
Introduction PAFASr and PAFASs Expressiveness of read operators

Read Operators and their Expressiveness In
Process Algebra

Speaker: Maria Rita Di Berardini1 F. Corradini1

W. Vogler2

1Dip. di Matematica e Informatica, Università di Camerino

2Institut für Informatik, Universität Augsburg

Paco Meeting, Camerino 15 Settembre 2010

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Non-blocking/non-consuming reading operations

Motivating idea: provide a way of modelling reading of resources
without consuming them – multiple concurrent accesses to the
some resource

Non-blocking reading is known from Petri nets in the form of read
arcs

•

t1 •
r

•

t2

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Non-blocking/non-consuming reading operations

Read arcs:

• have been used to model a variety of applications (transaction
serialisability, concurrent constraint programming,
cryptographic protocols, ... )

• add relevant expressivity (the MUTEX problem cannot be
solved without read arcs)

Also note that non-blocking reading recall the notion of persistence
that exists e.g. in several calculi for describing and analysing
security protocols.

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

In this paper

We enhance PAFAS (a process algebra for asynchronous timed
concurrent systems) with non-blocking reading

• read-action prefix operator (flexible, complex semantics) – PAFASr

• read-set prefix operator (simplier semantics, but with syntactic
restrictions) – PAFASs

We also study the expressiveness of these read operators:

• added expressivity of read-action prefixes (w.r.t. fair behaviour)

• compare the expressivity of PAFASs with those of PAFASr and Petri
nets with read-arcs

• it is still an open problem if PAFASr is more expressive than PAFASs

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

A Process Algebra for Faster Asynchronous systems

Basic Assumption:

• Actions have an upper time bound (1 or 0) as a maximal delay

• Patient prefixes: α.P (delay 1), α is either a visible action or τ

• Urgent prefixes: α.P (delay 0)

• Patient processes: a.P 6 1−→ but a.P ‖a a.nil
1−→ a.P ‖a a.nil

PAFAS

P ::= nil
∣∣ x ∣∣ α.P ∣∣ P + P

∣∣ P ‖A P ∣∣ P [Φ]
∣∣ rec x.P

Q ::= P
∣∣ α.P ∣∣ Q+Q

∣∣ Q ‖A Q ∣∣ Q[Φ]
∣∣ rec x.Q

Initial processes: P, P ′, ... General processes Q,Q′, ...

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Transitional Semantics of PAFAS 1/2

Functional Behaviour: Q
α7→ Q′ – Q evolves in Q′ by performing

α

µ ∈ {α, α}
µ.P

α7→ P

Q1
α7→ Q′

Q1 +Q2
α7→ Q′

α /∈ A Q1
α7→ Q′1

Q1 ‖AQ2
α7→ Q′1 ‖AQ2

α ∈ A Q1
α7→ Q′1 Q2

α7→ Q′2

Q1 ‖AQ2
α7→ Q′1 ‖AQ′2

other rules are as expected

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Transitional Semantics of PAFAS 2/2

Temporal Behaviour: Q let pass 1 unit of time and becomes Q′

• Q X−→r Q
′ conditional time step of duration 1

X ⊆ A (visible actions) is a refusal set

α.P
X−→r α.P

α /∈ X ∪ {τ}
α.P

X−→r α.P

Qi
X−→r Q

′
i

Q1 +Q2
X−→r Q

′
1 +Q′2

Qi
Xi−→r Q

′
i X ⊆ (A ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\A)

Q1 ‖AQ2
α7→ Q′1 ‖AQ′2

other rules are as expected

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Transitional Semantics of PAFAS 2/2

Temporal Behaviour: Q let pass 1 unit of time and becomes Q′

• Q X−→r Q
′ conditional time step of duration 1

X ⊆ A (visible actions) is a refusal set

α.P
X−→r α.P

α /∈ X ∪ {τ}
α.P

X−→r α.P

Qi
X−→r Q

′
i

Q1 +Q2
X−→r Q

′
1 +Q′2

Qi
Xi−→r Q

′
i X ⊆ (A ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\A)

Q1 ‖AQ2
α7→ Q′1 ‖AQ′2

Whenever Q
A−→r Q

′, we write Q
1−→ Q′ and call it a 1-step

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Adding non-blocking reading I (PAFASr)

PAFAS +
Read-action prefix operator

µ . Q where µ ∈ {α, α}
behave as Q but can also been
read with α (read action)

since being read does not
change the state, α can be
performed repeatedly

a . b.nil

b b a ⊲ b.nil

b

b

1

a a

b1

The operational semantics of µ . Q needs two type of transition
relations

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Nested reading behavours

P = a.(b.c+d)

b

b

c,d

a,b

Ordinary action transitions: Q
α7→ Q′

Read action transitions: Q
α
 Q′

(due to nested read actions)

Basically:

• P = a . (b . c+ d) a
 P

• P ′ = b . c+ d
b
 P ′ and P = a . P ′

b
 P

performing a read action does not change the

state, also in a choice context

• P ′ = b . c+ d
c7→ nil and P = a . P ′

c7→ nil
(similarly for the ordinary d)

α−→ =
α7→ ∪ α

 
M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Transitional Semantics of µ . Q

Functional behaviour

µ ∈ {α, α}
µ . Q

α
 µ . Q

Q
α
 Q′

µ . Q
α
 µ . Q′

Q
α7→ Q′

µ . Q
α7→ µ . Q′

Temporal behaviour

Q
X−→r Q

′

α . Q
X−→r α . Q

′

Q
X−→r Q

′ α /∈ X ∪ {τ}
α . Q

X−→r α . Q
′

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Adding non-blocking reading II (PAFASs)

PAFAS +
Read-set prefix operator

{µ1, ..., µn} . Q
{µ1, ..., µn} contains all read

actions currently enabled

We try to avoid nested reading

{a, b} . c a . (b . c)
{a, b} . (c+ d) a . (b . c+ d)

Functional behaviour:
α7→ ( =

α−→)

µi ∈ {α, α}
{µ1, ..., µn} . Q α7→ Q′

Q
α7→ Q′

{µ1, ..., µn} . Q α7→ Q′

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Proper terms = read-proper + rec-proper

Not all PAFASs terms have a reasonable semantics:

• P1 = {a} . ({b} . c) b7→ {b} . c instead of {a} . ({b} . c)
• P2 = ({b} . c) + a

b7→ {b} . c instead of {a} . ({b} . c)

We only consider read-proper terms:

1 for all subterms {µ1, · · · , µn} . Q1, Q1 is read-guarded

2 all subterm Q1 +Q2 are read-guarded

where read-guarded = read-set prefix operators are in the scope
of some action-prefix: a.{b} . c but not {b} . c or {b} . c+ a

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Proper terms = read-proper + rec-proper

Not all PAFASs terms have a reasonable semantics:

• P1 = {a} . ({b} . c) b7→ {b} . c instead of {a} . ({b} . c)
• P2 = ({b} . c) + a

b7→ {b} . c instead of {a} . ({b} . c)

We only consider read-proper terms:

1 for all subterms {µ1, · · · , µn} . Q1, Q1 is read-guarded

2 all subterm Q1 +Q2 are read-guarded

where read-guarded = read-set prefix operators are in the scope
of some action-prefix: a.{b} . c but not {b} . c or {b} . c+ a

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Proper terms = read-proper + rec-proper

P3 = rec x.{a} . b.(c+ x) is read-proper, but P3
b7→ c+ P3 that

is not read-proper because of P3

P3 is not rec-proper:

1 {a} . b.(c+ x) is not read-guarded, and

2 x is not guarded in c+ x

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Proper terms = read-proper + rec-proper

P3 = rec x.{a} . b.(c+ x) is read-proper, but P3
b7→ c+ P3 that

is not read-proper because of P3

P3 is not rec-proper:

1 {a} . b.(c+ x) is not read-guarded, and

2 x is not guarded in c+ x

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Expressivity of read prefixes

(Weak) Fairness of Actions: an action must be performed
whenever countinuosly enabled in a run
Fair Traces: sequence of visible actions that occur in a transition
sequence with infinitely many 1-step

a . b.nil

b b

b

b

1

a a

b1

FairL(a . b) = {aib | i ≥ 0}

Theorem

If P is a finite state process with no
read-prefixes and sort(P ) = {a, b}
then FairL(P ) 6= {aib | i ≥ 0}

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Mapping PAFASs into PAFASr

[[ ]]s: proper PAFASs terms → terms in PAFASr

[[Q]]s is Q where each subterm {µ1, . . . , µn} . Q1 is replaced with
µ1 . . . . . µn . [[Q1]]r

[[{a} . (τ.{b, c} . d ‖∅ e)]]s = a . (τ.b . c . d ‖∅ e)

Theorem

For all proper Q in PAFASs, Q and [[Q]]r are (timed) bisimilar

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

PAFASs and Petri nets with read-arcs

t1 t2

t3 t4

t5t6

P0 = t1.P1 + t2.P1

P1 = {t5, t6} . (t3.P0 + t4.P0)

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Mapping PAFASr into PAFASs

• We first exhibit a subset of PAFASr terms that have an easy
translation in PAFASs (terms in Read Normal Form, RNF)

• We also discuss how terms that are not in RNF can be
normalised and the problems of such a normalisation

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Terms in RNF

The set of terms in RNF is the image of the mapping function [[ ]]r

We only consider (sub)terms in PAFASr

1 µ1 . · · ·µn . Q1 where Q1 is read-guarded

2 Q1 +Q2 read-guarded

3 rec x.Q where Q is rec-proper (as above)

where read-guarded = all read-action prefix operators are in the
scope of some action-prefix: a.b . c but not b . c or b . c+ a

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Translating terms in RNF

[[ ]]s: terms in RNF → proper PAFASs-terms

[[Q]]s is Q where each subterm µ1 . . . . . µn . Q1 is replaced with
{ν1, · · · , νk} . [[Q1]]s (here {ν1, · · · , νk} is a “proper” read-set)

[[a . b . a . Q]]s = {a, b} . [[Q]]s

[[a . b . a . Q]]s = {a, b} . [[Q]]s

Theorem

For each Q in RNF, Q and [[Q]]s are (timed) bisimilar

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Terms not in RNF

Basic Idea

Use laws to rewrite a term not in RNF into a bisimilar one in RNF
Ex: (a . b) + c ∼ a . (b+ c)

L1 µ . (ν . Q) ∼ ν . (µ . Q)
L2 α . (µ . Q) ∼ µ . Q, α . (µ . Q) ∼ α . Q provided that µ ∈ {α, α}

L3 (µ . Q) +R ∼ µ . (Q+R)

L4 a . (Q1 ‖A Q2) ∼ ((a . Q1) ‖A ∪ {a} (a . Q2)),
a . (Q1 ‖A Q2) ∼ ((a . Q1) ‖A ∪ {a} (a . Q2)) prov. that a /∈ sort(Q)

L5 (α . Q)[Φ] ∼ Φ(α) . (Q[Φ]), (α . Q)[Φ] ∼ Φ(α) . (Q[Φ])

L6 (Q[Φ])[Ψ] ∼ Q[Ψ ◦ Φ]

L7 rec x.Q ∼ Q{rec x.Q/x}

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Terms not in RNF

The idea of the translation into RNF is to perform rewriting by
induction on the term size:

• action-prefix, parallel composition and relabeling preserve RNF

• read-prefixes µ . Q can be dealt with distributing µ among
Q’s components

Ex: a . (b . c ‖∅ d) ∼ a . b . c ‖a a . d
• choice and recursion still pose an unsolved problem

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Normalising choices

How to normalise Q+ (R1 ‖A R2)?

(1) if Q is deterministic (Ex: Q = a.b+ c.d) we can use the law

Q+ (R1 ‖A R2) ∼ (Q+R1) ‖A ∪ sort(Q) (Q+R2)

But if Q = a.b+ a.d (non-deterministic):

• (Q+R1) ‖{a,b,c,d} (Q+R2)
a7→ b ‖{a,b,c,d} d while

• Q+ (R1 ‖A R2)
a7→ b or in c

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Normalising choices

How to normalise Q+ (R1 ‖A R2)?

(2) replace the secon copy of Q with the “top-part” of Q

The top-part of Q = a.b+ a.d is a and

Q+ (R1 ‖A R2) ∼ (Q+R1) ‖A ∪{a} (a+R2)

The top-part of Q = a . b.c is a . b and

Q+ (R1 ‖A R2) ∼ (Q+R1) ‖A ∪{a,b} (a . b+R2)

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

We need a suitable expansion law

But, what is the top-part of Q = a ‖∅ b? (note that Q 6∼ a.b+ b.a)

• Q 1−→ a ‖∅ b a7→ nil ‖∅ b,
• a.b+ b.a

1−→ a.b+ b.a
a7→ b

To solve this problem, a proper expansion law is needed

But even for the standard PAFAS this law is unknown

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Conclusion and Future Work

We have studied two different way to enhance PAFAS with non-blocking
reading actions

We also study the expressiveness of these read operators:

• it is still an open problem if PAFASr is more expressive than PAFASs

In the future:

• we will try to complete this translation; this is related to finding an
expansion law for generic PAFASr (and PAFAS) terms

• This expansion law should also provide us with an axiomatisation for
the full PAFAS language

• We plan to use read prefixes for modelling systems and comparing
their efficiency or proving them correct under the progress
assumption

M. R. Di Berardini Read Operators In Process Algebra



Introduction PAFASr and PAFASs Expressiveness of read operators

Thank you for your attention

M. R. Di Berardini Read Operators In Process Algebra


	Introduction
	PAFASr and PAFASs
	Expressiveness of read operators

