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Part I:
Introduction



Performance-Oriented Notations

• Building performance-aware system models:

¯ Predicting the satisfiability of QoS requirements.

¯ Choosing among alternative designs based on their expected QoS.

• Theory :

¯ Queueing networks.

¯ Stochastic Petri nets.

¯ Stochastic process algebras.

• Practice:

¯ Formal modeling languages (Modest).

¯ Architectural description languages (Æmilia).

¯ Coordination languages (StoKlaim).

¯ Object-oriented modeling languages (UML SPT/MARTE).



• Performance-oriented notations usually produce behavioral models.

• Class of uniform models consisting of state-transition graphs.

• The current state represents:

¯ the current number of customers in each service center;

¯ the current Petri net marking;

¯ the current process term.

• Each transition represents a state change due to:

¯ the execution of certain activities;

¯ the occurrence of certain events.

• Interleaving view of concurrency.



Behavioral Equivalences

• Models are equivalent if they represent systems that behave the same.

• Useful for theoretical and applicative purposes:

¯ Comparing models that are syntactically different on the basis of

the behavior they exhibit.

¯ Relating models of the same system at different abstraction levels

(top-down modeling).

¯ Manipulating models in a way that system properties are preserved

(state space reduction before analysis).



• Several different approaches to the definition of behavioral equivalences

developed in a purely functional framework:

¯ Bisimilarity [Milner]: two models are equivalent if they are able to

mimic each other’s behavior stepwise.

¯ Testing [De Nicola, Hennessy]: two models are equivalent if an

external observer cannot distinguish between them by interacting

with them by means of tests and looking at their reactions.

¯ Trace [Hoare]: two models are equivalent if they are able to perform

the same sequences of activities.

• How to include performance aspects in behavioral equivalences?



Markovian Framework

• Quantitative description of system evolution over time.

• A Markov chain is a discrete-state stochastic process {X(t) | t ∈ R≥0}
such that for all n ∈ N, time instants t0 < t1 < . . . < tn < tn+1, and

states s0, s1, . . . , sn, sn+1 ∈ S:

Pr{X(tn+1) = sn+1 | X(t0) = s0 ∧X(t1) = s1 ∧ . . . ∧X(tn) = sn} =

Pr{X(tn+1) = sn+1 | X(tn) = sn}

• The past history is completely summarized by the current state.

• Equivalently, the stochastic process has no memory of the past.

• Time homogeneity: probabilities independent of state change times.

• The solution of a Markov chain is its state probability distribution ππ()

at an arbitrary time instant.



• In the continuous-time case (CTMC):

¯ State transitions are described by a rate matrix Q.

¯ The sojourn time in any state is exponentially distributed.

¯ Given ππ(0), the transient solution ππ(t) is obtained by solving:

ππ(t) ·Q = dππ(t)
dt

¯ The stationary solution ππ = lim
t→∞

ππ(t) is obtained (if any) by solving:

ππ ·Q = 0
∑
s∈S

π[s] = 1

• Exponentially distributed random variables are the only continuous

random variables satisfying the memoryless property:

Pr{X ≤ t + t′ | X > t′} = Pr{X ≤ t}



• Every CTMC has an embedded DTMC:

¯ State transitions are described by a probability matrix P.

¯ P is obtained from Q by dividing the rate of each transition by the

sum of the rates of the transitions that depart from the source state

and do not return to it.

¯ The sojourn time in any state is geometrically distributed.

¯ Given ππ(0), the transient solution ππ(n) is computed as follows:

ππ(n) = ππ(0) ·Pn

¯ The stationary solution ππ = lim
n→∞

ππ(n) is obtained (if any) by solving:

ππ = ππ ·P
∑
s∈S

π[s] = 1



Markovian Behavioral Equivalences

• The memoryless property of the exponential distribution results in a

simpler mathematical treatment ...

/ easy calculation of state sojourn times and transition probabilities;

/ compliance with interleaving semantics of state-transition graphs;

... without sacrificing expressiveness

. adequate for modeling the timing of many real-life phenomena like

arrival processes, failure events, and chemical reactions;

. most appropriate stochastic approximation in the case in which only

the average duration of an activity is known;

. proper combinations (phase-type distributions) can approximate

most of general distributions arbitrarily closely.

• How to define Markovian behavioral equivalences?



• Comparison criteria for Markovian behavioral equivalences:

1. Discriminating power:

which of them is finer/coarser than the others?

2. Exactness (of their induced CTMC-level aggregations):

do they make sense from the performance viewpoint?

3. Congruence:

do they support compositional reasoning?

4. Axiomatization:

what are their fundamental equational laws?

5. Modal logic characterization:

what behavioral properties do they preserve?

6. Complexity (of their verification algorithms):

can they be checked for efficiently?



• Exactness: the probability of being in a macrostate of an aggregated

CTMC is the sum of the probabilities of being in one of the constituent

microstates of the original CTMC (transient/stationary).

• Exactness guarantees the preservation of performance characteristics

when going from the original CTMC to the aggregated one.

• Congruence enables the compositional minimization of models.

• Axioms can be used as rewriting rules that syntactically manipulate

models in a way that is consistent with the equivalence.

• The modal logic characterization provides diagnostic information in the

form of distinguishing formulas that explain model inequivalence.



Part II:
Markovian Process Algebra



Process Algebraic Markovian Modeling

• Behavioral equivalences abstract from specific kinds of models but ...

• ... are better investigated and understood in a process algebraic setting.

• Action-based modeling relaying on a set of behavioral operators.

• Performance-oriented process calculi with CTMC semantics:

¯ TIPP [Götz, Herzog, Rettelbach].

¯ PEPA [Hillston].

¯ MPA [Buchholz].

¯ EMPAgr [Bernardo, Bravetti, Gorrieri].

¯ Sπ [Priami].

¯ IMC [Hermanns].

¯ PIOA [Stark, Cleaveland, Smolka].



• Markovian process calculi differ for the action representation.

• Durational actions (integrated time):

¯ An action is executed while time passes.

¯ Single action prefix operator comprising the name a of the action and

the rate λ ∈ R>0 of the exponentially distributed random variable

quantifying the duration of the action: <a, λ>.

¯ The choice among several actions is probabilistic.

¯ TIPP, PEPA, MPA, EMPAgr, Sπ, PIOA.

• Action names separated from time (orthogonal time):

¯ An action is instantaneously executed after some time has elapsed.

¯ Two action prefix operators: (λ). and a.

¯ The choice among several actions is nondeterministic.

¯ IMC.



• Markovian process calculi also differ for the discipline adopted for

action synchronization.

• In the orthogonal time case action synchronization is governed as in

nondeterministic process calculi.

• In the integrated time case action synchronization can be handled in

different ways.

• The more natural choice for deciding the duration of the synchronization

of two exponentially timed actions would be to take the maximum of

their durations.

• The maximum of two exponentially distributed random variables is not

exponentially distributed (phase-type: IMC).



• Symmetric synchronizations:

¯ The synchronization of two exponentially timed actions is assumed

to be exponentially timed.

¯ Its rate is defined through an associative and commutative operator

applied to the two original rates (multiplication, min, max).

¯ TIPP, PEPA, MPA, Sπ.

• Asymmetric synchronizations:

¯ Passive actions of the form <a, ∗w> whose duration is undefined.

¯ An exponentially timed action can synchronize only with a passive

action, thus determining the duration of the synchronization.

¯ PEPA, EMPAgr, PIOA.

• The rate of an action should not increase when synchronizing that action

with other actions (bounded capacity assumption).



Markovian Process Calculus

• Basic design choices: durational actions (more natural modeling style) and

asymmetric synchronizations (reintroducing nondeterminism).

• Namev: set of visible action names.

• Name = Namev ∪ {τ}: set of all action names.

• Rate = R>0 ∪ {∗w | w ∈ R>0}: set of action rates.

• ActM = Name × Rate: set of exponentially timed and passive actions.

• Relab = {ϕ : Name → Name | ϕ−1(τ) = {τ}}: set of visibility-

preserving relabeling functions.

• Var : set of process variables.

• Behavioral operators: dynamic vs. static.



• Syntax of the language LM for MPC:

P ::= 0 inactive process

| <a, λ>.P exp. timed action prefix (a ∈ Name, λ ∈ R>0)

| <a, ∗w>.P passive action prefix (a ∈ Name, w ∈ R>0)

| P + P alternative composition

| P ‖S P parallel composition (S ⊆ Namev)

| P / H hiding (H ⊆ Namev)

| P \L restriction (L ⊆ Namev)

| P [ϕ] relabeling (ϕ ∈ Relab)

| X process variable (X ∈ Var)

| rec X : P recursion (X ∈ Var)

• PM: set of closed and guarded process terms of LM.



• The duration of <a, λ> is given by exponentially distributed random

variable Expλ: Pr{Expλ ≤ t} = 1− e−λ·t and E{Expλ} = 1/λ.

• The duration of <a, ∗w> is undefined.

• The choice among exp. timed actions is generative (prob. over arbitrary names)

and is solved by applying the race policy (exec. prob. proportional to action rates).

• The choice among passive actions is reactive (prob. restricted to same name):

¯ probabilistic for passive actions with the same name and solved by

applying the preselection policy (exec. prob. proportional to action weights);

¯ nondeterministic for passive actions with different names.

• The choice between an exponentially timed action and a passive action

is nondeterministic.



• Applying the race policy to the exponentially timed actions enabled by

a process term means executing the fastest action.

• The sojourn time in that term is thus the minimum of the random

variables quantifying the durations of the enabled exp. timed actions.

• The minimum of a set of n ∈ N>0 exponentially distributed random

variables with rates λ1, λ2, . . . , λn ∈ R>0 is an exponentially distributed

random variable with rate λ1 + λ2 + . . . + λn.

• The sojourn time associated with a term is exponentially distributed

with rate given by the sum of the rates of the enabled exp. timed actions.

• The average sojourn time is the reciprocal of the sum of those rates.

• The execution probability of one of the enabled exp. timed action turns

out to be the ratio of its rate to the sum of the rates of all those actions.



• Process term semantics based on state-transition models where:

¯ states correspond to process terms;

¯ transitions are labeled with actions.

• Recording transition multiplicities to distinguish between terms like

<a, λ>.0 + <a, λ>.0 and <a, λ>.0.

• Labeled multitransition system [[P ]]M = (PM,ActM, −−−→M, P ).

• CTMC derivation if there are no passive transitions:

¯ Drop action names from all transitions of [[P ]]M.

¯ Collapse all the transitions between any two states of [[P ]]M into a

single transition by summing up the rates of the original transitions.

• PM,pc: set of performance closed process terms of PM.



• Derivation of one single transition at a time by applying operational

semantic rules inductively defined on the syntactical structure of the

process term associated with the source state of the transition.

• Operational semantic rules for dynamic operators and recursion:

<a, λ>.P
a,λ−−−→M P <a, ∗w>.P

a,∗w−−−→M P

P1

a,λ̃−−−→M P ′

P1 + P2

a,λ̃−−−→M P ′

P2

a,λ̃−−−→M P ′

P1 + P2

a,λ̃−−−→M P ′

P{(rec X : P )/X} a,λ̃−−−→M P ′

rec X : P
a,λ̃−−−→M P ′



• Operational semantic rules for unary static operators:

P
a,λ̃−−−→M P ′ a ∈ H

P/H
τ,λ̃−−−→M P ′/H

P
a,λ̃−−−→M P ′ a /∈ H

P/H
a,λ̃−−−→M P ′/H

P
a,λ̃−−−→M P ′ a /∈ L

P\L a,λ̃−−−→M P ′\L

P
a,λ̃−−−→M P ′

P [ϕ]
ϕ(a),λ̃

−−−→M P ′[ϕ]



• Classical interleaving semantics for parallel composition:

¯ Due to the memoryless property of the exponential distribution,

the execution of an exponentially timed action can be thought of as

being started in the last state in which the action is enabled.

¯ Due to the infinite support of the exponential distribution, the prob.

of simultaneous termination of two concurrent exponentially timed

actions is zero.

• Operational semantic rules for parallel composition in the case of

non-synchronizing actions:

P1

a,λ̃−−−→M P ′1 a 6∈ S

P1 ‖S P2

a,λ̃−−−→M P ′1 ‖S P2

P2

a,λ̃−−−→M P ′2 a 6∈ S

P1 ‖S P2

a,λ̃−−−→M P1 ‖S P ′2



• Syntactically and structurally different process terms like:

<a, λ>.0 ‖∅ <b, µ>.0

<a, λ>.<b, µ>.0 + <b, µ>.<a, λ>.0

yield the same labeled multitransition system:

µ

λ µ

λ

a, b,

b, a,

• Interleave concurrent exp. timed actions without adjusting their rates

inside transition labels.



• Synchronization admitted only between two actions with the same name,

provided that at most one of them is exponentially timed.

• The synchronization of two exponentially timed actions is forbidden.

• Generative-reactive or reactive-reactive synchronizations.

• The rate of the synchronization of an exponentially timed action with

a passive action is given by the rate of the former multiplied by the

execution probability of the latter (complies with the bounded capacity assumption).

• Multiway synchronizations among actions with the same name are

allowed only if they involve at most one exponentially timed action.

• Weight of a process term P with respect to passive actions of name a:

weight(P, a) =
∑{|w ∈ R>0 | ∃P ′ ∈ PM. P

a,∗w−−−→M P ′ |}



• Operational semantic rules for generative-reactive synchronizations:

P1

a,λ−−−→M P ′1 P2

a,∗w−−−→M P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2,a)

−−−−−−−−−−−−→M P ′1 ‖S P ′2

P1

a,∗w−−−→M P ′1 P2

a,λ−−−→M P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1,a)

−−−−−−−−−−−−→M P ′1 ‖S P ′2

• Operational semantic rule for reactive-reactive synchronizations:

P1

a,∗w1−−−→M P ′1 P2

a,∗w2−−−→M P ′2 a ∈ S

P1 ‖S P2

a,∗ w1
weight(P1,a) ·

w2
weight(P2,a) ·(weight(P1,a)+weight(P2,a))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M P ′1 ‖S P ′2



Part III:
Markovian Bisimilarity



Equivalence Definition

• Two process terms are equivalent if they are able to mimic each other’s

functional and performance behavior stepwise.

• Whenever a process term can perform actions with a certain name that

reach a certain set of terms at a certain speed, then any process term

equivalent to the given one has to be able to respond with actions with

the same name that reach an equivalent set of terms at the same speed.

• Comparison of process term exit rates rather than individual transitions

(different from classical bisimilarity).

• High sensitivity to branching points in process term behavior.



• The exit rate of a process term is the rate at which the process term

can execute actions of a given name that lead to a given set of terms.

• Two-level definition as there are two kinds of actions.

• Exit rate at which P ∈ PM executes actions of name a ∈ Name and

level l ∈ {0,−1} that lead to C ⊆ PM:

ratee(P, a, l, C) =





∑{|λ ∈ R>0 | ∃P ′ ∈ C. P
a,λ−−−→M P ′ |} if l = 0

∑{|w ∈ R>0 | ∃P ′ ∈ C. P
a,∗w−−−→M P ′ |} if l = −1

• Overall exit rate of P with respect to a at level l (it is weight(P, a) when l = −1):

rateo(P, a, l) = ratee(P, a, l,PM)

• Total exit rate of P at level l (inverse of avg sojourn time for l = 0 when P ∈ PM,pc):

ratet(P, l) =
∑

a∈Name

rateo(P, a, l)



• The exit probability of a process term is the probability with which the

process term can execute actions of a given name and level that lead to

a given set of terms.

• Generative probability for exponentially timed actions.

• Reactive probability for passive actions.

• Exit probability with which P ∈ PM executes actions of name a ∈ Name

and level l ∈ {0,−1} that lead to C ⊆ PM:

probe(P, a, l, C) =





ratee(P, a, l, C)/ratet(P, l) if l = 0

ratee(P, a, l, C)/rateo(P, a, l) if l = −1



• An equivalence relation B ⊆ PM × PM is a Markovian bisimulation iff,

whenever (P1, P2) ∈ B, then for all action names a ∈ Name, levels

l ∈ {0,−1}, and equivalence classes C ∈ PM/B:

ratee(P1, a, l, C) = ratee(P2, a, l, C)

• Markovian bisimilarity, denoted by ∼MB, is the union of all the

Markovian bisimulations.

• A consequence of the coinductive nature of Markovian bisimilarity is

that the derivatives of two equivalent terms are still equivalent.



• ∼MB is a strict refinement of classical bisimilarity (λ 6= µ and P 6∼MB Q):

~B

a, b,µ λa,λ µb,
~MB/

QPQP

• ∼MB is a strict refinement of probabilistic bisimilarity:

~PB

~MB/
b,a,λ µb, 2.µa,2.λ

Q QPP



Conditions and Characterizations

• In order for P1 ∼MB P2, it is necessary that for all a ∈ Name and

l ∈ {0,−1}:
rateo(P1, a, l) = rateo(P2, a, l)

• A relation B ⊆ PM × PM is a Markovian bisimulation up to ∼MB iff,

whenever (P1, P2) ∈ B, then for all action names a ∈ Name, levels

l ∈ {0,−1}, and equivalence classes C ∈ PM/(B ∪ B−1 ∪ ∼MB)+:

ratee(P1, a, l, C) = ratee(P2, a, l, C)

• In order for P1 ∼MB P2, it is sufficient to find a Markovian bisimulation

up to ∼MB, say B, such that (P1, P2) ∈ B.



• ∼MB has an alternative characterization in which time and probability

are kept separate (instead of being both subsumed by rates).

• An equivalence relation B ⊆ PM × PM is a separate Markovian

bisimulation iff, whenever (P1, P2) ∈ B, then for all action names

a ∈ Name and levels l ∈ {0,−1}:

rateo(P1, a, l) = rateo(P2, a, l)

and for all equivalence classes C ∈ PM/B:

probe(P1, a, l, C) = probe(P2, a, l, C)

• Separate Markovian bisimilarity, denoted by ∼MB,s, is the union of all

the separate Markovian bisimulations.

• For all P1, P2 ∈ PM:

P1 ∼MB,s P2 ⇐⇒ P1 ∼MB P2



Equivalence Properties

• The CTMC-level aggregation induced by ∼MB is an ordinary lumping.

• A partition O of the state space of a CTMC is an ordinary lumping iff,

whenever s1, s2 ∈ O for some O ∈ O, then for all O′ ∈ O:

∑{|λ ∈ R>0 | ∃s′ ∈ O′. s1

λ−−−→ s′ |} =
∑{|λ ∈ R>0 | ∃s′ ∈ O′. s2

λ−−−→ s′ |}

• Ordinary lumping is an exact CTMC-level aggregation.

• The probability of being in a macrostate of an ordinarily lumped CTMC

is the sum of the probabilities of being in one of its constituent

microstates of the original CTMC.

• Two Markovian bisimilar terms in PM,pc are guaranteed to possess the

same performance characteristics.



• ∼MB is a congruence with respect to all the operators of MPC.

• Let P1, P2 ∈ PM. Whenever P1 ∼MB P2, then:

<a, λ̃>.P1 ∼MB <a, λ̃>.P2

P1 + P ∼MB P2 + P P + P1 ∼MB P + P2

P1 ‖S P ∼MB P2 ‖S P P ‖S P1 ∼MB P ‖S P2

P1/H ∼MB P2/H P1\L ∼MB P2\L P1[ϕ] ∼MB P2[ϕ]

• Recursion: extend ∼MB to open process terms by replacing all variables

freely occurring outside rec binders with every closed process term.

• Let P1, P2 ∈ LM contain a free process variable X. We define P1 ∼MB P2

iff P1{Q/X} ∼MB P2{Q/X} for all Q ∈ PM.

• Let P1, P2∈LM contain a free process variable X. Whenever P1∼MB P2,

then:

rec X : P1 ∼MB rec X : P2



• ∼MB has a sound and complete axiomatization.

• Basic laws (commutativity, associativity, and neutral element of +):

(AMB
1 ) P1 + P2 = P2 + P1

(AMB
2 ) (P1 + P2) + P3 = P1 + (P2 + P3)

(AMB
3 ) P + 0 = P

• Characterizing laws (race policy and preselection policy, instead of + idempotency):

(AMB
4 ) <a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P

(AMB
5 ) <a, ∗w1>.P + <a, ∗w2>.P = <a, ∗w1+w2>.P



• Expansion law (interleaving view of concurrency supported by memoryless property):

(AMB
6 )

∑
i∈I

<ai, λ̃i>.P1,i ‖S
∑

j∈J
<bj , µ̃j>.P2,j =

∑
k∈I,ak /∈S

<ak, λ̃k>.

(
P1,k ‖S

∑
j∈J

<bj , µ̃j>.P2,j

)
+

∑
h∈J,bh /∈S

<bh, µ̃h>.

(
∑
i∈I

<ai, λ̃i>.P1,i ‖S P2,h

)
+

∑
k∈I,ak∈S,λ̃k∈R>0

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, λ̃k · wh
weight(P2,bh)

>.(P1,k ‖S P2,h) +

∑
h∈J,bh∈S,µ̃h∈R>0

∑
k∈I,ak=bh,λ̃k=∗vk

<bh, µ̃h · vk
weight(P1,ak)

>.(P1,k ‖S P2,h) +

∑
k∈I,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, ∗ vk
weight(P1,ak) ·

wh
weight(P2,bh) ·(weight(P1,ak)+weight(P2,bh))

>.(P1,k ‖S P2,h)



• Distribution laws (for unary static operators):

(AMB
7 ) 0/H = 0

(AMB
8 ) (<a, λ̃>.P )/H = <τ, λ̃>.(P/H) if a ∈ H

(AMB
9 ) (<a, λ̃>.P )/H = <a, λ̃>.(P/H) if a /∈ H

(AMB
10 ) (P1 + P2)/H = P1/H + P2/H

(AMB
11 ) 0\L = 0

(AMB
12 ) (<a, λ̃>.P )\L = 0 if a ∈ L

(AMB
13 ) (<a, λ̃>.P )\L = <a, λ̃>.(P\L) if a /∈ L

(AMB
14 ) (P1 + P2)\L = P1\L + P2\L

(AMB
15 ) 0[ϕ] = 0

(AMB
16 ) (<a, λ̃>.P )[ϕ] = <ϕ(a), λ̃>.(P [ϕ])

(AMB
17 ) (P1 + P2)[ϕ] = P1[ϕ] + P2[ϕ]



• Recursion laws:

(AMB
18 ) rec X : P = P{(rec X : P )/X}

(AMB
19 ) Q = P{Q/X} ⇒ Q = rec X : P

(AMB
20 ) rec X : P = rec Y : P{Y/X} if Y not free in P

• The deduction system DED(AMB) is sound and complete for ∼MB,

i.e. for all P1, P2 ∈ PM:

P1 ∼MB P2 ⇐⇒ AMB ` P1 = P2



• ∼MB has a modal logic characterization.

• Variant of HML in which the diamond operator is decorated with a

lower bound on the rate (resp. weight) with which exponentially timed

(resp. passive) actions with a given name should be executed.

• Decorating individual action-based modal operators is consistent with

the fact that bisimulation captures step-by-step behavior mimicking.

• Syntax of MLMB (a ∈ Name, λ, w ∈ R>0):

φ ::= true

| ¬φ

| φ ∧ φ

| 〈a〉λφ

| 〈a〉∗wφ



• Interpretation of MLMB:

P |=MB true

P |=MB ¬φ if P 6|=MB φ

P |=MB φ1 ∧ φ2 if P |=MB φ1 and P |=MB φ2

P |=MB 〈a〉λφ if ratee(P, a, 0, sat(φ)) ≥ λ

P |=MB 〈a〉∗wφ if ratee(P, a,−1, sat(φ)) ≥ w

where:

sat(φ) = {P ′ ∈ PM | P ′ |=MB φ}

• For all P1, P2 ∈ PM:

P1 ∼MB P2 ⇐⇒ (∀φ ∈MLMB. P1 |=MB φ ⇐⇒ P2 |=MB φ)



• ∼MB can be decided in polynomial time through an algorithm inspired

by Paige-Tarjan partition refinement algorithm.

• ∼MB characterized as a fixed point of successively finer relations:

∼MB =
⋂

i∈N
∼MB,i

• ∼MB,0 = PM × PM hence it induces the trivial partition {PM}.
• Let i ≥ 1. Whenever (P1, P2) ∈ ∼MB,i, then for all a ∈ Name,

l ∈ {0,−1}, and C ∈ PM/∼MB,i−1:

ratee(P1, a, l, C) = ratee(P2, a, l, C)

• ∼MB,1 refines the partition induced by ∼MB,0 by creating an equivalence

class for each set of terms that satisfy the necessary condition for ∼MB.



• Steps of the algorithm to check whether P1 ∼MB P2:

1. Build a partition with a single class including all the states of the

disjoint union of [[P1]]M and [[P2]]M, then initialize a list of splitters

with this class.

2. Refine the current partition by splitting each of its classes according

to the exit rates towards one of the splitters, then remove this splitter

from the list.

3. For each split class, insert into the list of splitters all the resulting

subclasses except for the largest one.

4. If the list of splitters is empty, return yes/no depending on whether

the initial state of [[P1]]M and the initial state of [[P2]]M belong to the

same class or not, otherwise go back to the refinement step.

• The time complexity is O(m·log n) if a splay tree is used for representing

the subclasses arising from the splitting of a class.



Part IV:
Variants of Markovian Bisimilarity



Markovian Bisimilarity and Rewards

• Specific performance measures may distinguish between ordinarily

lumpable states by ascribing them a different meaning.

• Make ∼MB sensitive to performance measures.

• Specification of performance measures for CTMC-based models via

reward structures:

¯ A yield reward yr ∈ R expresses the rate at which a gain/loss is

accumulated while sojourning in the related state.

¯ A bonus reward br ∈ R expresses the instantaneous gain/loss

implied by the execution of the related transition.



• Instant-of-time value of a reward-based performance measure:

∑
s∈S

yr(s) · π[s] +
∑

s
λ−−−→ s′

br(s, λ, s′) · φ(s, λ, s′)

where:

¯ yr(s) is the yield reward associated with state s.

¯ π[s] is the probability of being in state s at the considered instant

of time.

¯ br(s, λ, s′) is the bonus reward associated with transition s
λ−−−→ s′.

¯ φ(s, λ, s′) is the frequency of transition s
λ−−−→ s′ at the considered

instant of time: φ(s, λ, s′) = π[s] · λ.



• Ascribing a different meaning to ordinarily lumpable states amounts to

giving different rewards to such states or their outgoing transitions.

• How to specify rewards at the process algebraic level?

• Bonus rewards can naturally be associated with actions.

• Yield rewards are problematic, as in process calculi the concept of state

is implicit.

• Process calculi are action-based, hence associate yield rewards with

actions too.

• Additivity assumption: the yield reward of a state corresponding to a

process term is given by the sum of the yield rewards associated with

the actions enabled by that term.



• MPCr: Markovian process calculus with rewards.

• New action syntax (yr, br ∈ R):

<a, λ, yr , br>

<a, ∗w, ∗, ∗>

• PM,r: set of closed and guarded process terms of MPCr.

• New semantic rule for action prefix:

<a, λ̃, ỹr , b̃r>.P
a,λ̃,ỹr,b̃r−−−−−−→M,r P

• The other semantic rules are modified accordingly.



• In particular, here are the semantic rules for synchronization:

P1

a,λ,yr,br−−−−−−→M,r P ′1 P2

a,∗w,∗,∗−−−−−−→M,r P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2,a) ,yr· w

weight(P2,a) ,br

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M,r P ′1 ‖S P ′2

P1

a,∗w,∗,∗−−−−−−→M,r P ′1 P2

a,λ,yr,br−−−−−−→M,r P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1,a) ,yr· w

weight(P1,a) ,br

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M,r P ′1 ‖S P ′2

P1

a,∗w1 ,∗,∗
−−−−−−→M,r P ′1 P2

a,∗w2 ,∗,∗
−−−−−−→M,r P ′2 a ∈ S

P1 ‖S P2

a,∗ w1
weight(P1,a) ·

w2
weight(P2,a) ·(weight(P1,a)+weight(P2,a))

,∗,∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M,r P ′1 ‖S P ′2

• Yield rewards normalized in the same way as rates.



• Exit reward with which P ∈ PM,r executes actions of name a ∈ Name

and level l ∈ {0,−1} that lead to C ⊆ PM,r:

rewarde(P, a, 0, C) =
∑{| yr + λ · br ∈ R | ∃P ′ ∈ C. P

a,λ,yr,br−−−−−−→M,r P ′ |}
rewarde(P, a,−1, C) = 0

• An equivalence relation B ⊆ PM,r × PM,r is a reward Markovian

bisimulation iff, whenever (P1, P2) ∈ B, then for all action names

a ∈ Name, levels l ∈ {0,−1}, and equivalence classes C ∈ PM,r/B:

ratee(P1, a, l, C) = ratee(P2, a, l, C)

rewarde(P1, a, l, C) = rewarde(P2, a, l, C)

• Reward Markovian bisimilarity, denoted by ∼MB,r, is the union of all

the reward Markovian bisimulations.



• ∼MB,r enjoys the same properties as ∼MB.

• Axioms characterizing ∼MB,r:

<a, λ1, yr1, br1>.P + <a, λ2, yr2, br2>.P =

<a, λ1 + λ2, yr1 + yr2,
λ1

λ1+λ2
· br1 + λ2

λ1+λ2
· br2>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

• Yield rewards summed up in the same way as rates (additivity assumption).

• Bonus rewards summed up by considering execution probabilities too.



• Equivalent characterizing axioms in yield-normal-form:

<a, λ, yr , br>.P = <a, λ, yr + λ · br , 0>.P

<a, λ1, yr1, 0>.P + <a, λ2, yr2, 0>.P = <a, λ1 + λ2, yr1 + yr2, 0>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

• Equivalent characterizing axioms in bonus-normal-form:

<a, λ, yr , br>.P = <a, λ, 0, br + yr
λ

>.P

<a, λ1, 0, br1>.P + <a, λ2, 0, br2>.P =

<a, λ1 + λ2, 0, λ1
λ1+λ2

· br1 + λ2
λ1+λ2

· br2>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P



Markovian Bisimilarity and Nondeterminism

• Nondeterminism is a useful abstraction whenever not all the details of

a model are known in the early design stages.

• Combine nondeterministic process calculi and CTMCs.

• Separate exponential delays from interacting actions (orthogonal time).

• Markovian branchings and nondeterministic branchings.

• Inter-process communication implemented through the synchronization

of visible interacting actions.

• Interacting actions take no time.

• Maximal progress: τ -actions take precedence over time passing.



• MPCi: interactive Markovian process calculus.

• New syntax for prefixing:

a.P

(λ).P

• PM,i: set of closed and guarded process terms of MPCi.

• Two transition relations are necessary: actions and delays.

• New semantic rules for prefixing:

a.P
a−−−→M,a P

(λ).P
λ−−−→M,d P

• The other semantic rules are modified accordingly.



• In particular, here are the semantic rules for parallel composition:

P1

a−−−→M,a P ′1 a /∈ S

P1 ‖S P2

a−−−→M,a P ′1 ‖S P2

P2

a−−−→M,a P ′2 a /∈ S

P1 ‖S P2

a−−−→M,a P1 ‖S P ′2

P1

a−−−→M,a P ′1 P2

a−−−→M,a P ′2 a ∈ S

P1 ‖S P2

a−−−→M,a P ′1 ‖S P ′2

P1

λ−−−→M,d P ′1

P1 ‖S P2

λ−−−→M,d P ′1 ‖S P2

P2

λ−−−→M,d P ′2

P1 ‖S P2

λ−−−→M,d P1 ‖S P ′2

• CMTC derivation if there are no states with several outgoing action

transitions or a non-τ -action transition alternative to delay transitions,

by superposing source and destination state of each action transition

(absence of nondeterminism).



• Exit rate of P ∈ PM,i towards C ⊆ PM,i:

ratee,d(P, C) =
∑{|λ ∈ R>0 | ∃P ′ ∈ C. P

λ−−−→M,d P ′ |}

• An equivalence relation B ⊆ PM,i × PM,i is an interactive Markovian

bisimulation iff, whenever (P1, P2) ∈ B, then:

¯ For all action names a ∈ Name, P1

a−−−→M,a P ′1 implies

P2

a−−−→M,a P ′2 for some P ′2 with (P ′1, P
′
2) ∈ B.

¯ For all equivalence classes C ∈ PM,i/B, P1 6 τ−−−→M,a implies

P2 6 τ−−−→M,a with:

ratee,d(P1, C) = ratee,d(P2, C)

• Interactive Markovian bisimilarity, denoted by ∼MB,i, is the union of

all the interactive Markovian bisimulations.



• ∼MB,i enjoys properties similar to those of ∼MB.

• Axioms characterizing ∼MB,i:

a.P + a.P = a.P

(λ1).P + (λ2).P = (λ1 + λ2).P

τ.P + (λ).Q = τ.P

• Idempotency of + like in nondeterministic process calculi.

• Race policy like in CTMCs.

• Maximal progress too.



• τ -actions should be ignored when playing the bisimulation game.

• They are invisible and take no time.

• Weak variant of ∼MB,i.

• After any non-pre-emptable exponential delay, skip all the states that

can evolve via a finite sequence of τ -transitions to a given class.

• Internal backward closure of C ⊆ PM,i:

Cτ = {P ′ ∈ PM,i | ∃P ∈ C. P ′
τ∗

====⇒M,a P}



• An equivalence relation B ⊆ PM,i × PM,i is a weak interactive

Markovian bisimulation iff, whenever (P1, P2) ∈ B, then:

¯ For all visible action names a ∈ Namev, P1

a−−−→M,a P ′1 implies

P2
τ∗aτ∗
====⇒M,a P ′2 for some P ′2 with (P ′1, P

′
2) ∈ B.

¯ P1

τ−−−→M,a P ′1 implies P2
τ∗

====⇒M,a P ′2 for some P ′2 with (P ′1,P
′
2) ∈ B.

¯ For all equivalence classes C ∈ PM,i/B, P1
τ∗

====⇒M,a P ′1 6 τ−−−→M,a

implies P2
τ∗

====⇒M,a P ′2 6 τ−−−→M,a for some P ′2 with:

ratee,d(P ′1, Cτ ) = ratee,d(P ′2, Cτ )

• Weak interactive Markovian bisimilarity, denoted by≈MB,i, is the union

of all the weak interactive Markovian bisimulations.

• The first part of the third clause distinguishes τ -divergent processes

from non-τ -divergent processes that cannot execute any visible action

(congruence w.r.t. parallel composition would be lost in a timed setting with maximal progress).



• ≈MB,i is strictly coarser than ∼MB,i but it is not a congruence with

respect to alternative composition.

• Initial τ -actions need a different treatment (as for classical weak bisimilarity).

• P1 ∈ PM,i is weakly interactive Markovian bisimulation congruent to

P2 ∈ PM,i, written P1 'MB,i P2, iff:

¯ For all action names a ∈ Name, P1

a−−−→M,a P ′1 implies P2
τ∗aτ∗
====⇒M,a P ′2

for some P ′2 with P ′1 ≈MB,i P ′2.

¯ For all action names a ∈ Name, P2

a−−−→M,a P ′2 implies P1
τ∗aτ∗
====⇒M,a P ′1

for some P ′1 with P ′1 ≈MB,i P ′2.

¯ P1 6 τ−−−→M,a iff P2 6 τ−−−→M,a .

¯ For all equivalence classes C ∈ PM,i/≈MB,i, P1 6 τ−−−→M,a implies:

ratee,d(P1, C) = ratee,d(P2, C)



• ∼MB,i⊂'MB,i⊂≈MB,i with 'MB,i having the same properties as ∼MB,i.

• Additional axioms characterizing 'MB,i:

a.τ.P = a.P

P + τ.P = τ.P

a.(P + τ.Q) + τ.Q = a.(P + τ.Q)

(λ).τ.P = (λ).P

• τ -laws witnessing the capability of 'MB,i of abstracting from τ -actions

that are non-initial.



Markovian Bisimilarity and Immediate Actions

• Combinations of exponential distributions approximate many general

distributions arbitrarily closely, still some useful durations cannot be

represented in the integrated time case, specially zero durations.

• Performance abstraction mechanism for integrated time, useful for

handling systems with activities that are several orders of magnitude

faster than those important for certain performance measures.

• Necessary to manage situations with which no timing can be associated

like choices among logical events (e.g., the reception of a message vs. its loss).

• Zero durations implemented through immediate actions à la GSPN.

• Markovian branchings and prioritized/probabilistic branchings.

• Pre-emption: immediate τ -actions take precedence over all the lower

priority actions.



• MPCx: Markovian process calculus extended with immediate actions.

• New action syntax (l ∈ N>0, l′ ∈ N):

<a, λ>.P

<a,∞l,w>.P

<a, ∗l′
w>.P

• PM,x: set of closed and guarded process terms of MPCx.

• Preselection policy : each of the highest priority immediate actions that

are enabled is given an execution probability proportional to its weight.

• Priority constraints to control process priority interrelation:

¯ An exponentially timed action can synchronize only with a passive

action with priority constraint l′ = 0.

¯ An immediate action with priority level l can synchronize only with

a passive action with priority constraint l′ = l.



• Additional semantic rules for immediate actions:

<a,∞l,w>.P
a,∞l,w−−−→M,x P

P1

a,∞l,w−−−→M,x P ′1 P2

a,∗l
v−−−→M,x P ′2 a ∈ S

P1 ‖S P2

a,∞l,w· v
weight(P2,a,l)

−−−−−−−−−−−−−−−−−−→M,x P ′1 ‖S P ′2

P1

a,∗l
v−−−→M,x P ′1 P2

a,∞l,w−−−→M,x P ′2 a ∈ S

P1 ‖S P2

a,∞l,w· v
weight(P1,a,l)

−−−−−−−−−−−−−−−−−−→M,x P ′1 ‖S P ′2

• The other semantic rules are modified by taking into account priority

constraints associated with passive actions.



• PM,x,pc: set of performance closed process terms of PM,x.

• CTMC derivation for performance closed process terms by eliminating

all vanishing states (those with outgoing immediate transitions, hence zero sojourn time):

¯ Make as many copies of every transition entering a vanishing state

as there are highest priority immediate transitions departing from

the vanishing state.

¯ Connect each copy to the destination state of one of the highest

priority immediate transitions leaving the vanishing state.

¯ Assign as rate of each copy the rate of the original incoming

transition multiplied by the execution probability of the highest

priority immediate transition corresponding to the copy.



• Exit rate at which P ∈ PM,x executes actions of name a ∈ Name and

level l ∈ Z that lead to C ⊆ PM,x:

ratee(P, a, l, C) =





∑{|λ ∈ R>0 | ∃P ′ ∈ C. P
a,λ−−−→M,x P ′ |} if l = 0

∑{|w ∈ R>0 | ∃P ′ ∈ C. P
a,∞l,w−−−→M,x P ′ |} if l > 0

∑{|w ∈ R>0 | ∃P ′ ∈ C. P
a,∗−l−1

w−−−→ M,x P ′ |} if l < 0

• priτ
∞(P ): priority level of the highest priority immediate τ -action

enabled by P ∈ PM,x.

• priτ
∞(P ) = 0 if P does not enable any immediate τ -action.

• no-pre(l, P ) if no action of level l can be pre-empted in P :

no-pre(l, P ) ⇐⇒ l ≥ priτ
∞(P ) ∨ −l − 1 ≥ priτ

∞(P )



• The exit rate comparison should be conducted only when no pre-emption

can be exercised.

• An equivalence relation B ⊆ PM,x × PM,x is an extended

Markovian bisimulation iff, whenever (P1, P2) ∈ B, then for all action

names a ∈ Name, levels l ∈ Z such that no-pre(l, P1) and no-pre(l, P2),

and equivalence classes C ∈ PM,x/B:

ratee(P1, a, l, C) = ratee(P2, a, l, C)

• Extended Markovian bisimilarity, denoted by ∼MB,x, is the union of all

the extended Markovian bisimulations.



• ∼MB,x enjoys the same properties as ∼MB.

• Axioms characterizing ∼MB,x:

<a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P

<a,∞l,w1>.P + <a,∞l,w2>.P = <a,∞l,w1+w2>.P

<a, ∗l
w1>.P + <a, ∗l

w2>.P = <a, ∗l
w1+w2>.P

<τ,∞l,w>.P + <a, λ>.Q = <τ,∞l,w>.P

<τ,∞l,w>.P + <a,∞l′,w′>.Q = <τ,∞l,w>.P if l > l′

<τ,∞l,w>.P + <a, ∗l′
w′>.Q = <τ,∞l,w>.P if l > l′

• The last three axioms encode pre-emption exercised by immediate

τ -actions over lower priority actions.



• Immediate τ -actions should be ignored in the bisimulation game.

• They are invisible and take no time.

• Weak variant of ∼MB,x.

• After any non-pre-emptable action, skip all the states that can evolve

via a finite sequence of immediate τ -transitions to a given class.

• Harder than weakening ∼MB,i:

¯ Need to keep track of quantitative information associated with the

actions to be abstracted away.

¯ Need to take into account the degree of observability of classes of

terms to be reached.



• Process term P ∈ PM,x is l-unobservable, with l ∈ N>0, iff priτ
∞(P ) = l

and P does not enable any immediate non-τ -action with priority level

l′ ≥ l, nor any passive action with priority constraint l′ ≥ l.

• A path h of length n ∈ N>0:

P1

τ,∞l1,w1−−−−−−→M,x P2

τ,∞l2,w2−−−−−−→M,x . . .
τ,∞ln,wn−−−−−−→M,x Pn+1

is unobservable iff for all i = 1, . . . , n process term Pi is li-unobservable.

• The probability of executing the unobservable path h is given by:

probp(h) =
n∏

i=1

wi
rateo(Pi,τ,li)



• Weak exit rate at which P ∈ PM,x executes actions of name a ∈ Name

and level l ∈ Z that lead to C ⊆ PM,x:

ratee,w(P, a, l, C) =
∑

P ′∈Cw

ratee(P, a, l, {P ′}) · probw(P ′, C)

where:

¯ Cw is the weak backward closure of C:

Cw = C ∪ {Q ∈ PM,x − C | Q can reach C via unobservable paths}

¯ probw(P ′, C) is the sum of the probabilities of all the unobservable

paths from a term in Cw to C:

probw(P ′, C) =





1 if P ′ ∈ C

∑{| probp(h) |h unobservable path from P ′ to C |}
if P ′ ∈ Cw − C



• The weak exit rate comparison should be conducted only with respect

to certain classes of terms.

• An observable term is a term that enables a non-τ -action that cannot

be pre-empted by any enabled immediate τ -action.

• An initially unobservable term is a term in which all the enabled non-

τ -actions are pre-empted by some enabled immediate τ -action, but at

least one of the paths starting at this term with one of the higher priority

enabled immediate τ -actions reaches an observable term.

• A fully unobservable term is a term in which all the enabled non-τ -

actions are pre-empted by some enabled immediate τ -action, and all

the paths starting at this term with one of the higher priority enabled

immediate τ -actions are unobservable.

• PM,x,fu: set of fully unobservable process terms of PM,x.



• The weak exit rate comparison with respect to observable and fully

unobservable classes must obviously be performed.

• The comparison should be made with respect to all fully unobservable

classes together, in order to maximize the abstraction power despite the

quantitative information attached to immediate τ -actions.

• The comparison with respect to initially unobservable classes should be

skipped, otherwise terms like:

<a, λ>.<τ,∞l1,w1>.<b, µ>.0

<a, λ>.<τ,∞l2,w2>.<b, µ>.0

<a, λ>.<b, µ>.0

could not be considered equivalent to each other.



• An equivalence relation B ⊆ PM,x × PM,x is a weak extended

Markovian bisimulation iff, whenever (P1, P2) ∈ B, then for all

action names a ∈ Name and levels l ∈ Z such that no-pre(l, P1) and

no-pre(l, P2):

ratee,w(P1, a, l, C) = ratee,w(P2, a, l, C) ∀C ∈ PM,x/B obs.

ratee,w(P1, a, l,PM,x,fu) = ratee,w(P2, a, l,PM,x,fu)

• Weak extended Markovian bisimilarity, denoted by ≈MB,x, is the union

of all the weak extended Markovian bisimulations.



• ≈MB,x enjoys the same properties as ∼MB,x except for congruence with

respect to parallel composition.

• Need to restrict to a well-prioritized subset of PM,x,nd, the set of

non-divergent process terms of PM,x.

• A fully unobservable process term like <τ,∞l,w>.0 allows concurrent

exp. timed actions to be executed, while the equivalent divergent process

term rec X : <τ,∞l,w>.X prevents time from passing.

• State observability and pre-emption schemes for two equivalent terms

may change differently when composing each of them in parallel with

some term, thus exposing parts of their behavior not compared before.

• A set of terms of PM,x is well-prioritized if, taken two arbitrary terms

P1 and P2 in the set, any immediate/passive transition of each of

[[P1]]M,x and [[P2]]M,x has priority level/constraint less than the priority

level of any highest priority immediate τ -transition departing from an

unobservable state of the other one.



• Additional axioms characterizing ≈MB,x:

<a, λ>.
∑
i∈I

<τ,∞l,wi>.Pi =
∑
i∈I

<a, λ · wi/ Σk∈I wk>.Pi

<a,∞l′,w′>.
∑
i∈I

<τ,∞l,wi>.Pi =
∑
i∈I

<a,∞l′,w′·wi/ Σk∈I wk
>.Pi

<a, ∗l′
w′>.

∑
i∈I

<τ,∞l,wi>.Pi =
∑
i∈I

<a, ∗l′
w′·wi/ Σk∈I wk

>.Pi

• τ,∞-laws showing the ability of ≈MB,x of abstracting from immediate

τ -actions and encoding the procedure for removing vanishing states.

• No abstraction from initial immediate τ -actions, hence ≈MB,x does not

incur the congruence problem with respect to alternative composition

found in ≈MB,i (a consequence of the way the weak exit rate is defined).



Part V:
Markovian Testing Equivalence



Equivalence Definition

• Two process terms are equivalent if an external observer cannot

distinguish between them, with the only way for the observer to

infer information about their functional and performance behavior being

to interact with them by means of tests and look at their reactions.

• Was the test passed? If so, with which probability? And how long did

it take to pass the test?

• Tests formalized as process terms.

• Interaction formalized as parallel composition of process term and test

with synchronization enforced on any action name.

• Comparison of process term probabilities of performing a successful test-

driven computation within a given amount of time.



• A computation of a process term is a sequence of transitions that can

be executed starting from the state corresponding to the term.

• The length of a computation is the number of its transitions.

• Two distinct computations are independent of each other if neither is a

proper prefix of the other one.

• Cf(P ): multiset of finite-length computations of P ∈ PM.

• If(P ): multiset of finite-length independent computations of P ∈ PM.



• Attributes of a finite-length computation:

¯ trace;

¯ probability ;

¯ duration.

• The trace associated with the execution of c ∈ Cf(P ) is the sequence of

action names labeling the transitions of c:

trace(c) =





ε if length(c) = 0

a ◦ trace(c′) if c ≡ P
a,λ̃−−−→M c′



• The probability of executing c ∈ Cf(P ) – with P ∈ PM,pc – is the

product of the execution probabilities of the transitions of c:

prob(c) =





1 if length(c) = 0

λ
ratet(P,0)

· prob(c′) if c ≡ P
a,λ−−−→M c′

• Probability of executing a computation of C ⊆ If(P ):

prob(C) =
∑

c∈C

prob(c)

• The above probability would not be well defined if set C contained

computations that are not indepedent of each other.



• The stepwise average duration of c ∈ Cf(P ) – with P ∈ PM,pc – is the

sequence of average sojourn times in the states traversed by c:

timea(c) =





ε if length(c) = 0

1
ratet(P,0)

◦ timea(c
′) if c ≡ P

a,λ−−−→M c′

• Multiset of computations of C ⊆ Cf(P ) whose stepwise average duration

is not greater than θ ∈ (R>0)
∗:

C≤θ = {| c ∈ C | length(c) ≤ length(θ) ∧
∀i = 1, . . . , length(c). timea(c)[i] ≤ θ[i] |}



• The stepwise duration of c ∈ Cf(P ) – with P ∈ PM,pc – is the sequence of

random variables quantifying the sojourn times in the states traversed

by c:

timed(c) =





ε if length(c) = 0

Expratet(P,0) ◦ timed(c′) if c ≡ P
a,λ−−−→M c′

• Probability distribution of executing a computation of C ⊆ If(P ) within

a sequence θ ∈ (R>0)
∗ of time units:

probd(C, θ) =
length(c)≤length(θ)∑

c∈C

prob(c) ·
length(c)∏

i=1

Pr(timed(c)[i] ≤ θ[i])

• The exponential random variable timed(c)[i] has cumulative distribution

function Pr{timed(c)[i] ≤ θ[i]} = 1−e−θ[i]/timea(c)[i] and expected value

timea(c)[i].



• Why not summing up sojourn times? (standard duration instead of stepwise)

• Process terms with identical non-maximal computations (λ 6= µ, b 6= d):

<g, γ>.<a, λ>.<b, µ>.0 + <g, γ>.<a, µ>.<d, λ>.0

<g, γ>.<a, λ>.<d, µ>.0 + <g, γ>.<a, µ>.<b, λ>.0

• Maximal computations of the first term:

c1,1 ≡ .
g,γ−−−→ .

a,λ−−−→ .
b,µ−−−→ .

c1,2 ≡ .
g,γ−−−→ .

a,µ−−−→ .
d,λ−−−→ .

• Maximal computations of the second term:

c2,1 ≡ .
g,γ−−−→ .

a,λ−−−→ .
d,µ−−−→ .

c2,2 ≡ .
g,γ−−−→ .

a,µ−−−→ .
b,λ−−−→ .

• Same average durations 1
2·γ + 1

λ
+ 1

µ
and 1

2·γ + 1
µ

+ 1
λ

but ...

• ... an external observer would be able to distinguish between the two

terms by taking note of the instants at which the actions are performed.



• From now on, we assume that τ is removed from Name, hence we

consider only visible actions.

• Syntax of the set T of tests (I non-empty finite index set):

T ::= f

| s

| ∑
i∈I

<ai, ∗wi>.Ti

• Asymmetric action synchronization: only passive actions.

• Passing tests within a finite amount of time: no recursion.

• No ambiguous tests like s + f: guarded alternative composition.



• Interaction system of P ∈ PM,pc and T ∈ T :

P ‖Name T

• In any of its states a process term to be tested generates the proposal

of an action to be executed by means of a race among the exponentially

timed actions enabled in that state.

• The test:

¯ either reacts by participating in the interaction with the process

term through a passive action having the same name,

¯ or blocks the interaction if it has no passive actions with the

proposed name.

• Any interaction system is finite state, acyclic, and performance closed.

• Its computations have finite length.



• A configuration is a state of [[P ‖Name T ]]M.

• A configuration is formed by a process part and a test part.

• A configuration is successful (resp. failed) iff its test part is “s”

(resp. “f”).

• A computation is successful (resp. failed) iff so is the last configuration

it reaches.

• A computation that is neither successful nor failed is interrupted.

• SC(P, T ): multiset of successful computations of Cf(P ‖Name T ).

• SC(P, T ) is finite because of the finitely-branching structure of the

considered terms.

• SC(P, T ) ⊆ If(P ‖Name T ) because of the maximality of successful test-

driven computations.



• P1 ∈ PC,pc is Markovian testing equivalent to P2 ∈ PM,pc, written

P1 ∼MT P2, iff for all tests T ∈ T and sequences θ ∈ (R>0)
∗ of average

amounts of time:

prob(SC≤θ(P1, T )) = prob(SC≤θ(P2, T ))

• ∼MT is strictly finer than classical and probabilistic testing equivalences.

• ∼MT is strictly coarser than ∼MB as it is less sensitive to branching

points.

• The derivatives of two Markovian testing equivalent terms are not

necessarily related by ∼MT.



Conditions and Characterizations

• In order for P1 ∼MT P2, given T ∈ T it is necessary that for all

ck ∈ SC(Pk, T ) with k ∈ {1, 2} there exists ch ∈ SC(Ph, T ) with

h ∈ {1, 2} − {k} such that:

trace(ck) = trace(ch)

timea(ck) = timea(ch)

and for all a ∈ Name:

rateo(Pk,last, a, 0) = rateo(Ph,last, a, 0)



• Considering the (more accurate) stepwise durations of the test-driven

computations leads to the same equivalence as considering the (easier to

work with) stepwise average durations of the test-driven computations.

• P1 ∈ PM,pc is Markovian distribution-testing equivalent to P2 ∈ PM,pc,

written P1 ∼MT,d P2, iff for all tests T ∈ T and sequences θ ∈ (R>0)
∗

of amounts of time:

probd(SC(P1, T ), θ) = probd(SC(P2, T ), θ)

• For all P1, P2 ∈ PM,pc:

P1 ∼MT,d P2 ⇐⇒ P1 ∼MT P2



• ∼MT has a fully abstract alternative characterization that avoids

analyzing the process term behavior in response to tests.

• Extended traces: traces that are suitably extended with the sets of action

names permitted at each step by the environment.

• An element σ of (Name × 2Name)∗ is an extended trace iff either σ is

the empty sequence or:

σ ≡ (a1, E1) ◦ (a2, E2) ◦ . . . ◦ (an, En)

for some n ∈ N>0 with ai ∈ Ei for each i = 1, . . . , n.

• ET : set of extended traces.



• Trace associated with σ ∈ ET :

trace(σ) =





ε if length(σ) = 0

a ◦ trace(σ′) if σ ≡ (a, E) ◦ σ′

• c ∈ Cf(P ) is compatible with σ ∈ ET iff:

trace(c) = trace(σ)

• CC(P, σ): multiset of computations of Cf(P ) compatible with σ.

• CC(P, σ) is finite because of the finitely-branching structure of the

considered terms.

• CC(P, σ) ⊆ If(P ) because of the compatibility of the computations with

the same extended trace σ.



• Execution probability of c ∈ CC(P, σ) with respect to σ:

probσ(c) =





1 if length(c) = 0

λ
Σ

b∈E
rateo(P,b,0)

· probσ′(c′) if c ≡ P
a,λ−−−→M c′

with σ ≡ (a, E) ◦ σ′

• Stepwise average duration of c ∈ CC(P, σ) with respect to σ:

timeσ
a (c) =





ε if length(c) = 0

1
Σ

b∈E
rateo(P,b,0)

◦ timeσ′
a (c′) if c ≡ P

a,λ−−−→M c′

with σ ≡ (a, E) ◦ σ′



• P1 ∈ PM,pc is Markovian extended-trace equivalent to P2 ∈ PM,pc,

written P1 ∼MTr,e P2, iff for all extended traces σ ∈ ET and sequences

θ ∈ (R>0)
∗ of average amounts of time:

probσ(CCσ
≤θ(P1, σ)) = probσ(CCσ

≤θ(P2, σ))

• For all P1, P2 ∈ PM,pc:

P1 ∼MTr,e P2 ⇐⇒ P1 ∼MT P2



• Extended traces identify a set of tests necessary and sufficient in order to

establish whether two process terms are Markovian testing equivalent.

• Single computation leading to success, whose states can have additional

computations each leading to failure in one step.

• Syntax of the set Tc of canonical tests (a ∈ E):

T ::= s

| <a, ∗1>.T +
∑

b∈E−{a}
<b, ∗1>.f

• P1 ∼MT P2 iff for all T ∈ Tc and θ ∈ (R>0)
∗:

prob(SC≤θ(P1, T )) = prob(SC≤θ(P2, T ))



Equivalence Properties

• ∼MT induces a CTMC-level aggregation called T-lumping, which is

strictly coarser than ordinary lumping:

λ1

|  |I

|  |Iλ

µ |  |,1Iµ1,1 |  |II J|  |, |      |

0s

1s s

µ1, J|   |1
µ

i,js

|  |Iλ
Σ λkk

λ1
Σ λkk

___ . µ1,1 |  |II J|  |, |      |

s’

s’’

Σ λkk

___ . µ

i,js

where for all i1, i2 ∈ I:

∑
j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

• Exact aggregation not previously known in the CTMC field, but entirely

characterizable in a process algebraic framework like ordinary lumping.

• Two Markovian testing equivalent terms in PM,pc are guaranteed to

possess the same performance characteristics.



• ∼MT is a congruence with respect to all the dynamic operators and

parallel composition.

• Let P1, P2 ∈ PM,pc. Whenever P1 ∼MT P2, then:

<a, λ>.P1 ∼MT <a, λ>.P2

P1 + P ∼MT P2 + P P + P1 ∼MT P + P2

P1 ‖S P ∼MT P2 ‖S P P ‖S P1 ∼MT P ‖S P2

• Parallel composition: P ∈ PM containing only passive actions such that

P1 ‖S P, P2 ‖S P ∈ PM,pc.



• The axioms for ∼MB are sound but not complete for ∼MT:

MT~
~MB/1λ 2λ +1λ 2λ

+1λ 2λ
b,_____ µ1λ .

+1λ 2λ
b,_____ µλ2 .

a, a,

µ µb, b,

a,

P’ P’P’’ P’’

where P ′ 6∼MB P ′′.

• Choices among actions with the same name can be deferred whenever

such actions are followed by actions having the same names and the

same cumulative rates in all the branches.



• Axiom schema characterizing ∼MT:

∑
i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j ,
λi

Σk∈I λk
· µi,j>.Pi,j

where for all i1, i2 ∈ I and b ∈ Name:

∑
j∈Ji1

{|µi1,j | bi1,j = b |} =
∑

j∈Ji2

{|µi2,j | bi2,j = b |}

• Subsumes <a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P .



• ∼MT has a modal logic characterization over PM,pc.

• Variant of HML in which negation is ruled out and conjunction is

replaced by disjunction.

• No quantitative decorations in the syntax but ...

• ... quantitative interpretation establishing the probability with which a

process term satisfies a formula quickly enough on average.

• Syntax of HMLMT (a ∈ Name):

φ ::= true | φ′

φ′ ::= φ′ ∨ φ′ | 〈a〉φ

where each formula of the form φ1∨φ2 obeys (independent initial action names):

init(φ1) ∩ init(φ2) = ∅



• Interpretation of HMLMT over PM,pc × (R>0)
∗ is zero for φ 6= true

whenever init(P ) ∩ init(φ) = ∅ or θ = ε, otherwise:

[[true]]MT(P, θ) = 1

[[φ1 ∨ φ2]]MT(P, t ◦ θ) = p1 · [[φ1]]MT(P, t1 ◦ θ) + p2 · [[φ2]]MT(P, t2 ◦ θ)

[[〈a〉φ]]MT(P, t ◦ θ) =





∑

P
a,λ
−−−→M P ′

λ
rateo(P,a,0)

· [[φ]]MT(P ′, θ) if 1
rateo(P,a,0)

≤ t

0 if 1
rateo(P,a,0)

> t

where for j ∈ {1, 2}:
pj = Σ{| rateo(P, b, 0) | b ∈ init(φj) |} / Σ{| rateo(P, b, 0) | b ∈ init(φ1 ∨ φ2) |}
tj = t + ( 1

Σ{| rateo(P,b,0)|b∈init(φj) |} − 1
Σ{| rateo(P,b,0)|b∈init(φ1∨φ2) |} )

• For all P1, P2 ∈ PM,pc:

P1 ∼MT P2 ⇐⇒ ∀φ∈HMLMT.∀θ∈(R>0)
∗. [[φ]]MT(P1, θ) = [[φ]]MT(P2, θ)



• ∼MT can be decided in polynomial time through an algorithm inspired

by Tzeng algorithm for probabilistic language equivalence.

• Two action-labeled CTMCs are Markovian testing equivalent iff their

corresponding embedded action-labeled DTMCs are probabilistic

testing equivalent, with the latter coinciding with probabilistic ready

equivalence.

• The name occurring in the label of each transition of the embedded

action-labeled DTMCs must be enriched with the total exit rate of the

transition source state.



• Steps of the algorithm to check whether P1 ∼MT P2:

1. Transform [[P1]]M and [[P2]]M into their corresponding embedded

discrete-time versions:

(a) Divide the rate of each transition by the total exit rate of its

source state.

(b) Augment the name of each transition with the total exit rate of

its source state.

2. Compute the equivalenceR that relates any two states of the disjoint

union of [[P1]]M and [[P2]]M such that their two sets of (original) action

names labeling their outgoing transitions coincide.

3. For each equivalence class R induced byR, apply Tzeng algorithm to

check the embedded discrete-time versions of [[P1]]M and [[P2]]M for

probabilistic language equivalence by considering R as the set of

accepting states.

• The time complexity is O(n5).



Part VI:
Markovian Trace Equivalence



Equivalence Definition

• Two process terms are equivalent if they can perform computations with

the same functional and performance characteristics.

• Comparison of process term probabilities of performing a computation

within a given amount of time.

• Branching points are completely ignored.

• We keep considering only visible actions.



• c ∈ Cf(P ) is compatible with α ∈ Name∗ iff:

trace(c) = α

• CC(P, α): multiset of computations of Cf(P ) compatible with α.

• CC(P, α) is finite because of the finitely-branching structure of the

considered terms.

• CC(P, α) ⊆ If(P ) because of the compatibility of the computations with

the same trace α.



• P1 ∈ PM,pc is Markovian trace equivalent to P2 ∈ PM,pc, written

P1 ∼MTr P2, iff for all traces α ∈ Name∗ and sequences θ ∈ (R>0)
∗

of average amounts of time:

prob(CC≤θ(P1, α)) = prob(CC≤θ(P2, α))

• ∼MTr is strictly finer than classical and probabilistic trace equivalences.

• ∼MTr is strictly coarser than ∼MT as it is insensitive to branching points.

• The derivatives of two Markovian trace equivalent terms are not

necessarily related by ∼MTr.



Conditions and Characterizations

• In order for P1 ∼MTr P2, given α ∈ Name∗ it is necessary that for

all ck ∈ CC(Pk, α) with k ∈ {1, 2} there exists ch ∈ CC(Ph, α) with

h ∈ {1, 2} − {k} such that:

trace(ck) = trace(ch)

timea(ck) = timea(ch)

and:

ratet(Pk,last, 0) = ratet(Ph,last, 0)



• Considering the (more accurate) stepwise durations of the computations

leads to the same equivalence as considering the (easier to work with)

stepwise average durations of the computations.

• P1 ∈ PM,pc is Markovian distribution-trace equivalent to P2 ∈ PM,pc,

written P1 ∼MTr,d P2, iff for all traces α ∈ Name∗ and sequences

θ ∈ (R>0)
∗ of amounts of time:

probd(CC(P1, α), θ) = probd(CC(P2, α), θ)

• For all P1, P2 ∈ PM,pc:

P1 ∼MTr,d P2 ⇐⇒ P1 ∼MTr P2



Equivalence Properties

• ∼MTr induces the same exact CTMC-level aggregation as∼MT (T-lumping):

λ1

|  |I

|  |Iλ

µ |  |,1Iµ1,1 |  |II J|  |, |      |

0s

1s s

µ1, J|   |1
µ

i,js

|  |Iλ
Σ λkk

λ1
Σ λkk

___ . µ1,1 |  |II J|  |, |      |

s’

s’’

Σ λkk

___ . µ

i,js

where for all i1, i2 ∈ I:

∑
j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

• Two Markovian trace equivalent terms in PM,pc are guaranteed to

possess the same performance characteristics.



• ∼MTr is a congruence with respect to all the dynamic operators.

• Let P1, P2 ∈ PM,pc. Whenever P1 ∼MTr P2, then:

<a, λ>.P1 ∼MTr <a, λ>.P2

P1 + P ∼MTr P2 + P P + P1 ∼MTr P + P2

• Not a congruence with respect to parallel composition:

¯ Markovian trace equivalent process terms (b 6= c):

P1 ≡ <a, λ1>.<b, µ>.P ′ + <a, λ2>.<c, µ>.P ′′

P2 ≡ <a, λ1 + λ2>.(<b, λ1
λ1+λ2

· µ>.P ′ + <c, λ2
λ1+λ2

· µ>.P ′′)

¯ but:

P1 ‖{a,b,c} <a, ∗1>.<b, ∗1>.0

P2 ‖{a,b,c} <a, ∗1>.<b, ∗1>.0

are distinguished by the following trace:

α ≡ a ◦ b



• The axioms for ∼MT are sound but not complete for ∼MTr:

1λ 2λ +1λ 2λ

+1λ 2λ +1λ 2λ

a, a,

µ µb,

P’ P’’

c,
~
~/ MT

MTr

a,

P’ P’’

b,_____ µ1λ . _____ µλ2 .c,

where b 6= c.

• Action prefix tends to become left-distributive with respect to

alternative composition.

• Choices among actions with the same name can be deferred whenever

such actions are followed by terms having the same total exit rate.

• The names and the total rates of the initial actions of such derivative

terms can be different in the various branches.



• Axiom schema characterizing ∼MTr:

∑
i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j ,
λi

Σk∈I λk
· µi,j>.Pi,j

where for all i1, i2 ∈ I:

∑
j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

• Subsumes the axiom schema characterizing ∼MT.



• ∼MTr has a modal logic characterization over PM,pc.

• Variant of HML in which both negation and conjunction are ruled out.

• No quantitative decorations; quantitative interpretation.

• Syntax of HMLMTr (a ∈ Name):

φ ::= true

| 〈a〉φ



• Interpretation of HMLMTr over PM,pc × (R>0)
∗ is zero for φ 6= true

whenever θ = ε, otherwise:

[[true]]MTr(P, θ) = 1

[[〈a〉φ]]MTr(P, t ◦ θ) =





∑

P
a,λ
−−−→M P ′

λ
ratet(P,0)

· [[φ]]MTr(P
′, θ) if 1

ratet(P,0)
≤ t

0 if 1
ratet(P,0)

> t

• For all P1, P2 ∈ PM,pc:

P1∼MTr P2 ⇐⇒ ∀φ∈HMLMTr.∀θ∈(R>0)
∗. [[φ]]MTr(P1, θ)=[[φ]]MTr(P2, θ)



• ∼MTr can be decided in polynomial time through an algorithm inspired

by Tzeng algorithm for probabilistic language equivalence.

• Two action-labeled CTMCs are Markovian trace equivalent iff their

corresponding embedded action-labeled DTMCs are probabilistic trace

equivalent.

• The name occurring in the label of each transition of the embedded

action-labeled DTMCs must be enriched with the total exit rate of the

transition source state.



• Steps of the algorithm to check whether P1 ∼MTr P2:

1. Transform [[P1]]M and [[P2]]M into their corresponding embedded

discrete-time versions:

(a) Divide the rate of each transition by the total exit rate of its

source state.

(b) Augment the name of each transition with the total exit rate of

its source state.

2. Apply Tzeng algorithm to check the embedded discrete-time versions

of [[P1]]M and [[P2]]M for probabilistic language equivalence by viewing

each of their states as being an accepting state.

• The time complexity is O(n4).



Part VII:
Conclusion



Markovian Spectrum

• Variants of ∼MTr based on:

¯ Completed trace: trace ending up in a deadlock state.

¯ Failure set : set of names of actions that cannot be executed in a

certain state.

¯ Failure trace: trace extended at each step with a failure set.

¯ Ready set : set of the names of all the actions that must be executable

in a certain state.

¯ Ready trace: trace extended at each step with a ready set.

• Enhancements with respect to traces in the nondeterministic setting:

¯ completed traces for gaining deadlock sensitivity;

¯ failures for reasoning about safety;

¯ readies for reasoning about liveness.

• Less variability in the Markovian setting.



• c ∈ Cf(P ) is a maximal computation compatible with α ∈ Name∗ iff

c ∈ CC(P, α) and the last configuration of c is deadlocked.

• MCC(P, α): multiset of maximal computations of Cf(P ) compatible

with α.

• P1 ∈ PM,pc is Markovian completed-trace equivalent to P2 ∈ PM,pc,

written P1 ∼MCTr P2, iff for all traces α ∈ Name∗ and sequences

θ ∈ (R>0)
∗ of average amounts of time:

prob(CC≤θ(P1, α)) = prob(CC≤θ(P2, α))

prob(MCC≤θ(P1, α)) = prob(MCC≤θ(P2, α))

• For all P1, P2 ∈ PM,pc:

P1 ∼MCTr P2 ⇐⇒ P1 ∼MTr P2



• c ∈ Cf(P ) is a failure computation compatible with ϕ ≡ (α,F) ∈
Name∗ × 2Name iff c ∈ CC(P, α) and the last configuration of c

cannot execute any action whose name belongs to the failure set F .

• FCC(P, ϕ): multiset of failure computations of Cf(P ) compatible with ϕ.

• P1 ∈ PM,pc is Markovian failure equivalent to P2 ∈ PM,pc, written

P1 ∼MF P2, iff for all traces with final failure set ϕ ∈ Name∗ × 2Name

and sequences θ ∈ (R>0)
∗ of average amounts of time:

prob(FCC≤θ(P1, ϕ)) = prob(FCC≤θ(P2, ϕ))



• c ∈ Cf(P ) is a ready computation compatible with ρ ≡ (α,R) ∈ Name∗×
2Name iff c ∈ CC(P, α) and the set of names of all the actions executable

by the last configuration of c coincides with the ready set R.

• RCC(P, ρ): multiset of ready computations of Cf(P ) compatible with ρ.

• P1 ∈ PM,pc is Markovian ready equivalent to P2 ∈ PM,pc, written

P1∼MR P2, iff for all traces with final ready set ρ ∈ Name∗ × 2Name

and sequences θ ∈ (R>0)
∗ of average amounts of time:

prob(RCC≤θ(P1, ρ)) = prob(RCC≤θ(P2, ρ))

• For all P1, P2 ∈ PM,pc:

P1 ∼MR P2 ⇐⇒ P1 ∼MF P2



• c ∈ Cf(P ) is a failure-trace computation compatible with φ ∈ (Name ×
2Name)∗ iff c is compatible with the trace component of φ and each

configuration of c cannot execute any action whose name belongs to the

corresponding failure set in the failure component of φ.

• FT CC(P, φ): multiset of failure-trace computations of Cf(P ) compatible

with φ.

• P1 ∈ PM,pc is Markovian failure-trace equivalent to P2 ∈ PM,pc, written

P1 ∼MFTr P2, iff for all failure traces φ ∈ (Name×2Name)∗ and sequences

θ ∈ (R>0)
∗ of average amounts of time:

prob(FT CC≤θ(P1, φ)) = prob(FT CC≤θ(P2, φ))



• c ∈ Cf(P ) is a ready-trace computation compatible with % ∈ (Name ×
2Name)∗ iff c is compatible with the trace component of % and the sets of

names of all the actions executable by the configurations of c coincide

with the corresponding ready sets in the ready component of %.

• RT CC(P, %): multiset of ready-trace computations of Cf(P ) compatible

with %.

• P1 ∈ PM,pc is Markovian ready-trace equivalent to P2 ∈ PM,pc, written

P1 ∼MRTr P2, iff for all ready traces % ∈ (Name×2Name)∗ and sequences

θ ∈ (R>0)
∗ of average amounts of time:

prob(RT CC≤θ(P1, %)) = prob(RT CC≤θ(P2, %))

• For all P1, P2 ∈ PM,pc:

P1 ∼MRTr P2 ⇐⇒ P1 ∼MFTr P2



• Markovian linear-time/branching-time spectrum:

∼MB ⊂
∼MRTr =∼MFTr ⊂

∼MR =∼MT =∼MF ⊂
∼MCTr =∼MTr

• More condensed than the nondeterministic spectrum.

• Similar to the probabilistic spectrum.



Summary of Results

• Comparing Markovian behavioral equivalences:

exact congr . sound & compl . modal logic verification

aggreg . property axiomatization charact . complexity

∼MB
√ √ √ √

O(m · log n)

∼MT
√ √ √ √

O(n5)

∼MTr
√

no
√ √

O(n4)

• Bisimilarity, testing, and trace approaches are not only intuitively

appropriate from the functional viewpoint, but also meaningful for

performance evaluation purposes:

¯ Aggregate the state space of a model by exploiting symmetries.

¯ Reduce the state space of a model before analysis takes place.

¯ No alteration of the performance properties to be assessed.



Open Problems

• Markovian behavioral equivalence inducing the coarsest exact non-trivial

CTMC-level aggregation?

• Weaker versions of ∼MB, ∼MT, and ∼MTr that abstract from invisible

exponentially timed actions while preserving non-trivial exactness?

• Minimization algorithms for ∼MT and ∼MTr (and T-lumping)?
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