Performability-Aware Computing (PaCo):
Logics, Models, and Languages

Marco Bernardo

University of Urbino – Italy

© September 2010
General Information

• Call for project proposals: PRIN 2007 (issued by MIUR).
• Research areas: Mathematics & Computer Science (100%).
• Approved: July 2008.
• Starting date: 22 Sep 2008.
• Closing date: 22 Sep 2010 (extended by 6 months).
• Cost: 102,526 euros (70% funded by MIUR).
Research Units

5. University of L’Aquila: *Cortellessa*, Berardinelli, Trubiani, . . .

- Concurrency theory, performance evaluation, software engineering.
Project Meetings

2. First mid-term meeting: Lucca, Jun 2009 (organized by Firenze RU).

4. Final meeting: Camerino, Sep 2010 (organized by Camerino RU, with ICTCS 2010).
Project Setting

• The design of software systems is increasingly influenced by the identification and the satisfaction of nonfunctional requirements, such as performance and dependability.

• **Performance** refers to the quality of service guaranteed by a system when the system works properly: throughput, utilization, queue length, response time, . . .

• **Dependability** refers instead to the reasonable expectations about the service provided by a system, where the service is classified as being proper or improper depending on whether it is provided according to its specification or not: reliability, availability, safety, security, . . .

• **Performability** expresses the level at which a system is able to perform.

• The performance of a system may degrade in the presence of faults, with the service remaining proper.
Project Objectives

• By following the modern model-driven software development view, the design of performability-aware systems requires:
 – Formalisms for modeling the systems themselves.
 – Formalisms for specifying the performability properties of interest.
 – Techniques for verifying those performability properties.

• Many formalisms exist ranging from UML and architectural description languages to modal/temporal logics, process algebras, Petri nets, and automata.
 – Advancing the state of the art by establishing new theoretical result for the existing formalisms or making those formalisms more expressive.
 – Integrating logics, models, and languages for the description and the analysis of performability-aware systems.
WP1: Temporal Logics and Model Checking

- RUs: Firenze, Torino, Urbino.
- Stochastic temporal logics integrating spatial modalities.
- Local and distributed model-checking algorithms for stochastic temporal logics.
- Efficient model-checking algorithms for subclasses of probabilistic timed automata.
WP2: Process Algebras and Behav. Equiv.

- RUs: Firenze, Urbino.
- Weak behavioral equivalences for Markovian process algebras.
- Approximated behavioral equivalences for Markovian process algebras.
- Characterizations of stochastic behavioral equivalences.
- New semantics and equivalences for stochastic process algebras with mobility.
WP3: Automata and Probabilistic Timed Models

- **RUs:** Camerino, L’Aquila, Torino.

- Generalization of time divergence in probabilistic timed automata.

- Abstraction and refinement mechanisms for probabilistic timed automata.

- Characterization of fairness, liveness, urgency, distribution, and location and context awareness in probabilistic timed models.
WP4: Specification of Performability Measures

- RUs: Camerino, Firenze, L’Aquila, Torino, Urbino.
- New UML profiles for performability domains.
- Offline and online composition mechanisms for performability attributes.
- Mechanisms for expressing asymptotical performability measures for nondeterministic timed systems.
- Rephrasing efficiency measures for timed systems in a probabilistic setting.
- User-friendly mechanisms for expressing path properties in UML.
- New language integrating MSL and CSL/PTCTL/MoSL.
WP5: Model Transformations and Type Systems

- RUs: Camerino, L’Aquila, Torino, Urbino.

- New transformation functions from UML models to performability models.

- New backward propagation functions of results from performability models to UML models.

- New transformation functions between performability models.

- New backward propagation functions of results between performability models.

- Type systems supporting the correct transformation of performability models.
What to Know More About PaCo?

• Please visit http://www.sti.uniurb.it/paco/:
 – Slides presented at the project meetings.
 – Papers accepted at conferences and workshops.

• Researchers involved in PaCo are open to work with people interested in quantitative modeling and evaluation of complex systems.