

• PM,fu: set of fully unstable process terms, which can perform only

exponentially timed τ -actions (most natural candidates for abstraction).

• A computation c having the form P1

τ,λ1−−−→M P2

τ,λ2−−−→M . . .
τ,λn−−−→M Pn+1

is reducible iff Pi ∈ PM,fu for all i = 1, . . . , n.



• Length-abstracting measure of a reducible computation c:

probtime(c) =

(
n∏

i=1

λi
rate(Pi,τ,PM)

)
·
(

n∑
i=1

1
rate(Pi,τ,PM))

)

• The first factor is the product of the execution probabilities of the

transitions of c.

• The second factor is the sum of the average sojourn times of the states

traversed by c.

• Finite-length reducible computations are enough to distinguish between

fully unstable process terms that must be told apart (λ1 6= λ2 and a ∈ Namev):

<τ, λ1>.<a, λ>.P vs. <τ, λ2>.<a, λ>.P

rec X : <τ, λ1>.X vs. rec X : <τ, λ2>.X



• The weak variant of ∼MB should work like ∼MB over PM,nfu and

abstract from the length of reducible computations while preserving

their execution probability and average duration over PM,fu.

• Need to lift measure probtime from a single reducible computation to a

multiset of reducible computations with the same origin and destination:

pbtm(P, D) = {| ∑
c∈redcomp(P,D,t)

probtime(c) | t ∈ R>0 |}

where redcomp(P, D, t) is the multiset of reducible computations from

P ∈ PM to D ⊆ PM whose average duration is t ∈ R>0.

• Measures must be summed up (otherwise <τ, λ1>.0 + <τ, λ2>.0 not equivalent to

<τ, λ1 + λ2>.0) only in case of equal average durations.



• An equivalence relation B over PM is a weak Markovian bisimulation iff,

whenever (P1, P2) ∈ B, then for all equivalence classes D ∈ PM/B:

– If P1, P2 ∈ PM,nfu, for all action names a ∈ Name:

rate(P1, a, D) = rate(P2, a, D)

– If P1, P2 ∈ PM,fu, when D ⊆ PM,nfu:

pbtm(P1, D) = pbtm(P2, D)

• Weak Markovian bisimilarity, denoted ≈MB, is the union of all the weak

Markovian bisimulations.



• Example 1 – Consider the two process terms:

P̄1 ≡ <τ, µ>.<τ, γ>.Q (≡ <τ, γ>.<τ, µ>.Q)

P̄2 ≡ <τ, µ·γ
µ+γ

>.Q

with Q ∈ PM,nfu.

• Then P̄1 ≈MB P̄2 because:

pbtm(P̄1, [Q]≈MB) = {| (1 · 1) · ( 1
µ

+ 1
γ
) |} =

= {| 1 · µ+γ
µ·γ |} = pbtm(P̄2, [Q]≈MB)

• In general, for l ∈ N>0 we have:

<τ, µ>.<τ, γ1>. ... .<τ, γl>.Q ≈MB <τ,
(

1
µ

+ 1
γ1

+ ... + 1
γl

)−1

>.Q



• Example 2 – Consider the two process terms:

P̄3 ≡ <τ, µ>.(<τ, γ1>.Q1 + <τ, γ2>.Q2)

P̄4 ≡ <τ, γ1
γ1+γ2

·
(

1
µ

+ 1
γ1+γ2

)−1
>.Q1 + <τ, γ2

γ1+γ2
·
(

1
µ

+ 1
γ1+γ2

)−1
>.Q2

with Q1, Q2 ∈ PM,nfu and Q1 6≈MB Q2.

• Then P̄3 ≈MB P̄4 because:

pbtm(P̄3, [Q1]≈MB) = {| γ1
γ1+γ2

·
(

1
µ

+ 1
γ1+γ2

)
|} = pbtm(P̄4, [Q1]≈MB)

pbtm(P̄3, [Q2]≈MB) = {| γ2
γ1+γ2

·
(

1
µ

+ 1
γ1+γ2

)
|} = pbtm(P̄4, [Q2]≈MB)

• In general, for n ∈ N>0 we have:

<τ, µ>.(<τ, γ1>.Q1 + ... + <τ, γn>.Qn) ≈MB <τ,
γ1

γ1+...+γn
·
(

1
µ + 1

γ1+...+γn

)−1
>.Q1 +

... +

<τ, γn
γ1+...+γn

·
(

1
µ + 1

γ1+...+γn

)−1
>.Qn



• Example 3 – Consider the two process terms:

P̄5 ≡ <τ, µ1>.<τ, γ>.Q1 + <τ, µ2>.<τ, γ>.Q2

P̄6 ≡ <τ, µ1
µ1+µ2

·
(

1
µ1+µ2

+ 1
γ

)−1
>.Q1 + <τ, µ2

µ1+µ2
·
(

1
µ1+µ2

+ 1
γ

)−1
>.Q2

with Q1, Q2 ∈ PM,nfu and Q1 6≈MB Q2.

• Then P̄5 ≈MB P̄6 because:

pbtm(P̄5, [Q1]≈MB) = {| µ1
µ1+µ2

·
(

1
µ1+µ2

+ 1
γ

)
|} = pbtm(P̄6, [Q1]≈MB)

pbtm(P̄5, [Q2]≈MB) = {| µ2
µ1+µ2

·
(

1
µ1+µ2

+ 1
γ

)
|} = pbtm(P̄6, [Q2]≈MB)

• In general, for n ∈ N>0 we have:

<τ, µ1>.<τ, γ>.Q1 + ... + <τ, µn>.<τ, γ>.Qn ≈MB <τ,
µ1

µ1+...+µn
·
(

1
µ1+...+µn

+ 1
γ

)−1
>.Q1 +

... +

<τ, µn
µ1+...+µn

·
(

1
µ1+...+µn

+ 1
γ

)−1
>.Qn



• Example 4 – None of the variants of P̄5 related to actions <τ, γ> leads

to a reduction.

• If we consider:
P̄7 ≡ <τ, µ1>.<τ, γ1>.Q1 + <τ, µ2>.<τ, γ2>.Q2

P̄8 ≡ <τ,
µ1

µ1+µ2
·
(

1
µ1+µ2

+ 1
γ1

)−1
>.Q1 + <τ,

µ2
µ1+µ2

·
(

1
µ1+µ2

+ 1
γ2

)−1
>.Q2

with γ1 6= γ2, then P̄7 6≈MB P̄8.

• If we consider:

P̄9 ≡ <τ, µ1>.<τ, γ>.Q1 + <τ, µ2>.Q2

P̄10 ≡ <τ, µ1
µ1+µ2

·
(

1
µ1+µ2

+ 1
γ

)−1

>.Q1 + <τ, µ2>.Q2

then P̄9 6≈MB P̄10.



• Let:

– I 6= ∅ be a finite index set.

– Ji 6= ∅ be a finite index set for all i ∈ I.

– Pi,j ∈ PM for all i ∈ I and j ∈ Ji.

Whenever
∑

j∈J1
γi1,j =

∑
j∈J2

γi2,j for all i1, i2 ∈ I, then:
∑
i∈I

<τ, µi>.
∑

j∈Ji

<τ, γi,j>.Pi,j ≈MB

∑
i∈I

∑
j∈Ji

<τ, µi∑
k∈I

µk
· γi,j∑

h∈Ji

γi,h
·
(

1∑
k∈I

µk
+ 1∑

h∈Ji

γi,h

)−1

>.Pi,j



Congruence Property

• ≈MB is a congruence with respect to action prefix and hiding.

• Let P1, P2 ∈ PM. Whenever P1 ≈MB P2, then:

– <a, λ>.P1 ≈MB <a, λ>.P2 for all <a, λ> ∈ ActM.

– P1/H ≈MB P2/H for all H ⊆ Namev.

• Not a congruence with respect to alternative and parallel composition

due to fully unstable process terms:

<τ, µ>.<τ, γ>.0 ≈MB <τ, µ·γ
µ+γ

>.0

but:

<τ, µ>.<τ, γ>.0 + <a, λ>.0 6≈MB <τ, µ·γ
µ+γ

>.0 + <a, λ>.0

<τ, µ>.<τ, γ>.0 ‖∅ <a, λ>.0 6≈MB <τ, µ·γ
µ+γ

>.0 ‖∅<a, λ>.0

both for a 6= τ and for a = τ .



• In order to avoid congruence violations for alternative composition,

apply the exit rate equality check also to fully unstable process terms

(but consider the equivalence classes with respect to ≈MB).

• We say that P1 is weakly Markovian bisimulation congruent to P2,

written P1 'MB P2, iff for all action names a ∈ Name and

equivalence classes D ∈ PM/≈MB:

rate(P1, a, D) = rate(P2, a, D)

• ∼MB⊂'MB⊂≈MB, with 'MB and ≈MB coinciding over PM,nfu.

• <a, λ>.P1 'MB <a, λ>.P2 iff P1 ≈MB P2.



• Let P1, P2 ∈ PM. Whenever P1 'MB P2, then:

– <a, λ>.P1 'MB <a, λ>.P2 for all <a, λ> ∈ ActM.

– P1 + P 'MB P2 + P and P + P1 'MB P + P2 for all P ∈ PM.

– P1/H 'MB P2/H for all H ⊆ Namev.

• 'MB is the coarsest congruence contained in ≈MB over the set PM,seq of

process terms of PM that do not contain any occurrence of the parallel

composition operator.

• Let P1, P2 ∈ PM,seq. Then P1 'MB P2 iff P1 + P ≈MB P2 + P for all

P ∈ PM,seq.



Sound and Complete Axiomatization

• 'MB has a sound and complete axiomatization over the set PM,seq,nrec

of nonrecursive process terms of PM,seq.

• Set of basic axioms (the first four coincide with those of ∼MB):

(XMB,1) P1 + P2 = P2 + P1

(XMB,2) (P1 + P2) + P3 = P1 + (P2 + P3)

(XMB,3) P + 0 = P

(XMB,4) <a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P

(XMB,5) <a, λ>.
∑
i∈I

<τ, µi>.
∑

j∈Ji

<τ, γi,j>.Pi,j =

<a, λ>.
∑
i∈I

∑
j∈Ji

<τ,
µi
µ · γi,j

γ ·
(

1
µ + 1

γ

)−1
>.Pi,j

if: I 6= ∅ is a finite index set

Ji 6= ∅ is a finite index set for all i ∈ I

µ =
∑
i∈I

µi

γ =
∑

j∈Ji

γi,j for all i ∈ I



• For proving completeness, we cannot resort to normal form saturation

as this would alter the quantitative behavior.

• Let P1, P2 ∈ PM,seq,nrec. If P1 ≈MB P2 but P1 6'MB P2, then at least

one between P1 and P2 (both of which must be fully unstable) is of the form:∑
i∈I

<τ, µi>.
∑

j∈Ji

<τ, γi,j>.Pi,j

where I 6= ∅ is a finite index set, Ji 6= ∅ is a finite index set for all i ∈ I,

and one of the following two properties holds:

–
∑

j∈Ji1

<τ, γi1,j>.Pi1,j ≈MB

∑
j∈Ji2

<τ, γi2,j>.Pi2,j for all i1, i2 ∈ I.

–
∑

j∈Ji1

γi1,j =
∑

j∈Ji2

γi2,j for all i1, i2 ∈ I.

• Let P1, P2 ∈ PM,seq,nrec. Then XMB,1..5 ` P1 = P2 ⇐⇒ P1 'MB P2.



Exactness of CTMC-Level Aggregation

• ≈MB and 'MB allow every sequence of exponentially timed τ -actions to

be considered equivalent to a single exponentially timed τ -action having

the same average duration.

• This amounts to approximating a hypoexponentially or Erlang

distributed random variable with an exponentially distributed random

variable having the same expected value.

• This can be exploited to assess more quickly properties expressed in

terms of the mean time to certain events.

• Is there any other performance property that is preserved?



• Since ∼MB is consistent with ordinary lumpability and the only new

axiom is XMB,5, we can concentrate on this axiom.

• The induced CTMC-level aggregation, called W-lumpability, eliminates

|I| states and |I| transitions by merging the first 1 + |I| states into a

single one:

|  |I

|  |Iµ

1,1γ 1, J|   |1
γ I|  |,1γ

1µ

γ I J|  |, |      ||  |I
.1µ

µ
. +

µ γ

-1
1, J|   |1

γ
γ

1 1

. 1,1γ

γ
.1µ

µ
+

µ γ

-1
1 1 µ|  |I .

µ
γ I J|  |, |      ||  |I

γ
. +

µ γ
-11 1

. +
µ γ

-1
I|  |,1γµ|  |I .

µ γ
1 1

0s

1s s

i,js

s’

i,js

0



• W-lumpability is exact at steady state, i.e., the stationary probability

of being in a macrostate of a CTMC obtained via W-lumpability is the

sum of the stationary probabilities of being in one of the constituent

microstates of the CTMC from which the reduced one has been derived.

• Unlike ordinary lumpability and T-lumpability, properties expressed in

terms of transient state probabilities may not be preserved.

• Reconsider P̄1 ≡ <τ, µ>.<τ, γ>.Q and P̄2 ≡ <τ, µ·γ
µ+γ

>.Q.

• The probability of being in the first state of [[P̄2]]M at time t ∈ R>0

is 1− (1− e
− µ·γ

µ+γ
·t
) = e

− µ·γ
µ+γ

·t
, which reduces to e−

µ
2 ·t when µ = γ.

• The sum of the probabilities of being in one of the first two states of

[[P̄1]]M at the same time instant is γ
γ−µ

· e−µ·t − µ
γ−µ

· e−γ·t for µ 6= γ

or (1 + µ · t) · e−µ·t for µ = γ.



Generalization to Concurrent Processes

• Not being a congruence with respect to parallel composition significantly

reduces the usefulness of 'MB for compositional state space reduction.

• It is possible to modify the definition of the equivalence so that it

becomes a congruence with respect to parallel composition . . .

• . . . but exactness will hold at steady state only for a certain class of

processes.

• Revise the notion of reducible computation by admitting the traversal

of unstable states (that are not fully unstable) satisfying certain conditions.

• Local computations may traverse fully unstable local states that are

part of global states that are not fully unstable.



• The following two process terms:

<τ, µ>.<τ, γ>.0 ‖∅ <a, λ>.0

<τ, µ·γ
µ+γ

>.0 ‖∅ <a, λ>.0

should be considered equivalent and should give rise to the following

CTMC-level aggregation:

a,λ a,λ

µτ,

µτ,

τ γ,

τ γ,

a,λ a,λ a,λ

τ, .γµ /(µ+γ )

τ, .γµ /(µ+γ )

• Trees of sequences of exponentially timed τ -actions may be replicated.

• Take into account at once all the corresponding trees of computations

and pinpoint their initial and final states.



• Let P ∈ PM, m, n ∈ N>0, and P1, P2, . . . , Pm ∈ PM reachable from P

and different from each other.

• Let C1, C2, . . . , Cm be m sets each containing n distinct finite-length

computations all starting from P1, P2, . . . , Pm, respectively, with:

– Each computation traversing different states except at most the last

state and one of the preceding states.

– Computations in different sets being disjoint.

• Assume that those computations can be partitioned into n groups each

consisting of m computations from all the m sets, such that all the

computations in the same group have the same length and are labeled

with the same sequence of exponentially timed τ -actions.

• Ck = {ck,i | ck,i ≡ Pk,i,1

τ,λi,1−−−→M Pk,i,2

τ,λi,2−−−→M . . .
τ,λi,li−−−→M Pk,i,li+1,

1 ≤ i ≤ n}



• The family of computations C = {C1, C2, . . . , Cm} is generally reducible

iff either m = 1 and for all i = 1, . . . , n:

– P1,i,j ∈ PM,fu for all j = 1, . . . , li.

– P1,i,li+1 ∈ PM,nfu or P1,i,li+1 ≡ P1,i,j for some j = 1, . . . , li.

or m ≥ 1, not all the states Pk,i,j , 1 ≤ j ≤ li, are fully unstable when

m = 1, and for all i = 1, . . . , n:

– For all k = 1, . . . , m, j = 1, . . . , li, and <a, λ> ∈ ActM:

1. Whenever Pk,i,j

a,λ−−−→M P ′ with P ′ 6≡ Pk,i,j+1, then:

a) either P ′ ≡ Pk′,i,j for some k′ = 1, . . . , m;

b) or P ′ ≡ Pk,i′,j′ with a = τ and λ = λi′,j′−1 for some

i′ = 1, . . . , n such that i′ 6= i and some j′ = 2, . . . , li′+1.



2. For all k′ = 1, . . . , m, it holds that Pk,i,j

a,λ−−−→M Pk′,i,j iff

Pk,i,j′
a,λ−−−→M Pk′,i,j′ for all j′ = 1, . . . , li.

3. For all i′ = 1, . . . , n such that i′ 6= i and j′ = 2, . . . , li′+1,

it holds that Pk,i,j

a,λ−−−→M Pk,i′,j′ iff Pk′,i,j
a,λ−−−→M Pk′,i′,j′ for all

k′ = 1, . . . , m.

– One of the following holds:

4̃. There is no λi,li+1 ∈ R>0 such that Pk,i,li+1

τ,λi,li+1

−−−→ M Pk,i,li+2 for

all k = 1, . . . , m.

4. If there exists λi,li+1 ∈ R>0 such that Pk,i,li+1

τ,λi,li+1

−−−→ M Pk,i,li+2

for all k = 1, . . . , m, then at least one of conditions 1, 2, and 3

above is not satisfied by Pk′,i,li+1 for some k′ = 1, . . . , m.

4̂. Pk,i,li+1 ≡ Pk,i,j for all k = 1, . . . , m and some j = 1, . . . , li.



• source(C) = {Pk | 1 ≤ k ≤ m}: set of initial states of C.
• target(C) = {Pk,i,li+1 | 1 ≤ k ≤ m, 1 ≤ i ≤ n}: set of final states of C.
• In order to avoid interferences among computations in C1, C2, . . . , Cm

and computations across C1, C2, . . . , Cm, we redefine:

probtime(ck,i) = (
li∏

j=1

λi,j

rate(Pk,i,j ,τ,P′
k
)
) · (

li∑
i=1

1
rate(Pk,i,j ,τ,P′

k
)
)

where P ′k = {Pk,i′,j′ | 1 ≤ i′ ≤ n, 2 ≤ j′ ≤ li′+1}.
• We redefine reducomp(Pk, D, t) as the multiset of computations identical

to those in Ck that go from Pk to D and have average duration t.

• If C is generally reducible, then probtime(ck,i) = probtime(ck′,i) and

pbtm(Pk, target(C)) = pbtm(Pk′ , target(C)).



• An equivalence relation B over PM is a g-weak Markovian bisimulation iff, whenever

(P1, P2) ∈ B, then:

– For all visible action names a ∈ Namev and equivalence classes D ∈ PM/B:

rate(P1, a, D) = rate(P2, a, D)

– If P1 is not an initial state of any g-reducible family of computations, then P2

is not an initial state of any g-reducible family of computations either, and for

all equivalence classes D ∈ PM/B:

rate(P1, τ, D) = rate(P2, τ, D)

– If P1 is an initial state of some g-reducible family of computations, then P2

is an initial state of some g-reducible family of computations too, and for all

g-reducible families of computations C1 with P1 ∈ source(C1) there exists a

g-reducible family of computations C2 with P2 ∈ source(C2) such that for all

equivalence classes D ∈ PM/B:

pbtm(P1, D ∩ target(C1)) = pbtm(P2, D ∩ target(C2))
• G-weak Markovian bisimilarity, denoted ≈MB,g, is the union of all the g-weak

Markovian bisimulations.



• All the examples that we have seen before for ≈MB are valid for ≈MB,g,

because a tree of computations reducible in the sense of the original

definition forms a g-reducible family of computations.

• Unlike ≈MB, it turns out that ≈MB,g is a congruence with respect to

parallel composition too.

• Let P1, P2 ∈ PM. Whenever P1 ≈MB,g P2, then:

– <a, λ>.P1 ≈MB,g <a, λ>.P2 for all <a, λ> ∈ ActM.

– P1 ‖S P ≈MB,g P2 ‖S P and P ‖S P1 ≈MB,g P ‖S P2 for all

S ⊆ Namev and P ∈ PM.

– P1/H ≈MB,g P2/H for all H ⊆ Namev.

• Like ≈MB, we have that ≈MB,g is not a congruence with respect to

alternative composition either.



• We say that P1 is g-weakly Markovian bisimulation congruent to P2,

written P1 'MB,g P2, iff for all action names a ∈ Name and

equivalence classes D ∈ PM/≈MB,g:

rate(P1, a, D) = rate(P2, a, D)

• Let P1, P2 ∈ PM. Whenever P1 'MB,g P2, then:

– <a, λ>.P1 'MB,g <a, λ>.P2 for all <a, λ> ∈ ActM.

– P1 + P 'MB,g P2 + P and P + P1 'MB,g P + P2 for all P ∈ PM.

– P1 ‖S P 'MB,g P2 ‖S P and P ‖S P1 'MB,g P ‖S P2 for all

S ⊆ Namev and P ∈ PM.

– P1/H 'MB,g P2/H for all H ⊆ Namev.

• Let P1, P2 ∈ PM. Then P1 'MB,g P2 iff P1 + P ≈MB,g P2 + P for all

P ∈ PM.



• The CTMC-level aggregation induced by ≈MB,g and 'MB,g is exact

at steady-state only for those process terms with a restricted use of

synchronization.

• This limitation stems from insensitivity conditions for GSMPs (with

GSMPs coming into play due to the reduction of sequences of exponentially timed τ-transitions)

and emphasizes a tradeoff between achieving compositionality over

concurrent processes and preserving exactness at steady state.

• GW-lumpability is exact at steady state over each process term P ∈ PM

such that, for all g-reducible families of computations C in [[P ]]M with

size m ≥ 2 or size m = 1 and not all the traversed states being fully

unstable, no transition in [[P ]]M arising from action synchronization has

an element of source(C) as its target state.



• Example 5 – Consider the two process terms with synchronization:

rec X : <τ, µ>.<τ, γ>.<d, δ>.X ‖{d} rec Y : <a, λ>.<d, ∗w>.Y

rec X : <τ, µ·γ
µ+γ

>.<d, δ>.X ‖{d} rec Y : <a, λ>.<d, ∗w>.Y

• Resulting CTMC-level aggregation:

a,λ a,λ

µτ,

µτ,

τ γ,

τ γ,

a,λ

τ, .γµ /(µ+γ )

τ, .γµ /(µ+γ )

a,λ a,λ
d,δ d,δ

• Not exact due to the following steady-state probabilities (µ=γ =λ=δ=1):

2/13

2/13

1/13 1/13

3/13 4/13

2/10 1/10

4/10 3/10



• Example 6 – Consider the two process terms without synchronization:

rec X : <τ, µ>.<τ, γ>.<d1, δ1>.X ‖∅ rec Y : <a, λ>.<d2, δ2>.Y

rec X : <τ, µ·γ
µ+γ

>.<d1, δ1>.X ‖∅ rec Y : <a, λ>.<d2, δ2>.Y

• Resulting CTMC-level aggregation:

µτ,

µτ,

a,λ

τ, .γµ /(µ+γ )

τ, .γµ /(µ+γ )

a,λδd ,2 2

τ γ,

τ γ,

δd ,2 2 δd ,2 2a,λ a,λ a,λ δd ,2 2δd ,2 2

δd ,1 1δd ,1 1

δd ,1 1 δd ,1 1

• Exact due to the following steady-state probabilities (µ=γ =λ=δ1 =δ2 =1):

1/6 1/6 1/6

1/6 1/6 1/6

2/6

2/6

1/6

1/6



Related and Future Work

• Problem originally addressed in [Hil1996] through a relation called weak

isomorphism, from which we have taken the idea of preserving the

average duration of internal action sequences.

• Congruence and steady-state exactness of weak isomorphism have been

investigated, but no axiomatization is known (too strong, no branches).

• Different approach proposed in [Bra2002], where a variant of Markovian

bisimilarity is defined that checks for exit rate equality with respect to

all equivalence classes apart from the one including the process terms

under examination.

• Congruence and axiomatization results have been provided, but nothing

is said about exactness.

• Axiomatization of 'MB,g, modal logic characterization, algorithms.


