
Markovian Testing Equivalence and
Exponentially Timed Internal Actions

Marco Bernardo

University of Urbino – Italy

c© November 2009



Markovian Behavioral Equivalences

• Tools for relating and manipulating formal models with an underlying

continuous-time Markov chain (CTMC) semantics.

• Markovian bisimilarity: two processes are equivalent whenever they

are able to mimic each other’s functional and performance behavior

step by step.

• Markovian testing equivalence: two processes are equivalent whenever

an external observer is not able to distinguish between them from a

functional or performance viewpoint by interacting with them by means

of tests and comparing their reactions.

• Markovian trace equivalence: two processes are equivalent whenever

they are able to perform computations with the same functional and

performance characteristics.



Handling Internal Actions

• When comparing nondeterministic processes, internal actions can be

abstracted away.

• When comparing Markovian processes, exponentially timed internal

actions cannot be abstracted away.

• Markovian bisimilarity smoothly handles them by applying to them the

same exit rate equality check that is applied to exponentially timed

visible actions.

• This is not the case with Markovian testing and trace equivalences.

• Exponentially timed internal actions must be carefully taken into

account in order not to equate processes that are distinguishable from

a timing viewpoint.



• Example: consider the two Markovian processes:

<τ, λ>.0

<τ, µ>.0

where λ, µ ∈ R>0 such that λ > µ.

• They should not be considered equivalent, as the durations of their

actions are sampled from different exponential probability distributions.

• If they were considered equivalent, then congruence with respect to

alternative and parallel composition would not hold.

• With the current definition of Markovian testing equivalence

(comparing the probabilities of passing the same test within the same average time upper bound),

there is no way to distinguish between them for any time upper bound

(both pass with prob. 1 the test given by the success state and with prob. 0 any other test).



• How to handle exponentially timed internal actions when checking for

Markovian testing/trace equivalences?

• Idea: place an additional constraint on the length of the successful

computations to take into account.

• Example: take a test comprising only the success state and consider

successful computations of length 1 and average duration less than 1/λ:

¯ Both <τ, λ>.0 and <τ, µ>.0 are forced to execute their only action

and reach success. Is it reached in time?

¯ <τ, λ>.0 reaches success with probability 1, as it has enough time

on average to perform its only action.

¯ <τ, µ>.0 does not, as it has not enough time on average to perform

its only action by the deadline.



Markovian Process Calculus

• Interested in investigating congruence and axiomatization.

• Durational actions and asymmetric synchronizations.

• Namev: set of visible action names.

• Name = Namev ∪ {τ}: set of all action names.

• Rate = R>0 ∪ {∗w | w ∈ R>0}: set of action rates.

• ActM = Name × Rate: set of exponentially timed and passive actions.

• Relab = {ϕ : Name → Name | ϕ−1(τ) = {τ}}: set of visibility-preserv.

relabeling functions.

• Var : set of process variables.



• Process term syntax for process language PLM:

P ::= 0 inactive process

| <a, λ>.P exp. timed action prefix (a ∈ Name, λ ∈ R>0)

| <a, ∗w>.P passive action prefix (a ∈ Name, w ∈ R>0)

| P + P alternative composition

| P ‖S P parallel composition (S ⊆ Namev)

| P / H hiding (H ⊆ Namev)

| P [ϕ] relabeling (ϕ ∈ Relab)

| X process variable (X ∈ Var)

| rec X : P recursion (X ∈ Var)

• PM: set of closed and guarded process terms.



• State transition graph expressing all computations and branching points

and accounting for transition multiplicity (<a, λ>.0 + <a, λ>.0 vs. <a, λ>.0).

• Every P ∈ PM is mapped to a labeled multitransition system [[P ]]M:

¯ Each state corresponds to a process term into which P can evolve.

¯ The initial state corresponds to P .

¯ Each transition from a source state to a target state is labeled with

the action that determines the corresponding state change.

• Every P ∈ PM,pc is mapped to a CTMC (performance closure if no passive trans.):

¯ Dropping action names from all transitions of [[P ]]M.

¯ Collapsing all the transitions between any two states of [[P ]]M into a

single transition by summing up the rates of the original transitions.



(Pre1)
<a, λ>.P

a,λ
−−−→M P

(Pre2)
<a, ∗w>.P

a,∗w−−−→M P

(Alt1)
P1

a,λ̃
−−−→M P ′

P1 + P2
a,λ̃
−−−→M P ′

(Alt2)
P2

a,λ̃
−−−→M P ′

P1 + P2
a,λ̃
−−−→M P ′

(Par1)
P1

a,λ̃
−−−→M P ′1 a /∈ S

P1 ‖S P2
a,λ̃
−−−→M P ′1 ‖S P2

(Par2)
P2

a,λ̃
−−−→M P ′2 a /∈ S

P1 ‖S P2
a,λ̃
−−−→M P1 ‖S P ′2

(Syn1)
P1

a,λ
−−−→M P ′1 P2

a,∗w−−−→M P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2,a)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M P ′1 ‖S P ′2

(Syn2)
P1

a,∗w−−−→M P ′1 P2
a,λ
−−−→M P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1,a)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M P ′1 ‖S P ′2

(Syn3)
P1

a,∗w1−−−→M P ′1 P2

a,∗w2−−−→M P ′2 a ∈ S

P1 ‖S P2

a,∗norm(w1,w2,a,P1,P2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M P ′1 ‖S P ′2

(Hid1)
P

a,λ̃
−−−→M P ′ a ∈ H

P/H
τ,λ̃
−−−→M P ′/H

(Hid2)
P

a,λ̃
−−−→M P ′ a /∈ H

P/H
a,λ̃
−−−→M P ′/H

(Rel)
P

a,λ̃
−−−→M P ′

P [ϕ]
ϕ(a),λ̃
−−−→ M P ′[ϕ]

(Rec)
P{rec X : P ↪→ X}

a,λ̃
−−−→M P ′

rec X : P
a,λ̃
−−−→M P ′



• Auxiliary functions:

weight(P, a) =
∑{|w ∈ R>0 | ∃P ′ ∈ PM. P

a,∗w−−−→M P ′ |}

norm(w1, w2, a, P1, P2) = w1
weight(P1,a)

· w2
weight(P2,a)

· (weight(P1, a) + weight(P2, a))

ratee(P, a, l, D) =





∑{|λ ∈ R>0 | ∃P ′ ∈ D. P
a,λ
−−−→M P ′ |} if l = 0

∑{|w ∈ R>0 | ∃P ′ ∈ D. P
a,∗w−−−→M P ′ |} if l = −1

rateo(P, a, l) = ratee(P, a, l,PM)

ratet(P, l) =
∑

a∈Name
rateo(P, a, l)



Probability and Duration of Computations

• A computation of a process term P ∈ PM is a sequence of transitions

that can be executed starting from P .

• The length of a computation is given by the number of its transitions.

• Cf(P ): multiset of finite-length computations of P .

• Two distinct computations are independent of each other iff neither is

a proper prefix of the other one.

• Focus on finite multisets of independent, finite-length computations.

• Attributes of a finite-length computation: trace, probability, duration.



• Given a set of sequences, we use:

¯ Operator ◦ for sequence concatenation.

¯ Operator | | for sequence length.

• The concrete trace associated with the execution of c ∈ Cf(P ) is the

sequence of action names labeling the transitions of c:

tracec(c) =





ε if |c| = 0

a ◦ tracec(c
′) if c ≡ P

a,λ̃−−−→M c′

• We denote by trace(c) the visible part of tracec(c), i.e., the subsequence

of tracec(c) obtained by removing all the occurrences of τ .



• For the quantitative attributes, we assume P ∈ PM,pc.

• The probability of executing c ∈ Cf(P ) is the product of the execution

probabilities of the transitions of c:

prob(c) =





1 if |c| = 0

λ
ratet(P,0)

· prob(c′) if c ≡ P
a,λ−−−→M c′

• Probability of executing a computation in C ⊆ Cf(P ):

prob(C) =
∑

c∈C

prob(c)

assuming that C is finite and all of its computations are independent.



• The stepwise average duration of c ∈ Cf(P ) is the sequence of average

sojourn times in the states traversed by c:

timea(c) =





ε if |c| = 0

1
ratet(P,0)

◦ timea(c
′) if c ≡ P

a,λ−−−→M c′

• Multiset of computations in C ⊆ Cf(P ) whose stepwise average duration

is not greater than θ ∈ (R>0)
∗:

C≤θ = {| c ∈ C | |c| ≤ |θ| ∧ ∀i = 1, . . . , |c|. timea(c)[i] ≤ θ[i] |}

• Cl: multiset of computations in C ⊆ Cf(P ) having length l ∈ N.



• The stepwise duration of c ∈ Cf(P ) is the sequence of random variables

quantifying the sojourn times in the states traversed by c:

timed(c) =





ε if |c| = 0

Expratet(P,0) ◦ timed(c′) if c ≡ P
a,λ−−−→M c′

• Probability distribution of executing a computation in C ⊆ Cf(P ) within

a sequence θ ∈ (R>0)
∗ of time units:

probd(C, θ) =
|c|≤|θ|∑
c∈C

prob(c) ·
|c|∏

i=1

Pr{timed(c)[i] ≤ θ[i]}

assuming that C is finite and all of its computations are independent.

• Factor Pr{timed(c)[i] ≤ θ[i]} = 1 − e−θ[i]/timea(c)[i] stems from the

cumulative distribution function of the exponentially distributed

random variable timed(c)[i] (whose expected value is timea(c)[i]).



• Why not summing up sojourn times? (standard duration instead of stepwise one)

• Consider process terms (λ 6= µ, b 6= d, identical nonmaximal computations):

<g, γ>.<a, λ>.<b, µ>.0 + <g, γ>.<a, µ>.<d, λ>.0

<g, γ>.<a, λ>.<d, µ>.0 + <g, γ>.<a, µ>.<b, λ>.0

• Maximal computations of the first term:

c1,1 ≡ .
g,γ−−−→M .

a,λ−−−→M .
b,µ−−−→M .

c1,2 ≡ .
g,γ−−−→M .

a,µ−−−→M .
d,λ−−−→M .

• Maximal computations of the second term:

c2,1 ≡ .
g,γ−−−→M .

a,λ−−−→M .
d,µ−−−→M .

c2,2 ≡ .
g,γ−−−→M .

a,µ−−−→M .
b,λ−−−→M .

• Same sum of average sojourn times 1
2·γ + 1

λ
+ 1

µ
and 1

2·γ + 1
µ

+ 1
λ

but ...

• . . . an external observer would be able to distinguish between the two

terms by taking note of the instants at which the actions are performed.



Redefining Markovian Testing Equivalence

• Comparing probabilities of passing a test within a time upper bound.

• Syntax of the set TR of reactive tests (a ∈ Namev, w ∈ R>0):

T ::= s | T ′

T ′ ::= <a, ∗w>.T | T ′ + T ′

• Asymmetric action synchronization: only passive actions within tests.

• Performance closure: passive τ -actions not admitted within tests.

• Presence of a time upper bound: recursion not necessary within tests.

• Denoting test passing: zeroary success operator s (success action may interfere).

• Avoiding ambiguous tests like s + T : two-level syntax for tests.



• Interaction system of P ∈ PM,pc and T ∈ TR:

P ‖Namev T ∈ PM,pc

• In any of its states, P generates the proposal of an action to be executed

by means of a race among the exponentially timed actions enabled in

that state.

• If the name of the proposed action is τ , then P advances by itself.

• Otherwise T :

¯ either reacts by participating in the interaction with P through a

passive action having the same name;

¯ or blocks the interaction if it has no passive actions with the

proposed name.



• Consider the interaction system of P ∈ PM,pc and T ∈ TR.

• A configuration is a state of [[P ‖Namev T ]]M.

• A test-driven computation is a computation of [[P ‖Namev T ]]M.

• A configuration is formed by a process projection and a test projection.

• A configuration is successful iff its test projection is s.

• A test-driven computation is successful iff it traverses a successful

configuration.

• SC(P, T ): multiset of successful computations of P ‖Namev T .



• If P has no exponentially timed τ -actions:

¯ All the computations in SC(P, T ) have a finite length due to the

restrictions imposed on the test syntax.

¯ All the computations in SC(P, T ) are independent of each other

because of their maximality.

¯ The multiset SC(P, T ) is finite because both P and T are finitely

branching.

• Same considerations for SC≤θ(P, T ).

• If there are exponentially timed τ -actions:

¯ Are the computations in SC≤θ(P, T ) independent of each other?

¯ How to distinguish among process terms having only exponentially

timed τ -actions, like <τ, λ>.0 and <τ, µ>.0 with λ > µ?



• Consider subsets of SC≤θ(P, T ) including all the successful test-driven

computations of the same length.

• They are SCl
≤θ(P, T ) for 0 ≤ l ≤ |θ|.

• SC|θ|≤θ(P, T ) is enough as shorter successful test-driven computations can

be taken into account when imposing prefixes of θ as time upper bounds.

• Process terms having only exponentially timed τ -actions are compared

after giving them the possibility of executing the same number of

τ -actions.

• Example:

prob(SC1
≤ 1

λ
(<τ, λ>.0, s)) = 1 6= 0 = prob(SC1

≤ 1
λ
(<τ, µ>.0, s))



• P1 ∈ PM,pc is Markovian testing equivalent to P2 ∈ PM,pc, written

P1 ∼MT P2, iff for all reactive tests T ∈ TR and sequences θ ∈ (R>0)
∗

of average amounts of time:

prob(SC|θ|≤θ(P1, T )) = prob(SC|θ|≤θ(P2, T ))

• Not defined as the intersection of may- and must-equivalence as the

possibility and the necessity of passing a test are qualitative concepts,

hence they are not sufficient (probability > 0, probability = 1).

• Not defined as the kernel of a Markovian testing preorder as such a

preorder would have boiled down to an equivalence relation.

• The presence of time upper bounds makes it possible to decide whether

a test is passed or not even if the process term under test can execute

infinitely many exponentially timed τ -actions.



Basic Properties and Characterizations

• The new Markovian testing equivalence ∼MT turns out to be a

conservative extension of the old one ∼MT,old.

• The two behavioral equivalences coincide over the set PM,pc,v of process

terms that contain no exponentially timed τ -actions.

• For all P1, P2 ∈ PM,pc,v:

P1 ∼MT P2 ⇐⇒ P1 ∼MT,old P2

• ∼MT has the same necessary condition as ∼MT,old.

• ∼MT has three alternative characterizations, each providing further

justifications for the way in which the equivalence has been defined.

• ∼MT has the same fully abstract characterization as ∼MT,old.



• In order for P1 ∼MT P2, it is necessary that for all ck ∈ Cf(Pk), k∈{1, 2},
there exists ch ∈ Cf(Ph), h∈{1, 2}−{k}, such that:

tracec(ck) = tracec(ch)

timea(ck) = timea(ch)

and for all a ∈ Name and i ∈ {0, . . . , |ck|}:
rateo(P

i
k, a, 0) = rateo(P

i
h, a, 0)

with P i
k (resp. P i

h) being the i-th state traversed by ck (resp. ch).

• Process terms satisfying the necessary condition that are not Markovian

testing equivalent (λ1 + λ2 = λ′1 + λ′2 with λ1 6= λ′1, λ2 6= λ′2, and b 6= c or µ 6= γ):

<a, λ1>.<b, µ>.0 + <a, λ2>.<c, γ>.0

<a, λ′1>.<b, µ>.0 + <a, λ′2>.<c, γ>.0



• The first alternative characterization establishes that the discriminating

power does not change if we consider a set TR,lib of tests with the

following more liberal syntax:

T ::= s | <a, ∗w>.T | T + T

• In this setting, a successful configuration is a configuration whose test

projection includes s as top-level summand.

• For all P1, P2 ∈ PM,pc:

P1 ∼MT,lib P2 ⇐⇒ P1 ∼MT P2



• The second characterization establishes that the discriminating power

does not change if we consider a set TR,τ of tests capable of moving

autonomously by executing exponentially timed τ -actions:

T ::= s | T ′

T ′ ::= <a, ∗w>.T | <τ, λ>.T | T ′ + T ′

• For all P1, P2 ∈ PM,pc:

P1 ∼MT,τ P2 ⇐⇒ P1 ∼MT P2



• The third characterization establishes that the discriminating power

does not change if we consider the probability distribution of

passing tests within arbitrary sequences of amounts of time.

• Considering the (more accurate) stepwise durations of test-driven

computations leads to the same equivalence as considering the (easier

to work with) stepwise average durations.

• P1 ∈ PM,pc is Markovian distribution-testing equivalent to P2 ∈ PM,pc,

written P1 ∼MT,d P2, iff for all reactive tests T ∈ TR and sequences

θ ∈ (R>0)
∗ of amounts of time:

probd(SC|θ|(P1, T ), θ) = probd(SC|θ|(P2, T ), θ)

• For all P1, P2 ∈ PM,pc:

P1 ∼MT,d P2 ⇐⇒ P1 ∼MT P2



• ∼MT has another alternative characterization that fully abstracts from

comparing process term behavior in response to tests.

• Based on traces that are extended at each step with the set of visible

action names permitted by the environment at that step.

• An element ξ of (Namev × 2Namev )∗ is an extended trace iff either ξ is

the empty sequence ε or:

ξ ≡ (a1, E1) ◦ (a2, E2) ◦ . . . ◦ (an, En)

for some n ∈ N>0 with ai ∈ Ei and Ei finite for each i = 1, . . . , n.

• ET : set of extended traces.



• Trace associated with ξ ∈ ET :

traceet(ξ) =





ε if |ξ| = 0

a ◦ traceet(ξ
′) if ξ ≡ (a, E) ◦ ξ′

• c ∈ Cf(P ) is compatible with ξ ∈ ET iff:

trace(c) = traceet(ξ)

• CC(P, ξ): multiset of computations in Cf(P ) compatible with ξ.

• The probability and the duration of any computation of CC(P, ξ) have

to be calculated by considering only the action names permitted at each

step by ξ.



• Probability w.r.t. ξ of executing c ∈ CC(P, ξ):

probξ(c) =





1 if |c| = 0

λ
rateo(P,E∪{τ},0)

· probξ′(c
′) if c ≡ P

a,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

λ
rateo(P,E∪{τ},0)

· probξ(c
′) if c ≡ P

τ,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

λ
rateo(P,τ,0)

· probξ(c
′) if c ≡ P

τ,λ−−−→M c′ ∧ ξ ≡ ε

• Probability w.r.t. ξ of executing a computation in C ⊆ CC(P, ξ):

probξ(C) =
∑

c∈C

probξ(c)

assuming that C is finite and all of its computations are independent.



• Stepwise average duration w.r.t. ξ of c ∈ CC(P, ξ):

timea,ξ(c) =





ε if |c| = 0

1
rateo(P,E∪{τ},0)

◦ timea,ξ′(c
′) if c ≡ P

a,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

1
rateo(P,E∪{τ},0)

◦ timea,ξ(c
′) if c ≡ P

τ,λ−−−→M c′

with ξ ≡ (a, E) ◦ ξ′

1
rateo(P,τ,0)

◦ timea,ξ(c
′) if c ≡ P

τ,λ−−−→M c′ ∧ ξ ≡ ε

• Multiset of computations in C ⊆ CC(P, ξ) whose stepwise average

duration w.r.t. ξ is not greater than θ ∈ (R>0)
∗:

C≤θ,ξ = {| c ∈ C | |c| ≤ |θ| ∧ ∀i = 1, . . . , |c|. timea,ξ(c)[i] ≤ θ[i] |}

• Cl: multiset of computations in C ⊆ CC(P, ξ) having length l ∈ N.



• Consider CC|θ|≤θ,ξ(P, ξ) in order to ensure independence.

• P1 ∈ PM,pc is Markovian extended-trace equivalent to P2 ∈ PM,pc,

written P1 ∼MTr,e P2, iff for all extended traces ξ ∈ ET and sequences

θ ∈ (R>0)
∗ of average amounts of time:

probξ(CC|θ|≤θ,ξ(P1, ξ)) = probξ(CC|θ|≤θ,ξ(P2, ξ))

• For all P1, P2 ∈ PM,pc:

P1 ∼MTr,e P2 ⇐⇒ P1 ∼MT P2



• Extended traces identify a set of reactive tests necessary and sufficient in

order to establish whether two terms are Markovian testing equivalent.

• Each canonical reactive test admits a main computation leading to

success, whose intermediate states can have additional computations

each leading to failure in one step.

• Failure is represented through a visible action name z that can occur

within tests but not within process terms under test.

• Syntax of the set TR,c of canonical reactive tests (a ∈ E, E ⊆ Namev finite):

T ::= s | <a, ∗1>.T +
∑

b∈E−{a}
<b, ∗1>.<z, ∗1>.s

• P1 ∼MT P2 iff for all T ∈ TR,c and θ ∈ (R>0)
∗:

prob(SC|θ|≤θ(P1, T )) = prob(SC|θ|≤θ(P2, T ))



Congruence Property

• ∼MT is a congruence over PM,pc with respect to all operators of MPC

(fundamental the additional constraint on the length of successful test-driven computations).

• Let P1, P2 ∈ PM,pc. Whenever P1 ∼MT P2, then:

<a, λ>.P1 ∼MT <a, λ>.P2

P1 + P ∼MT P2 + P P + P1 ∼MT P + P2

P1 ‖S P ∼MT P2 ‖S P P ‖S P1 ∼MT P ‖S P2

P1 / H ∼MT P2 / H

P1[ϕ] ∼MT P2[ϕ]

provided that P ∈ PM,pc for the alternative composition operator and

P1 ‖S P, P2 ‖S P ∈ PM,pc for the parallel composition operator.

• Only a partial congruence result w.r.t. parallel composition for ∼MT,old.



Sound and Complete Axiomatization

• ∼MT has a sound and complete axiomatization over the set PM,pc,nrec

of nonrecursive process terms.

• The axioms for ∼MB are sound but not complete for ∼MT (P 6∼MB Q):

MT~
~MB/1λ 2λ +1λ 2λ

+1λ 2λ
b,_____ µ1λ .

+1λ 2λ
b,_____ µλ2 .

a, a,

µ µb, b,

a,

P Q P Q

• Possibility of deferring choices related to branches starting with the same

action name (see the two a-branches on the left-hand side) that are

immediately followed by sets of actions having the same names and total

rates (see {<b, µ>} after each of the two a-branches).



• Basic laws (identical to those for ∼MB):

(XMT,1) P1 + P2 = P2 + P1

(XMT,2) (P1 + P2) + P3 = P1 + (P2 + P3)

(XMT,3) P + 0 = P

• Characterizing law (subsumes ∼MB axiom for race policy):

(XMT,4)
∑
i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j ,
λi

Σk∈I λk
· µi,j>.Pi,j

if: I is a finite index set with |I| ≥ 2;
for all i ∈ I, index set Ji is finite and its summation is 0 if Ji = ∅;
for all i1, i2 ∈ I and b ∈ Name:∑

j∈Ji1

{|µi1,j | bi1,j = b |} =
∑

j∈Ji2

{|µi2,j | bi2,j = b |}



• Expansion law (identical to that for ∼MB):

(XMT,5)
∑
i∈I

<ai, λ̃i>.Pi ‖S

∑
j∈J

<bj , µ̃j>.Qj =

∑
k∈I,ak /∈S

<ak, λ̃k>.

(
Pk ‖S

∑
j∈J

<bj , µ̃j>.Qj

)
+

∑
h∈J,bh /∈S

<bh, µ̃h>.

(
∑
i∈I

<ai, λ̃i>.Pi ‖S Qh

)
+

∑
k∈I,ak∈S,λ̃k∈R>0

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, λ̃k · wh
weight(Q,bh) >.(Pk ‖S Qh) +

∑
h∈J,bh∈S,µ̃h∈R>0

∑
k∈I,ak=bh,λ̃k=∗vk

<bh, µ̃h · vk
weight(P,ak) >.(Pk ‖S Qh) +

∑
k∈I,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, ∗norm(vk,wh,ak,P,Q)>.(Pk ‖S Qh)

(XMT,6)
∑
i∈I

<ai, λ̃i>.Pi ‖S 0 =
∑

k∈I,ak /∈S

<ak, λ̃k>.Pk

(XMT,7) 0 ‖S

∑
j∈J

<bj , µ̃j>.Qj =
∑

h∈J,bh /∈S

<bh, µ̃h>.Qh

(XMT,8) 0 ‖S 0 = 0



• Distribution laws (identical to those for ∼MB):

(XMT,9) 0 / H = 0

(XMT,10) (<a, λ̃>.P ) / H = <τ, λ̃>.(P / H) if a ∈ H

(XMT,11) (<a, λ̃>.P ) / H = <a, λ̃>.(P / H) if a /∈ H

(XMT,12) (P1 + P2) / H = P1 / H + P2 / H

(XMT,13) 0[ϕ] = 0

(XMT,14) (<a, λ̃>.P )[ϕ] = <ϕ(a), λ̃>.(P [ϕ])

(XMT,15) (P1 + P2)[ϕ] = P1[ϕ] + P2[ϕ]

• Laws dealing with concurrency not available for ∼MT,old.

• The deduction system DED(XMT) is sound and complete for ∼MT

over PM,pc,nrec; i.e., for all P1, P2 ∈ PM,pc,nrec:

P1 ∼MT P2 ⇐⇒ XMT ` P1 = P2



Modal Logic Characterization

• ∼MT has a modal logic characterization over PM,pc based on a variant

of the Hennessy-Milner logic.

• Negation is not included and conjunction is replaced by disjunction

(decreased discriminating power with respect to ∼MB).

• Syntax of the modal language MLMT (a ∈ Namev):

φ ::= true | φ′

φ′ ::= 〈a〉φ | φ′ ∨ φ′

where each formula of the form φ1∨φ2 satisfies the following constraint

(consistent with the name-deterministic nature of canonical reactive tests):

init(φ1) ∩ init(φ2) = ∅
with init(φ) being defined as follows:

init(true) = ∅ init(φ1 ∨ φ2) = init(φ1) ∪ init(φ2) init(〈a〉φ) = {a}



• No quantitative decorations in the syntax because the focus is on entire

computations rather than on step-by-step behavior mimicking, but . . .

• . . . replacement of the boolean satisfaction relation with a quantitative

interpretation function measuring the probability with which a process

term satisfies a formula quickly enough on average.

• Interpretation of MLMT over PM,pc:

[[φ]]
|θ|
MT(P, θ) =





0 if |θ| = 0 ∧ φ 6≡ true

or |θ| > 0 ∧ rateo(P, init(φ) ∪ {τ}, 0) = 0

1 if |θ| = 0 ∧ φ ≡ true



otherwise:

[[true]]
|t◦θ|
MT (P, t ◦ θ) =





∑

P
τ,λ
−−−→M P ′

λ
rateo(P,τ,0)

· [[true]]
|θ|
MT(P ′, θ) if 1

rateo(P,τ,0)
≤ t

0 if 1
rateo(P,τ,0)

> t

[[〈a〉φ]]
|t◦θ|
MT (P, t ◦ θ) =





∑

P
a,λ
−−−→M P ′

λ
rateo(P,{a,τ},0)

· [[φ]]
|θ|
MT(P ′, θ) +

∑

P
τ,λ
−−−→M P ′

λ
rateo(P,{a,τ},0)

· [[〈a〉φ]]
|θ|
MT(P ′, θ)

if 1
rateo(P,{a,τ},0)

≤ t

0 if 1
rateo(P,{a,τ},0)

> t



[[φ1 ∨ φ2]]
|t◦θ|
MT (P, t ◦ θ) = p1 · [[φ1]]

|t1◦θ|
MT (Pno-init-τ , t1 ◦ θ) +

p2 · [[φ2]]
|t2◦θ|
MT (Pno-init-τ , t2 ◦ θ) +

∑

P
τ,λ
−−−→M P ′

λ
rateo(P,init(φ1∨φ2)∪{τ},0)

· [[φ1 ∨ φ2]]
|θ|
MT(P ′, θ)

where:

¯ Pno-init-τ is P without computations starting with a τ -transition.

¯ For j ∈ {1, 2}:
pj =

rateo(P,init(φj),0)

rateo(P,init(φ1∨φ2)∪{τ},0)

tj = t + ( 1
rateo(P,init(φj),0)

− 1
rateo(P,init(φ1∨φ2)∪{τ},0)

)

with pj representing the conditional probability with which P performs actions whose name

is in init(φj) and tj representing the extra average time granted to P for satisfying φj .



• The constraint on disjunctions guarantees that their subformulas

exercise independent computations of P (correct probability calculation).

• In the absence of p1 and p2, the fact that φ1 ∨ φ2 offers a set of initial

actions at least as large as the ones offered by φ1 alone and by φ2 alone

may lead to an overestimate of the probability of satisfying φ1 ∨ φ2.

• Considering t instead of tj in the satisfaction of φj in isolation may lead

to an underestimate of the probability of satisfying φ1 ∨ φ2 within the

given time upper bound, as P may satisfy φ1 ∨ φ2 within t ◦ θ even if

P satisfies neither φ1 nor φ2 taken in isolation within t ◦ θ.

• For all P1, P2 ∈ PM,pc:

P1 ∼MT P2 ⇐⇒ ∀φ ∈MLMT. ∀θ ∈ (R>0)
∗. [[φ]]

|θ|
MT(P1, θ) = [[φ]]

|θ|
MT(P2, θ)



Verification Algorithm

• ∼MT is decidable in polynomial time over the set PM,pc,fin of finite-state

process terms.

• The reason is that:

¯ ∼MT coincides with the Markovian version of ready equivalence.

¯ Probabilistic ready equivalence can be decided in polynomial time

through a suitable reworking of Tzeng algorithm for probabilistic

language equivalence.

• Given two process terms, their name-labeled CTMCs are Markovian

ready equivalent iff the corresponding embedded name-labeled DTMCs

are probabilistic ready equivalent.

• Markovian ready equivalence and probabilistic ready equivalence

coincide on corresponding models if the total exit rate of each state

of a name-labeled CTMC is encoded inside the names of all transitions

departing from that state in the associated embedded DTMC.



• Steps of the algorithm for checking whether P1 ∼MT P2:

1. Transform [[P1]]M and [[P2]]M into their corresponding embedded

discrete-time versions:

a. Divide the rate of each transition by the total exit rate of its

source state.

b. Augment the name of each transition with the total exit rate of

its source state.

2. Compute the relation R that equates any two states of the discrete-

time versions of [[P1]]M and [[P2]]M whenever the two sets of

augmented action names labeling the transitions departing from the

two states coincide.

3. For each equivalence class R induced by R, consider R as the set

of accepting states and check whether the discrete-time versions of

[[P1]]M and [[P2]]M are probabilistic language equivalent.

4. Return yes/no depending on whether all the checks performed in

the previous step have been successful or not.



• Tzeng algorithm for probabilistic language equivalence visits in breadth-

first order the tree containing a node for each possible string and studies

the linear independence of the state probability vectors associated with

a finite subset of the tree nodes.

• Refinement of each iteration of step 3:

1. Create an empty set V of state probability vectors.

2. Create a queue whose only element is the empty string ε.

3. While the queue is not empty:

a. Remove the first element from the queue, say string ς.

b. If the state probability vector of the discrete-time versions of

[[P1]]M and [[P2]]M after reading ς does not belong to the vector

space generated by V , then:

i. For each a ∈ NameRealP1,P2 , add ς ◦ a to the queue.

ii. Add the state probability vector to V .



4. Build a three-valued state vector u whose generic element is:

a. 0 if it corresponds to a nonaccepting state.

b. 1 if it corresponds to an accepting state of [[P1]]M.

c. −1 if it corresponds to an accepting state of [[P2]]M.

5. For each v ∈ V , check whether v · uT = 0.

6. Return yes/no depending on whether all the checks performed in

the previous step have been successful or not.

• The time complexity of the overall algorithm is O(n5).



Future Work

• Investigate whether the introduction of <τ, λ> actions within tests

makes average time upper bounds useless.

• Find a fully abstract characterization of a more denotational nature;

e.g., a suitable variant of acceptance trees.

• Devise a minimization algorithm based on ∼MT.


