Luca Tesei
Dipartimento di Matematica e Informatica
Università di Camerino

Paco Meeting, Lucca, 25-26 June 2009
What we have done

WP3: Characterizing fairness, liveness and distribution in timed models

WP4: asymptotic performance measures for timed systems

Project evaluation: development or improvement of software tools

FASE: a tool for worst case evaluation. In submission.
WP4: asymptotic performance measures for timed systems

- A refined notion of the qualitative preorder for comparing the WCE of asynchronous processes
- Motivation: Why Fifo $\not\sqsubseteq$ Pipe and Pipe $\not\sqsubseteq$ Fifo but quantitatively Fifo is faster than Pipe?
- Counterexamples show that the problem is in the too much general class of tests considered for \sqsubseteq
- Use suitable subclasses of tests (e.g. i/o response tests)
- Find a decidable characterization by inclusion of (properly-defined) refusal trace sets
- “Complete the picture, validate the framework”
WP4: rephrasing of performance measures for timed probabilistic systems

- Porting the qualitative and quantitative preorder for comparing the WCE in the Timed Automata setting
- Find a decidable characterization
- Comparing the results of the case study in this setting
WP4: rephrasing of performance measures for timed probabilistic systems

Definition

Let \(\varphi \) a property expressed in a given property language \(\mathcal{L} \), let \(A_1, A_2 \) be two timed automata with \(A_1 \models \varphi \). We say that:

- \(A_1 \) is *more efficient* than \(A_2 \) when satisfying the property expressed by \(\varphi \), written \(A_1 \sqsupseteq \varphi \ A_2 \), iff, for each \(n \in \mathbb{N} \),
 \[
 \text{Stop}^n(A_2) \models \varphi \implies \text{Stop}^n(A_1) \models \varphi
 \]

- \(A_1 \) is *more efficient* than \(A_2 \) iff, for each property \(\varphi \in \mathcal{L} \),
 \(A_1 \sqsupseteq \varphi \ A_2 \).
What we are working on

WP4: rephrasing of performance measures for timed probabilistic systems

- The role of the class of tests is played by the property language \mathbb{L}
- We restrict ourselves on using only reachability properties
- Decidable characterization of $\sqsupseteq \varphi$ by calculating minimum and maximum delays for reaching a set of states in a TA
- Decidable characterization of \sqsubseteq: could be found for certain \mathbb{L}, e.g. i/o response properties
What we could do together

WP4: rephrasing of performance measures for timed probabilistic systems

- Porting the qualitative and quantitative preorder for comparing the WCE in the \textit{probabilistic/stochastic} Process Algebras setting
- Porting the qualitative and quantitative preorder for comparing the WCE in the \textit{Probabilistic Timed Automata} setting
- Find decidable characterizations
- Analysis of suitable case studies in these settings
WP5: new transformation (and backpropagation) functions between models of performability

- Find a suitable way to represent general “flat” queueing networks with a lts-like (formal) object
- Abstract the network to identify repeating templates, define equivalences, find hierarchical structures
- Reason about properties and structures of the abstract model and relate the results with the original flat model
Thanks!

University of Camerino

Luca Tesei
Ongoing work Paco@Unicam