
A further application of FASE: study liveness
properties on Mutual Exclusion Algorithms

speaker: Massimo Callisto De Donato
{massimo.callisto}@unicam.it

Scuola di Scienze e Tecnologie - Università di Camerino
Via Madonna delle Carceri, 9 - 62032 Camerino

http://www.cs.unicam.it

PaCo Meeting - Camerino
September, 15th 2010

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Faster Asynchronous Systems Evaluation

FASE (Faster Asynchronous Systems Evaluation):

Aimed to analyse systems specified in PAFAS algebra

Different modules loosely-coupled written in Java

Evaluates the efficiency of a process in the worst-case behaviour

Checks the presence of catastrophic cycles

Apply FASE to study new properties about systems:

Checks liveness properties

Under the assumption of fairness of actions

And a process algebra with Non-Blocking Reading

By studying the presence of catastrophic cycles

F. Buti, M. Callisto De Donato, F. Corradini, M. R. Di Berardini and W. Vogler.

Evaluating the Efficiency of Asynchronous Systems with FASE.
In pre-proc. of the 1st Int. Workshop on Quantitative Formal Methods, pp.101-106, Technische Universiteit Eindhoven, 2009

F. Corradini, M.R. Di Berardini, W. Vogler

Time and Fairness in a Process Algebra with Non-Blocking Reading
In Proc. of 35th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2009), LNCS 5404: 193 204 (2009).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Faster Asynchronous Systems Evaluation

FASE (Faster Asynchronous Systems Evaluation):

Aimed to analyse systems specified in PAFAS algebra

Different modules loosely-coupled written in Java

Evaluates the efficiency of a process in the worst-case behaviour

Checks the presence of catastrophic cycles

Apply FASE to study new properties about systems:

Checks liveness properties

Under the assumption of fairness of actions

And a process algebra with Non-Blocking Reading

By studying the presence of catastrophic cycles

F. Buti, M. Callisto De Donato, F. Corradini, M. R. Di Berardini and W. Vogler.

Evaluating the Efficiency of Asynchronous Systems with FASE.
In pre-proc. of the 1st Int. Workshop on Quantitative Formal Methods, pp.101-106, Technische Universiteit Eindhoven, 2009

F. Corradini, M.R. Di Berardini, W. Vogler

Time and Fairness in a Process Algebra with Non-Blocking Reading
In Proc. of 35th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2009), LNCS 5404: 193 204 (2009).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Faster Asynchronous Systems Evaluation

FASE (Faster Asynchronous Systems Evaluation):

Aimed to analyse systems specified in PAFAS algebra

Different modules loosely-coupled written in Java

Evaluates the efficiency of a process in the worst-case behaviour

Checks the presence of catastrophic cycles

Apply FASE to study new properties about systems:

Checks liveness properties

Under the assumption of fairness of actions

And a process algebra with Non-Blocking Reading

By studying the presence of catastrophic cycles

F. Buti, M. Callisto De Donato, F. Corradini, M. R. Di Berardini and W. Vogler.

Evaluating the Efficiency of Asynchronous Systems with FASE.
In pre-proc. of the 1st Int. Workshop on Quantitative Formal Methods, pp.101-106, Technische Universiteit Eindhoven, 2009

F. Corradini, M.R. Di Berardini, W. Vogler

Time and Fairness in a Process Algebra with Non-Blocking Reading
In Proc. of 35th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2009), LNCS 5404: 193 204 (2009).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Study liveness properties

Liveness

Something good will happen eventually.

Consider a critical resource that must be accessed from concurrent processes in
a mutual way. An algorithm is used to regulate the usage of the resource.
Different properties can be studied:

Is the mutual exclusion preserved?

Is the algorithm live?

Liveness

Whenever, at some point, a process Pi requests the execution of its critical
section, then at some later point it will enter it.

The verification of liveness properties usually requires some fairness
assumption.

D.J. Walker

Automated Analysis of Mutual Exclusion algorithms using CCS

Formal Aspects of Computing 1, pp. 273-292, 1989

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Study liveness properties

Liveness

Something good will happen eventually.

Consider a critical resource that must be accessed from concurrent processes in
a mutual way. An algorithm is used to regulate the usage of the resource.
Different properties can be studied:

Is the mutual exclusion preserved?

Is the algorithm live?

Liveness

Whenever, at some point, a process Pi requests the execution of its critical
section, then at some later point it will enter it.

The verification of liveness properties usually requires some fairness
assumption.

D.J. Walker

Automated Analysis of Mutual Exclusion algorithms using CCS

Formal Aspects of Computing 1, pp. 273-292, 1989

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Study liveness properties

Liveness

Something good will happen eventually.

Consider a critical resource that must be accessed from concurrent processes in
a mutual way. An algorithm is used to regulate the usage of the resource.
Different properties can be studied:

Is the mutual exclusion preserved?

Is the algorithm live?

Liveness

Whenever, at some point, a process Pi requests the execution of its critical
section, then at some later point it will enter it.

The verification of liveness properties usually requires some fairness
assumption.

D.J. Walker

Automated Analysis of Mutual Exclusion algorithms using CCS

Formal Aspects of Computing 1, pp. 273-292, 1989

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

A characterization of fair sequences

(Weak) fairness of actions: each action continuously enabled along a
computation must eventually proceed.

Theorem (fair traces)

An infinite trace α0α1α2 . . . is fair iff there exists a non-Zeno timed execution
sequence

P0
1−→ v0−→ P1

1−→ v1−→ . . .Pn
1−→ vn−→ Pn+1 . . .

where v0v1 . . . vm . . . = α0α1 . . . αi . . .

F. Corradini, M.R. Di Berardini, W. Vogler

Fairness of Actions in System Computations
Acta Informatica 43, pp. 73 130, 2006.

F. Corradini, M.R. Di Berardini, W. Vogler

Time and Fairness in a Process Algebra with Non-Blocking Reading
In Proc. of 35th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2009), LNCS 5404: 193 204 (2009).

. Costa, C. Stirling

Weak and Strong Fairness in CCS
Information and Computation 73, pp. 207-244, 1987

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in mutual exclusion algorithms

Liveness in mutual exclusion algorithms

If, whenever at any computation a process Pi requests the execution of its critical

section (e.g. reqi action), then in any continuation of that computation Pi will

perform its critical section (e.g. csi action).

To establish that an algorithm preserves its liveness property, we
check if any occurrence of reqi in a fair trace is eventually followed
by csi .

Namely, we check if the process is free from catastrophic cycles.

F. Corradini and W. Vogler

Measuring the performance of asynchronous systems with PAFAS
Theor. Comput. Sci 335(2-3): 187-213 (2005).

F. Corradini, M.R. Di Berardini, W. Vogler

Time and Fairness in a Process Algebra with Non-Blocking Reading
In Proc. of 35th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2009), LNCS 5404: 193 204 (2009).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in mutual exclusion algorithms

Liveness in mutual exclusion algorithms

If, whenever at any computation a process Pi requests the execution of its critical

section (e.g. reqi action), then in any continuation of that computation Pi will

perform its critical section (e.g. csi action).

To establish that an algorithm preserves its liveness property, we
check if any occurrence of reqi in a fair trace is eventually followed
by csi .

Namely, we check if the process is free from catastrophic cycles.

F. Corradini and W. Vogler

Measuring the performance of asynchronous systems with PAFAS
Theor. Comput. Sci 335(2-3): 187-213 (2005).

F. Corradini, M.R. Di Berardini, W. Vogler

Time and Fairness in a Process Algebra with Non-Blocking Reading
In Proc. of 35th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2009), LNCS 5404: 193 204 (2009).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Catastrphic cycles

Catastrphic cycles

A cycle in the rRTS(P) is called catastrophic if it contains a positive
number of time steps but no in’s and no out’s.

Non-blocking Readings PAFASs Fairness and Timing Dekker A qualitative efficiency measure Conclusions

Catastrophic Cycles

Definition (catastrophic cycles)

A cycle in the rRTS(P) is called catastrophic if it contains a
positive number of time steps but no in’s and no out’s.

b b

b b b b

b b

in

1

τ

1

τ

1

τ

out

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Catastrphic cycles and live traces

Catastrphic cycles and liveness

In a fair trace, after the request reqi there exists an infinite sequence of
actions and time steps without any csi action.

b b

b b b b

b b

req1

1

v1

1

v2

1
v3

cs1

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Dekker algorithm

Non-blocking Readings PAFASs Fairness and Timing Dekker A qualitative efficiency measure Conclusions

Dekker’s Algorithm

k = 1?

b1 := false

2

k = 1?

b1 := false

k := 2

critical section

b1 := true

non-critical section

b2 = false?
no

yes

no

yes

yes

no

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Dekker algorithm translated in PAFAS

B1F = b1rf.B1F + b1wf.B1F + b1wt.B1T;

B1T = b1rt.B1T + b1wt.B1T + b1wf.B1F;

B2F = b2rf.B2F + b2wf.B2F + b2wt.B2T;

B2T = b2rt.B2T + b2wt.B2T + b2wf.B2F;

K1 = kr1.K1 + kw1.K1 + kw2.K2;

K2 = kr2.K2 + kw2.K2 + kw1.K1;

PV = (B1F |[]| B2F |[]| K1);

P1 = in.b1wt.P11;

P11 = b2rf.P14 + b2rt.P12;

P12 = kr1.P11 + kr2.b1wf.P13;

P13 = kr1.b1wt.P11 + kr2.P13;

P14 = out.kw2.b1wf.P1;

P2 = req2.b2wt.P21;

P21 = b1rf.P24 + b1rt.P22;

P22 = kr2.P21 + kr1.b2wf.P23;

P23 = kr2.b2wt.P21 + kr1.P23;

P24 = exit2.kw1.b2wf.P2;

DEKKER = ((P1 |[]| P2)|[B]|PV)[L -> tau];

B = sort(PV), L = sort(DEKKER)\{in, out}

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in Dekker - some results

Result on Dekker

Dekker is not live meaning that catastrophic cycles are detected.

Some unwanted behaviour: a process reading/writing a variable
can indefinitely block another process that tries to read/write
it.

Dekker is not live under the assumption of fairness of actions.

Suffers of Starvation and livelock.

F. Corradini, M.R. Di Berardini, W. Vogler

Checking a Mutex Algorithm in a Process Algebra with Fairness
Proc. of CONCUR’06, pp. 142-157, LNCS 4137, 2006

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in Dekker - some results

Result on Dekker

Dekker is not live meaning that catastrophic cycles are detected.

Some unwanted behaviour: a process reading/writing a variable
can indefinitely block another process that tries to read/write
it.

Dekker is not live under the assumption of fairness of actions.

Suffers of Starvation and livelock.

F. Corradini, M.R. Di Berardini, W. Vogler

Checking a Mutex Algorithm in a Process Algebra with Fairness
Proc. of CONCUR’06, pp. 142-157, LNCS 4137, 2006

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in Dekker - some results

Result on Dekker

Dekker is not live meaning that catastrophic cycles are detected.

Some unwanted behaviour: a process reading/writing a variable
can indefinitely block another process that tries to read/write
it.

Dekker is not live under the assumption of fairness of actions.

Suffers of Starvation and livelock.

F. Corradini, M.R. Di Berardini, W. Vogler

Checking a Mutex Algorithm in a Process Algebra with Fairness
Proc. of CONCUR’06, pp. 142-157, LNCS 4137, 2006

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in Dekker - some results

We could consider the scenario where multiple concurrent processes
can read the same variable:

Bi (false) = {bi rf } > biwf .Bi (false) + biwt.Bi (true)
Bi (true) = {bi rt} > biwt.Bi (true) + biwf .Bi (false)

Dekker is still not live.

Catastrophic cycles are detected.

Livelock is still present.

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in Dekker - some results

We could consider the scenario where multiple concurrent processes
can read the same variable:

Bi (false) = {bi rf } > biwf .Bi (false) + biwt.Bi (true)
Bi (true) = {bi rt} > biwt.Bi (true) + biwf .Bi (false)

Dekker is still not live.

Catastrophic cycles are detected.

Livelock is still present.

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Liveness in Dekker - further considerations

The only ordinary actions are those actions that correspond to the
writing of a new value

These actions can be tought of as non-destructive operations,
allowing other potential concurrent accesses

This way of accessing variables is not new, e.g database systems.

Bi (false) = {bi rf , biwf } > biwt.Bi (true)
Bi (true) = {bi rt, biwt} > biwf .Bi (false)

Dekker is live and no catastrophic cycle is detected.

F. Corradini, M.R. Di Berardini, W. Vogler

Time and Fairness in a Process Algebra with Non-Blocking Reading
In Proc. of 35th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2009), LNCS 5404: 193 204 (2009).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Dekker’s algorithm

B1F = {b1rf, b1wf} > b1wt.B1T;

B1T = {b1rt, b1wt} > b1wf.B1F;

B2F = {b2rf, b2wf} > b2wt.B2T;

B2T = {b2rt, b2wt} > b2wf.B2F;

K1 = {kr1, kw1} > kw2.K2;

K2 = {kr2, kw2} > kw1.K1;

PV = (B1F |[]| B2F |[]| K1);

P1 = req1.b1wt.P11;

P11 = b2rf.P14 + b2rt.P12;

P12 = kr1.P11 + kr2.b1wf.P13;

P13 = kr1.b1wt.P11 + kr2.P13;

P14 = exit1.kw2.b1wf.P1;

P2 = req2.b2wt.P21;

P21 = b1rf.P24 + b1rt.P22;

P22 = kr2.P21 + kr1.b2wf.P23;

P23 = kr2.b2wt.P21 + kr1.P23;

P24 = exit2.kw1.b2wf.P2;

DEKKER = ((P1 |[]| P2)|[B]|PV)[L -> tau];

B = sort(PV), L = sort(DEKKER)\{in, out}

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Dijkstra’s algorithm

bi := false

ci := trueno

no

b[k] = i

ci := false

yes
yes k := i

Non critical section

Critical section

For j := 1 to n

j != i && !c[j]

yes

ci := truebi := true

k != i

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Dijkstra’s algorithm

B1F = b1rf.B1F + b1wf.B1F + b1wt.B1T;
B1T = b1rt.B1T + b1wt.B1T + b1wf.B1F;
C1F = c1rf.C1F + c1wf.C1F + c1wt.C1T;
C1T = c1rt.C1T + c1wt.C1T + c1wf.C1F;

B2F = b2rf.B2F + b2wf.B2F + b2wt.B2T;
B2T = b2rt.B2T + b2wt.B2T + b2wf.B2F;
C2F = c2rf.C2F + c2wf.C2F + c2wt.C2T;
C2T = c2rt.C2T + c2wt.C2T + c2wf.C2F;

K1 = kr1.K1 + kw1.K1 + kw2.K2 + get.(k1r1.put.K1 + k2r1.put.K1);
K2 = kr2.K2 + kw2.K2 + kw1.K1 + get.(k1r2.put.K2 + k2r2.put.K2);

PV = (B1T || B2T || C1T || C2T || K1);

P1 = b1wf.in.P11;
P11 = kr1.P13 + kr2.c1wt.P12;
P12 = get.(k1r1.(b1rt.put.kw1.P11 +
b1rf.put.P11) + k1r2.(b2rt.put.kw1.P11 +
b2rf.put.P11));
P13 = c1wf.(c2rf.P11 + c2rt.P14); P14 =
out.c1wt.b1wt.P1;

P2 = b2wf.req2.P21;
P21 = kr2.P23 + kr1.c2wt.P22;
P22 = get.(k2r2.(b2rt.put.kw2.P21 +
b2rf.put.P21) + k2r1.(b1rt.put.kw2.P21 +
b1rf.put.P21));
P23 = c2wf.(c1rf.P21 + c1rt.P24);
P24 = cs2.c2wt.b2wt.P2;

DIJKSTRA = ((P1 |[]| P2) |[B]| PV)[L -> tau];

B = sort(PV), L = sort(DIJKSTRA)\{in, out}

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Knuth’s algorithm

ci := 1

yes

no

ci := 2

no

yes

Non critical section

Critical sectionk := jci := 0

k = i

cj != 0

cj = 2

k := i

no

yes

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Knuth’s algorithm

C10 = c1w0.C10 + c1w1.C11 + c1w2.C12 +
c1r0.C10;
C11 = c1w0.C10 + c1w1.C11 + c1w2.C12 +
c1r1.C11;
C12 = c1w0.C10 + c1w1.C11 + c1w2.C12 +
c1r2.C12;

C20 = c2w0.C20 + c2w1.C21 + c2w2.C22 +
c2r0.C20;
C21 = c2w0.C20 + c2w1.C21 + c2w2.C22 +
c2r1.C21;
C22 = c2w0.C20 + c2w1.C21 + c2w2.C22 +
c2r2.C22;

K1 = kr1.K1 + kw1.K1 + kw2.K2;
K2 = kr2.K2 + kw2.K2 + kw1.K1

PV = (C10 || C20 || K1);

P1 = c1w1.in.P11;
P11 = kr1.P13 + kr2.P12;
P12 = c2r0.P13 + c2r1.P11 + c2r2.P11;
P13 = c1w2.P14;
P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;
P15 = kw1.out.kw2.c1w0.P1;
P16 = c1w1.P11;

P2 = c2w1.req2.P21;
P21 = kr2.P23 + kr1.P22;
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21;
P23 = c2w2.P24;
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26;
P25 = kw2.cs2.kw1.c2w0.P2;
P26 = c2w1.P21;

KNUTH = ((P1 |[]| P2) |[B]| PV)[L -> tau];

B = sort(PV), L = sort(KNUTH)\{in, out}

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Peterson’s algorithm

bi := true

Non critical section

Critical sectionbi := false

k := j

while bj && k = j

skip

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Peterson’s algorithm

B1F = b1rf.B1F + b1wf.B1F + b1wt.B1T;
B1T = b1rt.B1T + b1wt.B1T + b1wf.B1F;

B2F = b2rf.B2F + b2wf.B2F + b2wt.B2T;
B2T = b2rt.B2T + b2wt.B2T + b2wf.B2F;

K1 = kr1.K1 + kw1.K1 + kw2.K2;
K2 = kr2.K2 + kw2.K2 + kw1.K1;

PV = (B1F || B2F || K1);

P1 = b1wt.in.kw2.P11;
P11 = b2rf.P12 + b2rt.(kr2.P11 +
kr1.P12);
P12 = out.b1wf.P1;

P2 = b2wt.req2.kw1.P21;
P21 = b1rf.P22 + b1rt.(kr1.P21 +
kr2.P22);
P22 = cs2.b2wf.P2;

PETERSON = ((P1 |[]| P2) |[B]| PV)[L -> tau];

B = sort(PV), L = sort(PETERSON)\{in, out}

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Lamport’s algorithm

bi := true

Non critical section

Critical sectionbi := false

For j := 1 to i – 1

For j := i + 1 to n

bj

while bj

skip

bi := false
yesno

while bj

skip

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Lamport’s algorithm

B1F =b1rf.B1F +b1wf.B1F + b1wt.B1T;
B1T=b1rt.B1T +b1wf.B1F + b1wt.B1T;

B2F =b2rf.B2F +b2wf.B2F + b2wt.B2T;
B2T=b2rt.B2T +b2wf.B2F + b2wt.B2T;

PV = (B1F||B2F);

P1 = b1wt.in.P11;
P11 = b2rf.P12+b2rt.P11;
P12 = out.b1wf.P1;

P2 = b2wt.req2.P21;
P21 = b1rf.P23 + b1rt.b2wf.P22;
P22 = b1rf.b2wt.P21 + b1rt.P22;
P23 = cs2.b2wf.P2;

LAMPORT = ((P1 |[]| P2) |[B]| PV)[L -> tau];

B = sort(PV), L = sort(LAMPORT)\{in, out}

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Relating results

All the algorithms have been coded in PAFAS and automatically
checked by the tool FASE.

Interesting results have been found:

Algorithm Walker Without read acts With read acts

Dekker not live not live live
Dijkstra not live not live not live
Knuth live not live not live
Peterson live not live live
Lamportlivep1

∧liveP2
not live not live not live

Lamportlivep1
∧¬liveP2

live not live live

Table: Comparing Walker result with catastrophic cycles detection

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Peterson’s algorithm

Without using read actions, FASE has detected catastrophic cycles:
Pi continuously reads the same value from the same variable
while P2 is stuck and waits to write it.

When read acts are used to models the action of read the same
value from a variable, Peterson’s algorithm becomes live.

Lamport’s algorithm

The same considerations about Peterson’s algorithms are valid if we
consider to observe P1.

If we observe P2, than the catastrophic cycles are detected in both
cases as expected (due to the asymmetry of the processes).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Peterson’s algorithm

Without using read actions, FASE has detected catastrophic cycles:
Pi continuously reads the same value from the same variable
while P2 is stuck and waits to write it.

When read acts are used to models the action of read the same
value from a variable, Peterson’s algorithm becomes live.

Lamport’s algorithm

The same considerations about Peterson’s algorithms are valid if we
consider to observe P1.

If we observe P2, than the catastrophic cycles are detected in both
cases as expected (due to the asymmetry of the processes).

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Dijkstra’s algorithm

In Dijkstra’s algorithm, FASE has detected catastrophic cycles in
both cases.

It is known that this algorithm is susceptible to starvation.

But there are also catastrophic cycles as following:

K2 = {kr2, kw2} > (kw1.K1 + get.(k1r2.put.K2 + k2r2.put.K2));

P12 = get.(. . .);

P21 = kr2.P23 + kr1.c2wt.P22;

P = P12 ‖ P22 ‖B . . .K2
τ(get)−−−→ τ−→ . . .

1−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Dijkstra’s algorithm

In Dijkstra’s algorithm, FASE has detected catastrophic cycles in
both cases.

It is known that this algorithm is susceptible to starvation.

But there are also catastrophic cycles as following:

K2 = {kr2, kw2} > (kw1.K1 + get.(k1r2.put.K2 + k2r2.put.K2));

P12 = get.(. . .);

P21 = kr2.P23 + kr1.c2wt.P22;

P = P12 ‖ P22 ‖B . . .K2
τ(get)−−−→ τ−→ . . .

1−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Knuth’s algorithm

FASE has detected catastrophic cycles in both cases.

When read acts are used, the follow catastrophic cycles is detected:

C12 = {c1r2, c1w2} > (c1w0.C10 + c1w1.C11);

C21 = {c2r1, c2w1} > (c2w0.C20 + c2w2.C22);
C22 = {c2r2, c2w2} > (c2w0.C20 + c2w1.C21);

P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;

P21 = kr2.P23 + kr1.P22
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21
P23 = c2w2.P24
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26
P26 = c2w1.P21

P = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
1−→

P′ = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
τ(c2w1)−−−−−→

P′′ = P14 ‖ P21 ‖B (C12 ‖ C21 ‖ K(2))
1−→ τ(kr2)−−−−→ τ(c2w2)−−−−−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Knuth’s algorithm

FASE has detected catastrophic cycles in both cases.

When read acts are used, the follow catastrophic cycles is detected:

C12 = {c1r2, c1w2} > (c1w0.C10 + c1w1.C11);

C21 = {c2r1, c2w1} > (c2w0.C20 + c2w2.C22);
C22 = {c2r2, c2w2} > (c2w0.C20 + c2w1.C21);

P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;

P21 = kr2.P23 + kr1.P22
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21
P23 = c2w2.P24
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26
P26 = c2w1.P21

P = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
1−→

P′ = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
τ(c2w1)−−−−−→

P′′ = P14 ‖ P21 ‖B (C12 ‖ C21 ‖ K(2))
1−→ τ(kr2)−−−−→ τ(c2w2)−−−−−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Knuth’s algorithm

FASE has detected catastrophic cycles in both cases.

When read acts are used, the follow catastrophic cycles is detected:

C12 = {c1r2, c1w2} > (c1w0.C10 + c1w1.C11);

C21 = {c2r1, c2w1} > (c2w0.C20 + c2w2.C22);
C22 = {c2r2, c2w2} > (c2w0.C20 + c2w1.C21);

P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;

P21 = kr2.P23 + kr1.P22
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21
P23 = c2w2.P24
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26
P26 = c2w1.P21

P = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
1−→

P′ = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
τ(c2w1)−−−−−→

P′′ = P14 ‖ P21 ‖B (C12 ‖ C21 ‖ K(2))
1−→ τ(kr2)−−−−→ τ(c2w2)−−−−−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Knuth’s algorithm

FASE has detected catastrophic cycles in both cases.

When read acts are used, the follow catastrophic cycles is detected:

C12 = {c1r2, c1w2} > (c1w0.C10 + c1w1.C11);

C21 = {c2r1, c2w1} > (c2w0.C20 + c2w2.C22);
C22 = {c2r2, c2w2} > (c2w0.C20 + c2w1.C21);

P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;

P21 = kr2.P23 + kr1.P22
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21
P23 = c2w2.P24
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26
P26 = c2w1.P21

P = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
1−→

P′ = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
τ(c2w1)−−−−−→

P′′ = P14 ‖ P21 ‖B (C12 ‖ C21 ‖ K(2))

1−→ τ(kr2)−−−−→ τ(c2w2)−−−−−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Knuth’s algorithm

FASE has detected catastrophic cycles in both cases.

When read acts are used, the follow catastrophic cycles is detected:

C12 = {c1r2, c1w2} > (c1w0.C10 + c1w1.C11);

C21 = {c2r1, c2w1} > (c2w0.C20 + c2w2.C22);
C22 = {c2r2, c2w2} > (c2w0.C20 + c2w1.C21);

P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;

P21 = kr2.P23 + kr1.P22
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21
P23 = c2w2.P24
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26
P26 = c2w1.P21

P = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
1−→

P′ = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
τ(c2w1)−−−−−→

P′′ = P14 ‖ P21 ‖B (C12 ‖ C21 ‖ K(2))
1−→

τ(kr2)−−−−→ τ(c2w2)−−−−−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Knuth’s algorithm

FASE has detected catastrophic cycles in both cases.

When read acts are used, the follow catastrophic cycles is detected:

C12 = {c1r2, c1w2} > (c1w0.C10 + c1w1.C11);

C21 = {c2r1, c2w1} > (c2w0.C20 + c2w2.C22);
C22 = {c2r2, c2w2} > (c2w0.C20 + c2w1.C21);

P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;

P21 = kr2.P23 + kr1.P22
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21
P23 = c2w2.P24
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26
P26 = c2w1.P21

P = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
1−→

P′ = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
τ(c2w1)−−−−−→

P′′ = P14 ‖ P21 ‖B (C12 ‖ C21 ‖ K(2))
1−→ τ(kr2)−−−−→

τ(c2w2)−−−−−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

Further observations

Knuth’s algorithm

FASE has detected catastrophic cycles in both cases.

When read acts are used, the follow catastrophic cycles is detected:

C12 = {c1r2, c1w2} > (c1w0.C10 + c1w1.C11);

C21 = {c2r1, c2w1} > (c2w0.C20 + c2w2.C22);
C22 = {c2r2, c2w2} > (c2w0.C20 + c2w1.C21);

P14 = c2r0.P15 + c2r1.P15 + c2r2.P16;

P21 = kr2.P23 + kr1.P22
P22 = c1r0.P23 + c1r1.P21 + c1r2.P21
P23 = c2w2.P24
P24 = c1r0.P25 + c1r1.P25 + c1r2.P26
P26 = c2w1.P21

P = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
1−→

P′ = P14 ‖ P24 ‖B (C12 ‖ C22 ‖ K(2))
τ(c2w1)−−−−−→

P′′ = P14 ‖ P21 ‖B (C12 ‖ C21 ‖ K(2))
1−→ τ(kr2)−−−−→ τ(c2w2)−−−−−→ P

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

And...

Thanks!

F. Buti, M. Callisto, F. Corradini, M.R. Di Berardini A further application of FASE: study liveness properties on Mutual Exclusion Algorithms

