Simulation and Bisimulation Relations for
Probabilistic Timed Automata
(ongoing work)

Jeremy Sproston and Angelo Troina

Dipartimento di Informatica
University of Turin
Italy

L’Aquila, 2nd March 2010
Motivation

• Aim: construction of abstractions (or refinements) of probabilistic timed automata.

• Extensive work on abstraction for Markov chains, Markov decision processes, and timed automata, often based (in part) on simulation or bisimulation relations.

• Method: combine techniques from Markov decision processes and timed automata to use (bi)simulation for probabilistic timed automata.

• In particular, study algorithms and logical characterization.
(Bi)simulation

- Labelled transition system \((S, Act, \rightarrow)\), where \(\rightarrow \subseteq S \times Act \times S\) (write \(s \xrightarrow{a} s'\) to denote \((s, a, s') \in \rightarrow\)).
- Relation \(R \subseteq S \times S\) is a simulation relation if \(R\) satisfies the following condition: \((s_1, s_2) \in R\) implies that, for each \(s_1 \xrightarrow{a} s'_1\), there exists \(s_2 \xrightarrow{a} s'_2\) such that \((s'_1, s'_2) \in R\).
- \(s_2\) simulates \(s_1\) if there exists a simulation relation \(R\) such that \((s_1, s_2) \in R\).
- Relation \(R \subseteq S \times S\) is a bisimulation relation if both \(R\) and \(R^{-1}\) are simulation relations.
- \(s_1\) and \(s_1\) are bisimilar if there exists a bisimulation relation \(R\) such that \((s_1, s_2) \in R\).
Timed automata

- **Timed automata** [AlurDill94]:
 - Finite-state graph (where the nodes are called *locations*).
 - Finite set of *clocks*: real-valued variables increasing at the same rate as real-time.
 - Clock constraints (*invariants* in locations, *guards* on edges).
 - Clock resets (set some clocks to 0 when an edge is traversed).

![Timed Automata Example](image.png)
Timed automata

- Semantics of timed automata (in brief):
 - Represented by a timed transition system \((S, Act, \rightarrow)\), where \(\rightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times Act \times S\).
 - States: of the form \((l, \nu)\), where \(l\) is a location and \(\nu : X \rightarrow \mathbb{R}_{\geq 0}\) is a clock valuation (must satisfy the invariant condition of \(l\)).
 - Transitions: for example (only a selection...),

\[
((l_0, \nu(x) = 0.2), a, 0.1, (l_0, \nu(x) = 0.3)), ((l_0, \nu(x) = 0.3), a, 0.7, (l_1, \nu(x) = 1))
\]
\[
((l_1, \nu(x) = 1), b, 0, (l_1, \nu(x) = 0)), ((l_1, \nu(x) = 0), b, 1, (l_1, \nu(x) = 0))
\]
Timed (bi)simulation

- Timed transition system \((S, Act, \rightarrow)\), where
 \[\rightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times Act \times S.\]
- Relation \(R \subseteq S \times S\) is a **timed simulation relation** if \(R\) satisfies the following condition:
 \((s_1, s_2) \in R\) implies that, for each \(s_1 \xrightarrow{t,a} s_1'\), there exists \(s_2 \xrightarrow{t,a} s_2'\) such that \((s_1', s_2') \in R\).
- \(s_2\) **timed simulates** \(s_1\) if there exists a timed simulation relation \(R\) such that \((s_1, s_2) \in R\).
- Relation \(R \subseteq S \times S\) is a **timed bisimulation relation** if both \(R\) and \(R^{-1}\) are timed simulation relations.
- \(s_1\) and \(s_1\) are **timed bisimilar** if there exists a timed bisimulation relation \(R\) such that \((s_1, s_2) \in R\).
Timed vs. time-abstract (bi)simulation

- Timed transition system \((S, Act, \rightarrow)\), where
 \[\rightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times Act \times S.\]

- Relation \(R \subseteq S \times S\) is a time-abstract simulation relation if \(R\) satisfies the following condition:
 \((s_1, s_2) \in R\) implies that, for each \(s_1 \xrightarrow{t,a} s'_1\) there exists \(s_2 \xrightarrow{t',a} s'_2\) such that \((s'_1, s'_2) \in R\).

- \(s_2\) time-abstract simulates \(s_1\) if there exists a time-abstract simulation relation \(R\) such that \((s_1, s_2) \in R\).

- Relation \(R \subseteq S \times S\) is a time-abstract bisimulation relation if both \(R\) and \(R^{-1}\) are time-abstract simulation relations.

- \(s_1\) and \(s_1\) are time-abstract bisimilar if there exists a time-abstract bisimulation relation \(R\) such that \((s_1, s_2) \in R\).
• Time-abstract bisimulation can be used to construct finite-state abstractions of timed automata.

• Region equivalence [AlurDill94]: a finitary time-abstract bisimulation equivalence relation over states of a timed automaton.

• The number of regions equivalence classes corresponding to a timed automaton is exponential in the number of clocks and the maximal constant used in the model (in guards or invariants).

• Intuitively, states \((l, v), (l', v')\) are region equivalent if \(l = l'\), and \(v\) and \(v'\) are “clock equivalent”.
Timed vs. time-abstract (bi)simulation

- For each clock $x \in \mathcal{X}$, let c_x be the maximal constant to which x is compared in any of the guards or invariants.

- Two clock valuations $v, v' \in \mathbb{R}_0^{\mathcal{X}}$ are clock equivalent if the following conditions are satisfied:
 1. for all clocks $x \in \mathcal{X}$, we have $v(x) \leq c_x$ if and only if $v'(x) \leq c_x$;
 2. for all clocks $x \in \mathcal{X}$ with $v(x) \leq c_x$, we have $\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor$;
 3. for all clocks $x, y \in \mathcal{X}$ with $v(x) \leq c_x$ and $v(y) \leq c_y$, we have $\frac{v(x)}{c_x} \leq \frac{v(y)}{c_y}$ if and only if $\frac{v'(x)}{c_x} \leq \frac{v'(y)}{c_y}$;
 4. for all clocks $x \in \mathcal{X}$ with $v(x) \leq c_x$, we have $\frac{v(x)}{c_x} = 0$ if and only if $\frac{v'(x)}{c_x} = 0$.

- Two states $(l, v), (l', v')$ of a timed automata are region equivalent, if:
 1. $l = l'$;
 2. v and v' are clock equivalent.

- A region is an equivalence class of region equivalence.
(Simple) probabilistic automata \cite{SegalaLynch95} (similar to Markov decision processes):

- Graph with nondeterministic and probabilistic choice.
- E.g., from l_0 have a nondeterministic choice whether to take the left or right transition.
- Right transition: make a probabilistic choice (l_2 with probability $\frac{1}{2}$, and l_3 with probability $\frac{1}{2}$).
- Left transition: go to l_1 with probability 1.
• Dist(S) is the set of probability distributions over S.

• **Weight function** [JonssonLarsen91]: for $\mu_1, \mu_2 \in \text{Dist}(S)$ with respect to relation $R \subseteq S \times S$ is a function $\Delta : S \times S \rightarrow [0, 1]$ such that:
 1. $\Delta(s_1, s_2)$ implies $(s_1, s_2) \in R$;
 2. $\sum_{s_2 \in S} \Delta(s_1, s_2) = \mu_1(s_1)$;
 3. $\sum_{s_1 \in S} \Delta(s_1, s_2) = \mu_2(s_2)$.

• Example:
 - $\mu_1(s_1) = 0.5, \mu_1(s'_1) = 0.5$.
 - $\mu_2(s_2) = 0.3, \mu_2(s'_2) = 0.4, \mu_2(s''_2) = 0.3$.
 - $R = ((s_1, s_2), (s_1, s'_2), (s'_1, s'_2), (s'_1, s''_2))$.
 - Then an example of a weight function for μ_1, μ_2 w.r.t. R is:
 $\Delta(s_1, s_2) = 0.3, \Delta(s_1, s'_2) = \Delta(s'_1, s'_2) = 0.2, \Delta(s'_1, s''_2)) = 0.3$.
Probabilistic simulation

- Probabilistic automaton \((S, Act, \rightarrow)\), where
 \(\rightarrow \subseteq S \times Act \times \text{Dist}(S)\).

- Relation \(R \subseteq S \times S\) is a probabilistic simulation relation [SegalaLynch95] if \(R\) satisfies the following condition:
 \((s_1, s_2) \in R\) implies that, for each \(s_1 \xrightarrow{a} \mu_1\), there exists \(s_2 \xrightarrow{a} \mu_2\) such that there is a weight function for \(\mu_1, \mu_2\) w.r.t. \(R\).

- \(s_2\) probabilistically simulates \(s_1\) if there exists a probabilistic simulation relation \(R\) such that \((s_1, s_2) \in R\).

- Relation \(R \subseteq S \times S\) is a probabilistic bisimulation relation if both \(R\) and \(R^{-1}\) are probabilistic simulation relations.

- \(s_1\) and \(s_1\) are probabilistically bisimilar if there exists a probabilistic bisimulation relation \(R\) such that \((s_1, s_2) \in R\).
Probabilistic timed automata (PTA) [Jensen96,KNSS02]:

- Finite-state probabilistic automaton.
- Finite set of *clocks*: real-valued variables increasing at the same rate as real-time.
- Clock constraints (*invariants* in nodes, *guards* on edges).
- Clock resets (set some clocks to 0 when an edge is traversed).

\[
\begin{align*}
 x = 1 & \quad b \\
 x := 0 & \quad \text{L}_1
\end{align*}
\]

\[
\begin{align*}
 x \leq 1 & \quad \text{L}_0 \quad x \leq 1, a \\
 x \leq 1 & \quad \text{L}_2 \quad x \leq 1, a
\end{align*}
\]
Probabilistic timed automata

- Semantics of probabilistic timed automata (in brief):
 - Represented by a “probabilistic automata with timing” (S, Act, \rightarrow), where $\rightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times Act \times \text{Dist}(S)$.
 - States: of the form (l, ν), as for timed automata.
 - Transitions: for example (only a selection...),

$((l_0, \nu(x) = 0.2), a, 0.1, \mu((l_3, \nu(x) = 0.3) \mapsto \frac{1}{2}, (l_2, \nu(x) = 0.3) \mapsto \frac{1}{2}),$

$((l_0, \nu(x) = 0.2), a, 0.7, \mu((l_1, \nu(x) = 0.9) \mapsto 1)$
Probabilistic timed simulation

- “Probabilistic automaton with timing” \((S, \text{Act}, \rightarrow)\), where
 \(\rightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times \text{Act} \times \text{Dist}(S)\).

- Relation \(R \subseteq S \times S\) is a \textit{probabilistic timed simulation relation} if \(R\) satisfies the following condition:
 \((s_1, s_2) \in R\) implies that, for each \(s_1 \xrightarrow{t,a} \mu_1\), there exists \(s_2 \xrightarrow{t,a} \mu_2\) such that there is a weight function for \(\mu_1, \mu_2\) w.r.t. \(R\).

- \(s_2\) \textit{probabilistically timed simulates} \(s_1\) if there exists a probabilistic timed simulation relation \(R\) such that \((s_1, s_2) \in R\).

- Relation \(R \subseteq S \times S\) is a \textit{probabilistic timed bisimulation relation} if both \(R\) and \(R^{-1}\) are probabilistic timed simulation relations.

- \(s_1\) and \(s_1\) are \textit{probabilistically timed bisimilar} if there exists a probabilistic timed bisimulation relation \(R\) such that \((s_1, s_2) \in R\).

- (Probabilistic time-abstract (bi)simulation can be defined as for time-abstract (bi)simulation.)
Aim: to decide whether, given two PTA P_1, P_2, whether P_1 is probabilistically timed simulated by P_2.

More precisely: to decide whether the initial state of P_1 is probabilistically timed simulated by the initial state of P_2 on the “disjoint union” of P_1 and P_2.

Combination of techniques for timed automata and for probabilistic automata:

- Timed automata: [Čeřáns91] for timed bisimulation, [TaşiranAKB96] for timed simulation.
- Probabilistic automata: [BEM00, ZHEJ08].
Probabilistic timed (bi)simulation: algorithm

- [Čeráns91, TaširanAKB96]:
 - Construct region equivalence over both timed automata ("simulator" and "simulatee").
 - Theorem 1: if two states \((l_1, \nu_1)\) and \((l_2, \nu_2)\) in the same region \(r\) are such that \((l_2, \nu_2)\) timed simulates \((l_1, \nu_1)\), then all states \((l'_1, \nu'_1)\) and \((l'_2, \nu'_2)\) in \(r\) are such that \((l'_2, \nu'_2)\) timed simulates \((l'_1, \nu'_1)\).
 - Theorem 2: can consider only a finite number of time durations when deciding timed simulation.

- Proposal: apply region equivalence over PTA, adapt Theorems 1 and 2 to the probabilistic case.
- Adapt for probabilistic timed bisimulation.
- EXPTIME algorithm (optimal, same complexity as for timed automata).
Probabilistic timed bisimulation: logical characterization

- Probabilistic timed bisimilar states satisfy the same probabilistic timed temporal logic properties.
- ... but little work on using probabilistic timed Hennessy-Milner logic to characterize probabilistic timed bisimilarity.
- Related work:
 - [GregersenJensen95]: on “reactive probabilistic timed automata” (no nondeterminism between actions).
 - [ParmaSegala07]: logical characterization of probabilistic bisimilarity for probabilistic automata.
 - [BozelliLegayPinchinat09]: logical characterization of timed similarity for timed automata (actually, timed automata games).
- Proposal: combine [ParmaSegala07] and [BozelliLegayPinchinat09] to give a logical characterization of probabilistic timed bisimilarity for PTA.
Further work

- Probabilistic timed (bi)simulation can potentially provide the basis for further abstraction methods for PTA.
- Weak relations.
- Metrics and/or approximate equivalences.