

Dependability modeling and
analysis with the MARTE-DAM

profile
PaCo Meeting, 25-26/06/09

UNITO Task: Development of a UML profile for
dependability analysis

Simona Bernardi
UNITO

Recently completed works

 S.Bernardi, J. Merseguer, D.C. Petriu, A
Dependability Profile within MARTE. Submitted to
SOSYM journal, 2009.

 S.Bernardi, J. Merseguer, D.C. Petriu, Adding
Dependability Analysis capabilities to the MARTE
profile. MODELS08, October 2008.

 S. Bernardi, J. Merseguer, D.C. Petriu, An UML
profile for dependability analysis and modeling of
software systems, Tech.Rep. no. RR-08-05, DIIS,
Universidad de Zaragoza, Spain, May, 2008.

Motivation and objectives
 The current standard UML profiles do not provide

concrete capabilities for dependability analysis in a
light-weight fashion

 Several proposals on deriving dependability models
from UML-based models

 Propose a UML profile for quantitative dependability
analysis of sw systems modeled with UML

 Focus on availability, reliability, maintainability and
safety properties

Methodological approach overview
Literature review:
 UML profiles
 Dependability literature
 Survey on UML dep.analysis

Definition of DAM
domain model

Reqs
checklist

Completeness
assessement

of the DAM model

Complete?

Design of the DAM profile

no

yes

DAM profile
assessment

All reqs
satisfied?

no

yes Definition of DAM
stereotypes

Definition of DAM
library using MARTE

Information requirement checklist

ID Requirement Description
R1 Identification of the DAM context: reliability, availability, maintainability,

safety
R2 Specification of dependability reqs in terms of upper/lower bounds
R3 Specification of dependability metrics to be estimated and properties to be

verified (to assess R2)
R4 Threats characterization (faults, errors, failures, hazards, accidents) that

may affect both hw/sw resources and their relationships (FEF chain, H-A,
error propagation)

R5 (For repairable systems) Characterization of repair/recovery processes
that remove basic/derived threats from the system

R6 Specification of incorrect behavior of the system affected by threats as
well as the recovery actions that restore the system state

R7 (For fault tolerant systems) Specification of hw/sw redundant structures

DAM domain model overview

System

MaintenanceThreats

DAMdomainModel

Core

Redundancy

System

Top-level package System package

DAM domain model: Core & Threats

 Core

MaintenanceThreats

DAMdomainModel

Core

Redundancy

System

Top-level package System package

DAM Core model

Step

Service
execProb
/ssAvail
instAvail
unreliability
/reliability
missionTime
availLevel
reliabLevel
safetyLevel
complexity

Component
stateful
origin
isActive
failureCoverage
/percPermFault
/ssAvail
unreliability
/reliability
missionTime
availLevel
reliabLevel
safetyLevel
complexity

Connector
coupling

Dependability
Analysis Context

<<user>>
ServiceRequest

accessProb
serviceProb[1..*]{ordered}

requests

provides

interacts-via

requests
{ordered}

basicServices
sub

1..*

1..*

1..*

1..*

1..*

1..*

*

*

*

*

*
*

2

0..1 0..1

{ordered}

1..*
1..*

{Component.provides->lowerBound()+
Component.requests->lowerBound()>=1}

MARTE::GRM::
ResourceCore::Resource

MARTE::GQAM::
AnalysisContext

MARTE::GQAM::
GQAM_Workload::
BehaviorScenario

MARTE::GQAM::
GQAM_Workload::Step

DAM Threats model

System::Core::
Component

Impairment

domain
MTTF
….

System::Core::
Connector

System::Core::
Service

System::Redundancy::
RedundantStructure

SystemCore::
Core::Step

Fault Error Failure Hazard
cause effect cause

effect

ErrorStep FailureStep HazardStep

Fault
Generator

ErrorPropagation

cause effect

from

to effect

cause

ErrorPropagation
Relation

severity
risk
….

DAM profile definition
• The mapping process from the domain model

elements to the DAM profile has been an iterative
one

• We applied several guidelines (Selic) and
patterns (Lagarde&al) to design a technically
correct and consistent profile

• We used best practise of MARTE to trace the
mapping

• We specialized MARTE to reuse already defined
concepts

DAM profile overview

<<profile>>
MARTE::GQAM

<<profile>>
DAM

<<modelLibrary>>
DAM_Library

DAM_UML_Extensions

<<import>>

<<import>>

<<modelLibrary>>
MARTE::MARTE_Library::BasicNFP_Types

<<modelLibrary>>
DAM::DAM_Library

Basic_DA_Types

Complex_DA_Types

<<import>>

<<import>>

<<profile>>
MARTE::NFPs

<<profile>>
MARTE::VSL::

DataType

<<apply>>

<<apply>>

Mapping of domain classes
• Domain classes are good candidates to

become stereotypes, but eventually only a
subset of them have been mapped to a
stereotype

• Objective: provide a “small” set of stereotypes
– Abstract classes not considered
– Threat/Maintenance concepts are complex

dependability types of the DAM library
– “Subsuming taxonomic concept pattern”: E/F/H

steps classes become enumeration type values

Stereotype definition

ServiceComponent Connector

<<stereotype>>
DaConnector

<<stereotype>>
DaService<<stereotype>>

DaComponent

<<stereotype>>
MARTE::GQAM::

GaScenario

<<stereotype>>
MARTE::GRM::

Resource <<metaclass>>
Connector

<<metaclass>>
…

<<metaclass>>
Message

UML2-BaseClasses

DAM
Domain

Model

DAM profile
<<extend>>

Mapping of domain
attributes/associations

• Attributes have been mapped to either tags of
stereotypes or to attributes of complex
dependability types

– For each attribute
• A basic dependability type is associated/defined
• A multiplicity is defined

• For associations, the “reference association
pattern” is applied

Tag/attribute definition (I)
Component

<<stereotype>>
DaComponent

DAM
Conceptual

Model

DAM profile

ssAvail

ssAvail:NFP_Percentage[*]

Hazard
severity
risk

<<tupleType>>
DaHazard

severity: DaCriticalityLevel[*]
risk: NFP_Real[*]

<<dataType,nfpType>>
DaCriticalityLevel
{valueAttr=value}

value:CriticalLevel

<<dataType,nfpType>>
MARTE::MARTE_Library::

Basic_NFPTypes::NFP_CommonType
expr:VSL_Expression
source:Source
statQ:StatisticalQualifier
dir:DirectionKind

<<enumeration>>
CriticalityLevel

Minor
Marginal
Major
Catastrophic

Tag/attribute definition (II)

<<stereotype>>
DaComponent

DAM profile

<<tupleType>>
DaHazard

failure:DaFailure[*]
hazard: DaHazard[*]

impairment
*Component

DAM
Conceptual

Model
Impairment

domain
MTTF
….

Failure Hazard
severity
risk
….

<<tupleType>>
DaFailure

domain:Domain[0..1]
MTTF:NFP_Duration[*]

severity:DaCriticalityLevel[*]
risk:NFP_Real[*]

Usage of the DAM profile
• Normal way of usage

– At model spec level, the analyst may apply a
DAM stereotype provided that the target model
element belongs to a meta-class extended by
that stereotype (e.g., DaService use case)

• Non trivial threat assumption specification
– State-based failure conditions
– Common-mode failures/hazards
– Error propagation

Normal way of DAM usage
• Pacemaker example

– From Goseva et al. “Architectural-Level Risk
Analysis Using UML” TSE 29(10),2003

– Where a methodology for safety risk
assessment of UML based system models is
presented

• No UML extensions were used by Goseva et
al., NFP parameters were introduced in
tabular form

• We use the DAM to annotate the UML model
with NFPs

Use Case Diagram
In Goseva&al.
each UC is represented
by a (set of) UML SD(s)

AAI

VVI

AAT

AVI

VVT

PatientHeart

<<DaService>>
{execProb=(value=0.29,source=assm),
 hazard = (risk=(value=$R_AVI, source=pred))}

<<stereotype>>
DaService

execProb:NFP_Real[*]
hazard:DaHazard[*]
....

<<tupleType>>
DaHazard

severity:DaCriticalityLevel[*]
risk:NFP_Real[*]
...

DAM annotations
DAM extensions

Pacemaker architecture
<<stereotype>>
DaComponent

complexity:NFP_Real[*]
origin
hazard:DaHazard[*]
....

<<tupleType>>
DaHazard

severity:DaCriticalityLevel[*]
risk:NFP_Real[*]
...

VENTRICULAR

ATRIAL

REED_SWITCH <<DaComponent>>
COMM_GNOME

COIL_DRIVER

{complexity=(value=0.3,source=assm),
 origin = sw,
 hazard = (severity = (value=marginal,source=assm),...
 risk = (value=$R_CG, source=pred))}

<<DaConnector>>
{coupling=(value=0.00039,source=assm);
 errorProp =(from=COMM_GNOME,to=VENTRICULAR);
 hazard = (severity = (value=marginal,source=assm),…
 risk = (value=$R_CG-VT,source=pred);)}

DAMextensions
DAM annotations

<<stereotype>>
DaConnector

coupling:NFP_Real[*]
errorProp:DaErrorProp[*]
hazard:DaHazard[*]
....

State-based failure conditions

<<DaComponent>>
B

<<DaComponent>>
A

{origin=sw;
 failure = (condition=
(component=B, state=degraded) OR
(component=B, state=failed));}

<<tupleType>>
DaFailure

domain:Domain[0..1]
MTTF:NFP_Duration[*]
…
condition:FailureExpression[0..1]

DAM annotations
DAM extensions

Common-mode failure/hazard

<<DaController>>
B

<<DaVariant>>
A

{commonModeFailure =
(occurrenceProb=0.0001);}

<<DaRedundantStructure>>
Package1

<<stereotype>>
DaRedundantStructure

commonModeFailure:DaFailure[*]
....

OCL constraints:
1) self.ownedElements.size()>=2
2) self.ownedElements →
 forall(e|e.oclIsKindOf(DaController or DaVariant or
 DaAdjudicator or DaSpare))

DAM annotations
DAM extensions

DAM profile assessment
 Verification of the extensions w.r.t. the information

requirement checklist (manual)
 Application of DAM to the examples in the literature

and case studies
 Production cell (Bondavalli et al.(1999)]
 Mail system [D'Ambrogio et al.(2002)]
 Pacemaker [Goseva et al. (2003)]
 Elevator control system [Cortellessa et al.(2004)]
 Message redundancy service [Bernardi et al.(2009)]
 Intrusion tolerant firewall [Bernardi et al.(2009)]

On-going/future work

• Still assessing for completeness and
consistency....

• Performability issues
• DAM within UP

Dependability requirement gathering
in UP with the MARTE-DAM profile

PaCo Meeting, 25-26/06/09

UNITO Task: Development of a UML profile for
dependability analysis

Simona Bernardi
UNITO

Recently completed works

 S.Bernardi, J. Merseguer, R.R.Lutz, Reliability and
availability requirement engineering with UP and
DAM profile. Submitted to ISSRE, 2009.

Outline
• Toward the definition of a methodology for the synergetic use

of dependability techniques within the sw development
process

• Why the Unified Process (UP) ?
– Incremental & iterative: manages risks and handles changes in

sw projects better than waterfall models
– Uses UML as its specification language
– Can be customized for different kind of sw systems/application

domains

• UP pays little attention to non-functional reqs

• Several UML profiles exist that help to gather NFPs
– DAM profile for dependability NFPs

Unified Process & req. workflow

Preliminary
 Iterations

Workflows

Requirements

Analysis

Implementation

Test

Design

Inception Elaboration Construction Transition

It.
#1

It.
#2

It.
#i

It.
#i+1

It.
#n

It.
#n+1

It.
#n+2

It.
#m

It.
#m+1

Phases

Find actors & UCs Structure UC model

Detail UCs

Prioritize UCs

Prototype UI

System Analyst

Architect

UC Specifier

UI Designer

A running example from CRUTIAL project

WAN LAN

CIS

CIS

CIS

Hub Hub

Message

Host

LAN

WAN

LAN Traffic
Replicator

WAN Traffic
Replicator

CIS Firewall

send receive

1..*

2..*join

* *

trusted

outgoing

incoming

untrusted

1..*

1..*

The set of dependability reqs
specification techniques

• (Mis)Use cases
• IEEE Std. 830-1998

– IEEE Recommended practise for sw
requirements specification

• DAM profile
• Fault Trees

(Mis)Use Cases

Attacker

Ouside
Threat

Inside
Threat

Destination

Sender

CIS PS

PRRW
Service

Generation
of illegal

traffic

Payload
corruption<<include>>

<<mitigates>>

<<threatens>>

<<mitigates>>

SCADA

• Use Cases are textual specifications
• Use of templates, like the Cockburn's one

IEEE 830-1998
• Recommends

approaches for sw
req specification
and describes
contents and
qualities of a good
SRS

• UP Supplementary
Spec document
inspired by IEEE
830-1998

3.6 Other requirements:
(Fault Tolerance) There shall be at least
2f+1 CIS Firewalls to tolerate f concurrent
faults

DAM profile
• DAM Profile has been devised to annotate the

design, in this work we use it to specify
dependability reqs.

• MARTE NFP types enable to describe relevant
dependability aspect using properties:

– Value: value/parameter name
– Expr: VSL expression
– Source: origin of the NFP (req,est,msr,assm)
– StatQ: statistical qualifier (mean,min,max,..)

Fault Trees
●FTs are used to

● Gather information about the potential contributing
causes to threats

● Trace the combination of faults/failures to use and
misuse cases

● Explore mitigating strategies for removing
identified threats to dependability

Step-by-step process: ith iteration in
the requirement workflow

Input: DMi-1,UCDi-1,SSi-1
Output: DMi,UCDi,SSi
1 Discover new UCs,MUCs and actors: UCDi ← UCDi-1 U UCnew U MUCnew U ACnew
2 Select UCs to be specified: selUCi UDCi
3 Forall uc selUCi do

1 Specify(uc)

4 Select MUCs related to selUCi: selMUCi UDCi
5 Forall muc selMUCi do

1 Specify(muc)

6 Discover new NFRs: SSi ← SSi-1 U NFRnew
7 Select a subset of requirements: selNFRi SSi
8 Forall nfr selNFRi do

1 Elaborate(nfr)

9 Restructure UCDi and DMi if necessary

UC specify activity
• Textual description of the UC using Cockburn

template
• Dependability reqs from the Special

Requirement section
– Application of DAM profile for rewriting them in a

standard and disciplined form

CIS PS use case description
UC Name CIS Protection Service
Scope SCADA
Main Actors Sender (computer from the WAN), Receiver (computer of the

protected LAN)
Success guarantee The correct message is eventually delivered

The illegal message is not delivered
Main scenario A message is sent by Sender to Receiver

1 It arrives to the CIS Firewall
2 Each CIS Firewall checks if it satisfies the security policy and
votes
3 The CIS firewalls agree upon a final judgement (majority voting)
4 The message is correct and the CIS Firewall leader forwards it
to the Receiver

Alternate scenarios 4.a The message is illegal, then it is not delivered
Special Reqs A1. The CIS PS should be available 99.99% of the time

R1. The MTBF shall be at least 6 months
Relationships CIS includes PRRW Service, Payload Corruption threatens CIS

PS, CIS PS mitigates Generation of illegal traffic

DAM annotation to CIS PS use case

Destination

Sender

<<DaService>>
CIS PS

ssAvail=(value=99.99%,statQ=min,source=req);
failure = (MTBF = (value=(6,month),statQ=min,source=req)

<<stereotype>>
DaService

ssAvail:NFP_Percent[*]
failure:DaFailure[*]
....

<<tupleType>>
DaFailure

MTBF:NFP_Duration[*]
...

DAM annotation
DAM extensions

MUC specify activity
• Textual description of the MUC using Cockburn template

• Threats information from Success guarantee, Main/Alternate
scenario and Other Reqs sections

– Application of the DAM profile to characterize from both a
qualitative/quantitative viewpoints faults/failures

• Faults Trees are used to formally specify UCD relationships
– Among Negative Actor actions and Misuse Case success
– Among Misuse Cases and related Use Case

Payload Corruption MUC description
MUC Name Payload Corruption

Scope CIS PS

Main Actors Attacker: Outside and Inside Threats

Success
guarantee

The Payload evaluates as “correct” an illegal message or it evaluate
as “illegal” a correct message (FM1), or it is subject to a temporary
omission (FM2)

Main Scenario
(Outside
Threat)

The Attacker identifies the WAN traffic replicator as potential target
1 The Attacker sniffs the network traffic
2 The Attacker gets an unauthorized access to an host in the LAN
3 The Attacker install a malicious logics in the accessed host
4 The hosted Payload behaves in an unpredicted manner.

Special Reqs F1. At most f Payloads can be concurrently corrupted
F2. f should be se according to the expected rate of fault occurrence

Relationships Payload Corruption threatens CIS PS

DAM annotation to Payload Corruption MUC

<<DaService>>
CIS PS

<<DaFaultGenerator>>
Payload
corruption

<<threatens>>

Attacker

numberOfFaults=(value=$f,statQ=max,source=est/msr);
fault = (type = (value=malicious-logic);
 occurrenceRate = (value=$fr1,statQ=mean,source=est/msr);
 effect = (domain = (value=invalid,omission)));

type:FaultType[*]
occurrenceRate:NFP_Frequency[*]
effect: DaFailure[*]

DAM annotation
DAM extensions

numerOfFaults:NFP_Integer[*]
fault:DaFault

<<stereotype>>
DaFaultGenerator

<<tupleType>>
DaFault

domain:Domain[*]
...

<<tupleType>>
DaFailure

Use of FT to formalize MUC-UC
relationships

CIS PS failure

Quorum not reached
or

wrong judgement

The leader is corrupted
(fails to fwd the approved
message to Destination)

[n/2]+1:n

Pn
corrupted

P omission
(FM2)P is the

leader

...P1 corrupted

P1 omission
(FM2)

P1 invalid
(FM1)

NFR elaboration activity

• Rewriting of further NFR from the SS, related
to dependability/fault-tolerance with the DAM
profile

– Annotation in the Domain Model/Use Case
Diagrams

DAM annotation to the CIS Firewall
Domain Model

Message

Host

LAN

WAN

LAN Traffic
Replicator

WAN Traffic
Replicator

<<DaVariant>>
CIS Firewall

send receive

1..*

2..*join

* *

trusted

outgoing

incoming

untrusted

1..*

1..*

multiplicity=(value=$n,expr=($n>=2*$f+1),source=req);

3.6 Other requirements:
(Fault Tolerance) There shall be at least
2f+1 CIS Firewalls to tolerate f concurrent
faults

Conclusions

●The DAM annotated UML artifacts (UCD,DM)
provide input for the other UP workflows
(design,test,..) as well as for V&V activities

●Next steps:
● Study of the DAM applicability in the other UP

workflows
● V&V activities driven by DAM annotated M(UC)s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

